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On the base of general approach we obtain some results that can be useful in the process of tuning of nonunifrom
disc-loaded waveguides. Our consideration has shown that simple values that characterize the detuning of the cells
can be introduced only for the disc-loaded waveguide with parameters that change very slow. In general case it is
needed to conduct full numerical simulation of specific disc-loaded waveguide and obtain all necessary coupling
coefficients. After that one can start the tuning process on the base of bead-pull field distribution measurements.

PACS: 29.20.Ej

INTRODUCTION

Disc-loaded waveguides (DLW) have been heavily
investigated both numerically and analytically over the
past seven decades (see, for example, [1, 2] and cited
there literature). They have also been used, and continue
to be used, in a variety of microwave devices such as
linear accelerators [3, 4], travelling-wave tube amplifi-
ers, backward-wave oscillators [5], etc.

In physics of linear accelerators two important
groups of DLWs are commonly distinguished: the con-
stant gradient and the constant-impedance type. Charac-
teristics of a homogenous structure with constant iris
and cell-radii over the whole length (a constant-
impedance structure) can be calculated with using Flo-
quet theorem. There are several known reliable methods
and computer codes for calculations of the infinitely
periodic structures.

A structure with constant electric field on axis (a
constant-gradient structure) can be designed by appro-
priate tapering iris- and cell-radius [6 - 8]. The design of
such nonperiodic accelerator section is based on the
assumption that the parameters of the section vary only
slowly along the structure. In such an approach one es-
sentially assumes the local field in the nonperiodic
structure to be that of a corresponding periodic struc-
ture, with the local dimensions of the nonperiodic struc-
ture. However, there always arises the question of how
good is this approximation for the nonperiodic wave
structures.

Some nonuniform DLWSs have greater tapering.
They are used as injectors and sections for high current
linacs [3, 9, 10]. There are also quasi constant gradient
structures that have essentially nonuniform transition
cells [11, 12].

Usually the electromagnetic properties of accelerator
components are calculated by computer codes that dis-
cretize Maxwell's equations. For long tapered disc-
loaded waveguides, however, these methods would need
the solution of extremely large algebraic equations. This
is numerically difficult (or even impossible).

So, it is necessary to use non-grid-oriented methods
to calculate the fields in the complete structure with
realistic dimensions. Equivalent circuits are one possi-
ble technique. These are fast methods but the influence
of the chosen model on the results is not negligible so
that the results may be far away from the exact solution
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of Maxwell's equations. The mode matching technique
is based on an exact formulation. In the chain matrix
formulation this technique can be used for nonperiodic
structures [13 - 15].

Usually, in the mode matching technique basic func-
tions are chosen as the eigenwaves of circular wave-
guides [13 - 15]. Earlier we have developed approach
that used the eigenmodes of circular cavities as the basic
functions for calculation the properties of uniform DLW
[16]. We have obtained exact infinite system of coupled
equations which can be reduced by making some as-
sumptions. Under such procedure we can receive more
exact parameters of equivalent circuits by solving the
appropriative algebraic systems. These parameters of
equivalent circuits are functions both geometric sizes
and frequency. Moreover, under such approach all used
values have interpretation. We called this approach as
coupled cavity model. Recently we extended that model
on the case of nonuniform DLW [17 - 20].

Development of this model gives us possibility to
look on the properties of the nonuniform DLW more
deeply, especially on the methods that are used for tun-
ing nonuniform DLWs [21 - 28]. Some results of our
investigation are presented in this article.

1. ELECTROMAGNETIC FIELDS
IN NONUNIFORM DISK-LOADED
WAVEGUIDE
Let’s consider a cylindrical nonuniform DLW
(Fig. 1). We will consider only axially symmetric fields
with E,,E,H, components. Time dependence is
exp(—i ot) .
We can divide the DLW volume into infinite num-
ber of different cylindrical volumes that are contiguous
with each other over circle aria. In each large volume

we expand the electromagnetic field with the short-
circuit resonant cavity modes

E® =Se,  (VE, (), )
H® =i h, @) H,, (F), @)

where q={0,m,n}, and E,,,
homogenous Maxwell equations

H,, are the solution of



rot E,, =i, 4,H

rot Haq'k =

with boundary condition E_=0 on the metal surface.
In each small volume we expand the electromagnetic
field with the waveguide modes. Using the relevant
boundary conditions after some manipulations we can
obtain such infinite set of coupled relations [18, 20]

