EXACT RELATIVISTIC MAXWELLIAN MAGNETIZED PLASMA
DIELECTRIC TENSOR EVALUATION FOR ARBITRARY WAVE
NUMBERS

S.S. Pavlov
Institute of Plasma Physics of the NSC KIPT, Kharkov, Ukraine
E-mail: pavlovss@ipp.kharkov.ua

A new exact integral form of the fully relativistic permittivity tensor for plasmas in a magnetic field is given. It is
suitable for numerical applications for arbitrary wave numbers since all integrals in it are one-dimensional ones.
This form is interesting for applications to study propagation and absorption of electron Bernstein waves in the
laboratory thermonuclear plasmas and of arbitrary electron and ion cyclotron waves in the hot astrophysical

plasmas.
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INTRODUCTION

Theoretical studying electromagnetic ~ waves
propagation and absorption in magnetized plasma in the
electron cyclotron frequency range requires accurate
taking into account relativistic effects, associated with
increasing masses of fast enough electrons, especially in
the case of wave propagation almost perpendicular to
magnetic field lines and for high cyclotron harmonics
numbers under consideration [1]. In both these cases in
the ion cyclotron resonance frequency range similar
effects can also arise for hot enough plasmas [2].

The basis for studying linear electron cyclotron
waves in plasmas is an accurate evaluation of the
relativistic plasma dielectric tensor. Two original
equivalent exact integral forms of this tensor were given
on the ground of the relativistic form of Vlasov kinetic
equation [3], however, in general case of arbitrary
plasma and wave parameters their applicability has been
rather limited for numerical applications. Later, on the
base of the exact relativistic plasma dispersion functions
(PDF) and the rather compact form of this tensor, this
limitation was been essentially weakened [4].

Neglecting the ion dynamics, tensor elements in
this form are represented as double series: on the
electron cyclotron harmonic numbers and on the exact
relativistic PDFs multiplied with coefficients of
expansion of the functions A (1) =e™*1,(4) in the small

parameter A. Here n is the number of the electron
cyclotron harmonic; 4 =(k, p)*, k, is transverse wave

number, p=V,,/Q, is Larmor radius of electrons,
Vo = /T/mo and Q_ =eB/(m,) are their thermal

velocity and fundamental cyclotron frequency, —e is
the electron charge; | (1) are modified Bessel function

of the integer index. The tensor itself is presented in the
form
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Above the next designations were used: @ is the
angular frequency of electromagnetic wave; k is the
wave vector; , =m,c?/T, c,m,,T are the speed of light

in vacuum, the electron rest mass and temperature,
respectively; a=uN?/2, N,=kclw is longitudinal
refractive index; z, = (w—nQ,) (V2kVy,)
plasma frequency of the electrons with rest mass,
Zlnl+l+3/2_zlnl+l+3/2(a’ ) is the exact relativistic
PDF with the index Inl+1+3/2. Superscript Inl+| of
brackets in expressions D, Mmeans the order of

@, I8

expansion of the term in brackets in the parameter /.
This designation significantly reduces recording. For
example, the expansion of functions A (1)=e1 (1),

mentioned above
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can be presented on this way in a much more short form
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In applications of relativistic tensor (1) for
investigation of the fast electron cyclotron waves in
laboratory thermonuclear plasmas usually takes place
the condition 1 <<1 and, consequently, series in this
parameter (formally in the index |) converges so rapidly
that its accurate calculation requires to summarize a few
terms only.

However, for the study of the slow or plasma
electron cyclotron waves in plasmas of laboratory or
astrophysics magnetic traps the parameter 1 can
significantly increase and reach of values of order 1 ~1
and even ones of order 1 >>1. In this case the series in
the index | with an increase of the parameter 4 begin to
converge slower and slower, which can cause serious
difficulties in its summation even in the case of the
weakly relativistic plasmas [5]. Obviously, in the case
of fully relativistic plasmas these difficulties can be
proved even more significant. In these unfavorable
cases it makes sense trying to find some alternative
form to one (1), suitable for accurate numerical
applications as the form (1) for the case 1 <<1.

The main goal of the present work is the further
progress in resolving the problem of exact evaluation of
fully relativistic Maxwellian plasma dielectric tensor for
arbitrary values of 1 (or for arbitrary wave numbers).
For each harmonic number n this scope is achieved by
means of introducing the generating function for the
anti-Hermitian parts of tensor and of introducing the
generalized relativistic PDF with their evaluation on the
basis of Kramers-Kronig formulae.