2 2 2 <
(@ = 0® g =, Z €10, %kjr (4
where «

ok, &re some coeff|C|ents that depend on both

the frequency @ and geometrical sizes of all volumes.
There are an infinite set of infinite linear equations

which solutions define these ¢, ; coefficients. Let’s

note that relations (4) are the exact ones.
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Fig. 1
It follows from (4) that for finding the amplitudes of
the main (010) mode we have to solve a system of cou-
pled equations
{wglo,k (1_ Koo,k ) - } Corok =

®)

"
2
= Wy k Z €010,j X010,k j -

j=—00, =k
Amplitudes of other modes (g = (010)) can be find
by summing the relevant series

C()2 X
ak = {quk (1_0::&‘()_602} j:;#keolo,jaq,k,j . (6)
It can be shown that for large interval of geometric
sizes in the right hand side of (5) we can neglect all
terms except three ones. Denote A =gy, (complex

amplitudes), &, ; =y, ; and introduce loss, then the
equations (5) can be rewritten as

€

0)
ol (l-a )—i—— =
{ Kk Kk Qk } A = @)
= wkzak,kﬂAkJrl + wlf“k,k—lA(—l ;
or
Z A = A+ A A (8
where

2
Zkz{l—ak‘k—w—z—i @ }zReZk—igk. ©)
o, o,

Suppose that for w=@, and some geometry

(Z, =Z9) there is a certain (forward) amplitude distri-
bution

A0 A0 0 (Y
A? = ASR  exp(in?) ,
where R, are the real values.

Note that in general case electromagnetic field with
amplitude distribution (10) can not be considered as a
wave (except the uniform case). Indeed, such distribu-
tion can be true only for one frequency and in some
cases it can be impossible to define the group velocity".

From (8) and (10) it follows

(10)

30 1 © _ 2 )y | 3O
N Zk RO eXp(—l(/’k ) A( =
K k+1 K k-1 (11)

_ A0 ©) YR ()
= A" exp(ip ;)R -
Therefore, under @ =, and some geometry such

relations is true
a®

z = Rioﬁ'l exp(—ig”) +exp(i )R &y - (12)
k,k—1
For given R ., ¢ these equations determine the

geometry of DLW.

The equations (8) are the second order difference
equation. So, there must two solutions.

When Q, — « the second solution is a complex
conjugate one to (10), so, it is conveniently to seek the
second solution in the form

A = RURS  oxpid®) . (13
If Q — ~(0) Réo& . @(0) (0)
R, ¢ satlsfy the equations
© _ % © ©RO O
K T RO =5 eXp(id”) +exp(—id )R Xy vy - (14)
k,k—1

Consider a case of the uniform DLW (a constant-
impedance ~ structure)  (4® =¢, R, =const,

RY., =const, &), = const). From (12) it follows

© © 2
RO -2 4 £ +1~
20 sin(¢) 2% sin(p)
2

L £ g £
2a9sin(p) 2\ 2a@sin(p) )

(15)

! In a periodic structure, at a given frequency and
single mode operation, the electromagnetic wave is
characterized by a single wavenumber k and quantities
like phase velocity, group velocity. In principle, if the
structure is no longer periodic the field can not be repre-
sented by a single wavenumber and group velocity. The
simplest example is the matched (on one frequency)
connection of two different DLWSs. It is impossible to
define the group velocity for this case. We will use term
electromagnetic field (forward and backward) instead of
electromagnetic wave.
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2
50 _ £© N £© L
=249 sin(p) \\ 26O sin(g) ) "
O] ©) 2 (19)
& 1 [ &

~1+ +—
20 sin(p) 2\ 2a@ sin(p)
For the case of the constant-gradient structure
(R, =1n ¢ =¢p)we have

20 =) exp(-ip) + 9., exp(ip) . (17)
= -a Jsing, (9
© © ‘9150)
a® —a® 19
k,k+1 — “k,k-1 Sln ¢ ( )
O]
ReZ(” =| - —+2a(9 , |cosp =
sing
(20)

RO .
=120, |cosg.
sing

For backward distribution (13) from (14) we can ob-
tain

~I£0£ _ sin ¢Sin(¢k(0) + ¢k(3)1)aé(,)13-1 1)
7 ) ysinglsin2p—sin (- 4% 7
o % sin2psing® +sin(p- 4 )£
Rk = O 7 40150 . (22)
Sln (pSIn(¢k ¢k+1 k,k+1
We will seek the solution in the form
40 = p+5,. (23)

We will suppose bellow that £ <<1 and 6, << ¢.