FUNCTIONS GENERATING ANTI-
HERMITIAN PARTS OF PLASMA
DIELECTRIC TENSOR

In the case of unfavorable value of the parameter 2
for each element of the fully relativistic tensor (1) and
each cyclotron harmonic number n the summation of
the slow convergent series mentioned above can be
analytically reduced to a two-step procedure, suitable
for accurate numerical applications. The first step
introduces the function generating the anti-Hermitian
part of this series in the parameter 1, and then a
numerical calculation of the one-dimensional integral of
this function leads directly to the anti-Hermitian part of
the sum of the series. The second step calculating
numerically the principal value of the integral in the
sense of Cauchy of the anti-Hermitian part leads to the
Hemitin part of the sum of the series. Obviously, both
parts together give a value of the whole series for the
corresponding tensor element.

Let us begin the demonstration of this two-step
procedure with the element of plasma dielectric tensor
&,- From the first integral form of Trubnikov it follows

(6]
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Here K,(u) is Macdonald function, p=p/(mc) is
normalized momentum, y =./1+p®, v° = uA. Using the
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last difinition, the expression (4) can be converted to the
form
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After a change of varlable p, >y in (5 with
transformation p?=4?—-(1+p?) and its Jacobian

dp, /dy = y/p,, We obtain the expression
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After one more change in (6) y—x with transform
x=y—41+p; and Jacobian dy/dx=1 and accounting

relation x:x(x+2 1+ pj)zy —(1+p? ), we obtain
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The integral over x that appears in formula (7) with the

multiplier exp(—u,/1+ p2) is one of the Cauchy type
with real density, satisfying the Holder condition of
continuity and tending to 0 when x -0 and x >« at
the contour. It is known that the integral of the Cauchy-

type

F(z)= j ¢(T)d7, 8)
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with the density ¢(r) satisfying the former conditions at

the contour, is defined at the contour itself by the
formulas of Sokhotskii-Plemejj
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Here, the functions F*(z), F(z) are the boundary

values of integral (8) when the argument z tends to the
contour from the right or from the left-hand side with
respect to the integration direction, respectively. The
letter P before integral denotes its principal value in the
Cauchy sense. At the real axis out of the contour the
integral (8) is not singular and, consequently,

Fe@ =+ 20 L[ A0 cq). (10

Thus, for the case \f1+ p2 —N,p,—nQ, /@ <0 the anti-
Hermitian part of the integral over X in (7) with the
multiplier e™ YP can be obtained by substituting the
anti-Hermitian part —zigp(—\[1+ pZ + N, p, +nQ, /@) Of

the second of the formulas (10), times 2zi, which
corresponds to the Landau rule for passing the pole,
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instead of the Cauchy integral in expression (7). In this

way
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In the expression (11) it is convenient to go to the
arguments introduced by Robinson in the weakly

relativistic approximation: x = p,\/u/2, z=u(1-nQ, /o).
a=uN/ /2. Then (11) is converted to

Herm. part - zie 232 {\/—Zﬂ[z —2Jax+ X2 = (z—-24ax)’/ (zﬂ)]}.(12)
From (12) the imaginary part of &, is
@y z;t & o, mett (13)
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Here were used @=./-24[z-2Vax+x* - (z—2Jax)* I(2u)] »
a" = u(l-1-N2) and the integration limits were obtained

from the condition that the pole must appear inside the
integral of expression (7), that is equivalent to

V1+2x2 [ —2Jax/ u+z/u—1=0- Consequently they are

x* =[Va(-z/ ) +(a—z+22 (2u))]/[(1-N?). Thus, for
the cyclotron harmonic number n and for the imaginary

z>a’.

(anti-Hermitian) part of the tensor component &, it was
obtained the expression that is an alternative to (1) and
in which the summation of a series in the index | is the
reduced to the numerical calculation of the one-
dimensional integral (13). After the change of variables:
x —>t in accordance with relation t=x-gJal-z/u),

leading to the symmetry of the new limits of integration

t* =t+pJa-z+22/(2u) about zero and one more

changing: t—u in accordance with t=ug.Ja-z+2%/(2u) »

leading to the normalization of integration limits to
u* =41, then from (13) it follows
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where for brevity were used the next designations

0=K2A1-u?)/ B and K=p8Ja-z+721(2u) .