Then
RO ~ % {1+ctg2 -
k1~ ) P(8, +8,.1)—ClgPs, .} , (24)
k,k+1
RO, ~ %1 oo
k+1,k ~ (0) §0(5k + 5k+1) + Ctg wé‘k} . (25)
K k+1

The right hand part of the equality (24) under change
k to k+1 must coincide with the right hand part of the
equality (25)
aﬁoﬁ 1
o —=={1-ctg2¢(5, +J,.,,) +Ctgps, } =
k,k+1
4
: {1+ Ctg2¢(Sy .y +0y,5) — Ctg¢5k+z} .

(0)
k+1,k+2

From this expression we can obtain such difference
equation for o,

(26)

£0 L0
Sz =61 2€08 20+, =2C08 | —at-——5— | .(27)
04

k+1k K,k-1

The right hand part of this equation is proportional
to £®?, therefore the solution will be big-oh of £%?,

too. Therefore, we can neglect J,,d,., in (24), (25) and
write

40 ~p, (28)
(0) (0)
RO & Jkt i (29)
k= (0) (0)
O k41 Q1 SINQ
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2. CHARACTERIZATION
OF DETUNED CELLS

Let’s consider the DLW with geometry close to
some DLW that support A® = AR exp(ip®)
distribution. Suppose that we can measure the complex
amplitude E(™ of the electromagnetic field in the cen-
ter of each cavity and find the complex amplitude of
E,io -mode A™:

A" = EP. (30)

Then under the assumption of only adjacent interac-
tion these amplitudes have to satisfy the equation

Zéa)Afm) = ak,k—lAETl) +0‘k,k+1'5\<(T1)- (31)
Rewrite it as
0 0
@) _ aﬁﬁ 1'01((71 +al£ £+1A<(T1)
Zk A(m)
A(m) A( A (32)
o \Ax © \Ax
+(ak,k 1T Ok 1) A +(ak ka1 T O k+l) AM
Let’s denote
0 0
@m _ alE et (T1) +al§ LA (m)
z , (33)
k Ak(m)
then
A(m)
® _ 76m © AL
27 =27"" +(ak,k 47 Ok 1)A<(m)
. (34
0 \An
+(ak k+1 alﬁ l3+1) A((m)
Since for z® —»z89 differences
0 0
(s =D 1) >0, (@4 —%,1) >0, then we can

introduce such parameters that characterize the detuning
of the cell

ZIE?:,m) _ ZIE3,0)

@m) _
Fem — 7 (35)

If we calculateZ>?, o 1, a%.,, x. and measure
A™ A™ A we'll be able to find F&™ .

Changing the geometry of K cell in such a way that
[Fe™| >0, we obtain Z® =z®?, ie. we obtain
tuned cell under arbitrary parameters of other cells and

reflections from couplers.
Consider the constant-gradient structure (R, =1)

i+1,i

with slow tapering (¢ = 7 /2, ¢,

aéoﬁ 1
289 = B op(igl®) +

N Qi X > const )

Rkt (36)
+exp(ig )R ke & 20503, COS @,
20 ~a AR
Then
Fem = zem ~ A" + 55?1) —2cospA™ . (38)
T Z80 A™2cosp



For o =27/3
pem _ AT +AD+ AT iv/3S, exp(i6))
i - A(m) - 'Eﬁ(m)
where S, exp(i¢;) are coefficients that were introduced

in the article [21] and which should to be decreased in
the process of tuning.

iS, exp(i) = FCMA™ /3. (40)
Imaginary part of Z, is small (01/Q,, see (9)),

+ (39)

therefore the imaginary part of |:i(3'm) is small, too, and

the authors of the article [21] dealt only with
Re{iS, exp(ig))} .
In the case of the uniform DLW (a constant-

impedance structure) (g =p=x/2, R.., =R,
Qg =)
A(M . A(m)
R = At i ~1. (41)
i A(m) eXp(Igo)RZ + exp(_i¢)) .
As R~ l_£ ' £ <«<1
2asin(p) 2a:sin(e)
SN AM 1+ A™ _2cos pA™ )
ke ~(m) :
A™2cosp

It coincides with expression (38).

For large apertures and small phase velocities for
correct quantitative description we have to use five
summands in the right hand side of equation (5)

5) = — —
ZIE )A< = ak,k+lA<+1 +ak,k+2A<+2 +

AL A A -
Then we can introduce more complicated parameters
that characterize the detuning of the cell

(43)

em _ 28"
m_ L
I:k _Z(S'O) 1v (44)
K
where
0) A(m) (0) p(m) 0) A(m) 0) p(m)

Z(S,m)_ak,k—z 2 T ARG T O A T X A

k - A((m) .

(45)
Zé5,0) — aIE?IZJrl eXp(|¢k+1) Rk+l,k +

(0) - -
ey R o Rk EXP(9, 5 +ig,,) +

(0) 0)

+ k, k-1 eXp(—i¢k)+ k, k-2

= exp(—ig —ig ).
k,k—1 k. k1" *k-1,k-2
(46)

We have already noted that introduced above pa-
rameters that characterize the detuning of cells are cor-
rect in the case when parameters of other cell do not
effect on their magnitude.

To study quality of introduced parameters from this
point of view we calculated these parameters for differ-
ent DLWSs. We used the developed coupled cavity mod-
el for calculation the necessary coefficients. Considera-
tion was carried out for frequency f = 2856 MHz.

The first DLW represents the matched (on one fre-
quency f =2856 MHz) connection of two different

6

uniform DLWSs (a, —a, =1.4 cm. a; —a, = 1.39 cm,
disc thickness t =0.4 cm, d =3.099 cm) with using one
transition cell. Transition cell sizes (a,, and b,) were
chosen by making the reflection coefficient small
enough (|| <107 ). Results of calculations that present-

ed in Figs. 2-6 show that simplified description (39) can
be used in tuning procedure.

The second DLW also represents the matched con-
nection of two different uniform DLWs (a -3, =1.4 cm,

a,; +a, = 1.3 cm) with using one transition cell. Sizes

of the second DLW change more steeply. Transition cell
sizes (a, and b,) were chosen by the same method

(|7 <3x107*). Results of calculations that presented in

Figs. 7-10 show that for relatively fast cell size changes
three point approach gives correct results only in the
case of using full description (see (35)). Simplified de-
scription (39) gives some mistakes in considered case.
Five point approach gives the same results as three point
one.

But for the case of large apertures and small cell
lengths (the third DLW, Fig. 117, small phase velocities)
only five point approach gives correct results (see
Figs. 12-16).

14 4

13 Xn
1.2
11
. |An|
09
08 IEI'\
07
n
06 , ; , ‘
0 5 10 15 20 25

Fig. 2. Distributions of longitudinal electric field
in the cell centers (|E,| ), amplitudes

of Ep, mode (|A|)and z, =|A /E,|

7 3pn(°)

2
Fig. 3. Distribution of phase deviations (¢, =27/3)

of the longitudinal electric field in the cell centers
and phase deviations of amplitude of E,,, mode

2 Cell radii were chosen with using special 6 resona-
tor stack [10, 11]. Tuning accuracy was ~50 kHz.
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Fig. 4. Detuning parameters that were calculated Fig. 8. Detuning parameters that were calculated
with using expression (39) with using expression (39)
1E+03 1 (3 1.E+03
IF) )
1.E+02
b(20)=b(20)+0.3 16402 |
1.E+01 b(20)=b(20)+0.3
1.E+00 1.E+01 1
1.E-01 1.E+00
0
1.E-02
1.E-01 4
1.E-03
— 1E-02
1.E-05 1.E-03 -
Fig. 5. Detuning parameters that were calculated Fig. 9. Detuning parameters that were calculated
with using expression (35) with using expression (35)
1.E+03 1.E+03
F® (5),
| I b(20)=b(20)40.3 IF | b(20)=b(20)+0.3
18402 1 1E+02 -
1.E+01 \
A n 1.E+01
1.E+00 n
5 10 15 20 25 1.E+00 -
1.E-01 A 0 25
1E.02 1.E-01 1
1.E-03 1.E-02
1.E-04 - 1.E-03 -
Fig. 6. Detuning parameters that were calculated Fig. 10. Detuning parameters that were calculated
with using expression (44) with using expression (44)
6 57
S(Pn(o) 45 4 b
B T
5 4l
4 35 1 d
3]
3 25 -
21 2 a
15 1
1 14
n
0 E . - ; 05 - n
5 10 15 20 25 0 r r T r ,
-1 - 0 5 10 15 20 25 30

. e . Fig. 11. Geometrical sizes of the third DLW
Fig. 7. Distribution of phase deviations (¢, =27/3) 9 ' 'z !

of the longitudinal electric field in the cell centers and
phase deviations of amplitude of E,,, mode
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Fig. 12. Distributions of longitudinal electric field
in the cell centers (|E,|), amplitudes of E,, mode

(|A[)and z, =[A/E,|

5n(°)

20 25

Fig. 13. Distribution of phase deviations (¢, =27/3)

of the longitudinal electric field in the cell centers
and phase deviations of amplitude of E,,, mode

1.E+03 1 |FBO) b(18)=b(181+0.3

1.E+02 -
1.E+01 +
1.E+00

0
1.E-01 -
1.E-02 -

1.E-03 -

1.E-04 -

1.E-05 -

Fig. 14. Detuning parameters that were calculated
with using expression (39)

1.E+03 4
IF)
1.E+02 - b(18)=b(18)+0.3

4

1.E401 1 1

1.E+00 o * =
\ f\ f \
5 /\ 10/ 15 [ | 20 25

0
1.E-01 -
1.E-02
1.E-03 -
1.E04 | Vi v
1.E-05 -

Fig. 15. Detuning parameters that were calculated
with using expression (35)

1.E+03 —'F(S)I
b(18)=b(18)+0.3

1.E+02 - i

1.E+01 - 1

1.E+00

1.E01 - / \
1.E-02 - e an F ol * ‘.
\ \ 4
1.E-03 - \
1.E-04 - .\4 "
1.E-05 -

Fig. 16. Detuning parameters that were calculated
with using expression (44)

3. REFLECTIONS IN NONUNIFORM DLW

Consider the DLW with geometry that support some
distributions (10) with ¢© = ¢ and (13) with ¢© ~¢.
Suppose that one cell with index s (s> 2) has a devia-
tion in geometric sizes. Let us find the amplitude distri-
bution in such DLW. The system of equations (7) we
can rewrite in the form

ZIEO)R = alEl,]k)—l_ a1 +al5?k)+1_ 2 K<s. (47)
ZSR = as,s—l&—l + as,sﬂ&ﬂ " (48)
ZIEO)A( = aﬁ?k)fl_ at alg?k)ﬂ_ a0 K>s.(49)

The amplitude in the cell with k =0 we represent in
the form

A =A+TA. (50)
Then for other cells we can write
p— k .
A = AT TR exp(ike) +
7 (51)
+TA ][R exp(-ikp), k<s,k>0,
j=1

k
A =AT[ R, exp(ikp), k>s. (52)
j=1

Substituting (51) and (52) into equations (47)-(49),
we find “the reflection coefficient” I"

o {exp(—iqo) _ exp(iw)}r _

(0) 5(0)
Rsfl,sfz Rs—l,s—z

Ps)

1 RO
T2 exp(aisg) <R, x 3)

1
s-1s
j=1 N

(0)
Rs(os) 1 (a 17 s )
5= 0@ _ s,s-1 s,s-1 o _
TZS Fs a(o) exp( '@)

as,s—l s,5-1
X

pell

N

(0)
(as,sﬂ 055

_—) exp(igo) RO RO

(0) s+1,s" 's,5-1
s,s—1

where
Z. =720 +F®70 (54)
Note, that F® differs from F®™ (see (35)).
In most cases o ;LI b and e, L b*.
Then
Z(O)F(3) =7 _Z(O) ~
o . o }Abk Ab, (55)

_|— ~
0)2 0
o a)s( )Qk

~| 22 12 e S e
s,s (0) (0)
|: S bk bk
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: (as —a(O)) Ab
Since —o = -2 oo and
ZORP =2,-20
=2"-20+(2,-2{")=ZOF"" +
(ak,k 1 aéoﬁ 1)A1<(T1) +(ak,k+1 ay k+1)A<( N (56)
+ A
~ Zs(O) Fk(&m)
we finally obtain
exp(-ig) _explio) | . _
RO RO s”
s—1,5-2 s—1,5-2 (57)
RO 02
—H J(o‘) = exp(2isp) —-ZOFEM,
j=1 J j-1 s 15 2
Note that
AO || A© A0 | |AO®
[TrRO. = ‘Al(o) A Ao A (sg)
i1 ATIIA AZl 1A
For the constant- impedance structure we obtain
T, ~ COS(D R®*
S ing RS (59)
~—i —exp( 2us) exp(2isp) F&™
sing
where
N S (60)
2asinpQ
In the case of the constant-gradient structure
. Xp(2i
I, ~—j— 0 S;‘”z) ZOEEM - (51)
sinpa), [ [R.

j=1
Since (see (29)) R9, ~a(),/af.,, the product

can be written in the form
© L0 L0 () ()

ﬁR(O) g Oy G354 U5 543 ~ o (62)
it T (0) ) * 0) (0) ) '
j=1 Qo O3 as 3s-2 ¥sas1 Cs s
Finally
H (0)
~i exp(2isp)a ;o4 ZOFGM o
(0) (0)
Sln¢70‘1o s-15-2
(63)
eXp(2IS(p) 7O G
(O) S S "
"sin Py

Note, that expression (57) was obtained under as-
sumption that ¢ ~ ¢ for backward field. As our con-

sideration has shown (see (27)), it is needed to check
this assumption for each specific case.

CONCLUSIONS

On the base of general approach we have obtained
some results that can be useful in the process of tuning
of nonunifrom DLWSs. Our consideration has shown that
simple values that characterize the detuning of the cells
can be introduced only for the DLW with parameters
that change very slow. In general case it is needed to
conduct full numerical simulation of specific DLW and
obtain all necessary coupling coefficients. After that one
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can start the tuning process. The coupled cavity model
can be good approach in this procedure. The rounding
of the disk hole edges can be taking into account by
using S matrix approach [20].
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SJEKTPOMATHUTHBIE I1OJISA B HEOJHOPOJIHBIX JTUA®PAI'MUPOBAHHBIX BOJTHOBOJAX
H.U. Aiizaykuii, B.B. Mumpouenxo

Ha ocHoBe o0miero moaxozaa MoMy4eHbl pe3yabTaThl, KOTOPbIE MOTYT OBITh IIOJIE3HBI IIPH HACTPOIKE HEOIHO-
pOmHBIX IuadparMUpPOBaHHBIX BOMHOBONOB. Pe3ynmbTaThl aHaiM3a IOKA3aid, YTO NPOCThIE KO3((MHULIHMEHTHI, KOTO-
pBble XapaKTepU3yIOT PACCTPOHKY S4eeK, MOI'YT OBITh BBEACHBI TOJIBKO B Cllydae MEJICHHOTO U3MEHEHUs IapaMeT-
pOB IuadparMUpOBaHHBIX BOJTHOBOZOB. B o0miem ciydae HEOOXOIUMO NMPOBECTH MOJHOE MaTEMaTHYECKOe MOAe-
JMPOBaHUE KOHKPETHOIO HEOAHOPOIHOro quadparMUpoOBaHHOTO BOJIHOBOJA M PACCUMTATh HEOOXOAUMBIE KO3 du-
LUeHTHI cBs3U. Ilocie 3Toro MoKHO IPOBOIUTE HACTPOUKY sTUEEK, U3MEPSIs HAMIPSKEHHOCTh HOJISE METOJOM MaJloro
BO3MYILAOLIETO TeJa.

EJIEKTPOMATI'HITHI ITOJISI B HEOJJHOPIIHUX JIA®PATMOBAHUX XBUJIEBOJJAX
M.1. Aizayvkuit, B.B. Mumpouenxo

Ha ocHOBI 3arajbHOro MiJX0y OTPUMAHO PE3yJIbTaTH, SIKIi MOXKYTh OYTH KOPUCHUMH IIPU HACTPOMII HEOAHOPI-
JHUX AiadparMOBaHUX XBHJIEBOMIB. Pe3yibraTu aHaiily MOKa3aiu, IO MPOCTi KoedillieHTH, SKI XapaKTepH3yIOTh
po37a pe3oHaTopiB, MOXKYTh OYTH BBEJCHI TUIBKU JUIsl BUMAJIKY MMOBIIFHOTO 3MiHEHHS MapaMeTpiB JiadparmoBa-
HHUX XBHJICBOXIB. Y 3arajbHOMY BHIAJKy HEOOXiHO NPOBECTH NOBHE MaTeMaTHYHE MOJEIIOBAHHS KOHKPETHOT'O
HEOJHOPITHOTO AiaparMOBaHOTO XBHIIEBOAY Ta PO3paxyBaTh HeoOXimHI KoedimieHTH 3B s13Ky. [licis mporo MoxkHa
MIPOBOIUTH HAJIAIITYBAHHS PE30HATOPIB, BUMIPIOIOYHN HATIPY>KEHICTh MO METOAOM MAJIOro 30ypIOBAIEHOTO TiJa.
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