The integral (14) in the interval [-1, 1] is not
singular, and therefore for arbitrary values of the
parameter A can be calculated without any problems.
The real (Hermitian) part of the component ¢ can also
be calculated from an imaginary part (14) along with
one of Kramers-Kronig formulas, linking Hermitian and
anti-Hermitian parts of an integral of Cauchy type,
defined on the real axis [1]
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Ime,,(a t, p)dt

Re £,(a,2, 1) =5, 1 P| (15)
T t-z

This formula corresponds to the Landau rule for passing
the pole in the expression (11). For passing to the
standard coordinates in (14) and (15) it is necessary to
make a change of variable: zzzﬁzn. Thus, during

calculation of plasma dielectric tensor element ¢ for

given cyclotron harmonic number n an evaluation of
series converging slowly in the index | can be reduced
to one-dimensional numerical calculation of integral
(14) and subsequent calculation of the principal value of
an integral of Cauchy type (15).

In a similar way it can be demonstrated that
calculating the remaining components of relativistic
plasma dielectric tensor (1) can also be reduced to
computing the same kind one-dimensional integrals in
the same interval [-1,1]. A form of this tensor which is
alternative one to (1) and suitable for accurate numerical
applications for arbitrary A is presented below:
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where 5 is designation of Kronecker symbol. At last

transition to the standard coordinates usual in the non-
relativistic case can be made in (16) throw the change

2:2\/52n-

CONCLUSIONS

1. It was shown that a fully relativistic dielectric tensor
of plasma in magnetic field can be presented in the
alternative to (1) the one dimensional integral form (16),
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suitable for numerical applications for an arbitrary value
of the parameter 4.

2. The form of the relativistic tensor (16) is rather of
interest from the point of view applications to studying
propagation and absorption of Bernstein electron
cyclotron waves in the laboratory thermonuclear
plasmas and arbitrary electron cyclotron waves in the
hot astrophysical plasmas.

3. 0n the same way can be obtained the form of the
exact fully relativistic dielectric tensor of magnetized
plasma for ion plasma components suitable for
applications with arbitrary wave numbers. This tensor
can be used for the studying propagation and absorption
of the arbitrary ion cyclotron waves in extremely hot
astrophysical plasmas, for example in such ones as in
the conditions of supernova explosions of stars.
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TOYHOE BbIYUCJIEHUE PEJIITUBUCTCKOI'O TEH30PA JUIJEKTPUYECKOM
IMPOHUITAEMOCTHU IVIA3MbBI B MAT'HUTHOM HOJIE JJISA ITPOU3BOJIBHBIX BOJIHOBBIX
YUCEJ

C.C. IIagnoe

Jaérca HOBast mHTETrpagbHAs (GopMa MOITHOCTHIO PEIATUBHCTCKOTO TEH30pa JUAJIEKTPUYECKON NMPOHUIAEMOCTH
IUIa3MBl B MarHUTHOM moje. OHa TOOUTCS AJSI YUCICHHBIX NPHIOKEHUH MPH MPOM3BOJIBHBIX BOJHOBBIX UYHCIAX,
MIOCKOJIbKY BCE MHTETPAJbl B HEH SIBJIAIOTCA OJHOMEPHBIMH. JTa (hOopMa INPEICTaBISIET MHTEPEC C TOUKU 3PCHUS
MPWIOKEHUH IS M3ydeHHsI OCPHIITEHHOBCKUX 3JEKTPOHHBIX IUKJIOTPOHHBIX BOJH B 1a0OPaTOPHOH TEPMOsIICpHOI
IUIa3Me U MIPOM3BOJIBHBIX 3JIEKTPOHHBIX M HOHHBIX IUKJIOTPOHHBIX BOJIH B TOpsiYei acTpo(U3NIECKOH IIa3me.

TOYHE OBYMCJEHHA PEJATUBICTCHKOI'O TEH30PA JIEJEKTPUYHOI TIPOHUKHOCTI
IIVTIA3MH B MATHITHOMY NIOJII JJIAA JOBIJIBHUX XBUJIbOBUX YU CEJI

C.C. IHagnoe

JaeTbcst HOBa iHTErpalibHa opMa HOBHICTIO PEISATHBICTCHKOIO TEH30pa JAieNEeKTPUYHOI MPOHUKHOCTI TJIa3MH B
MarHiTHoMy nosi. BoHa rogmTbes Ui YHCICHHHMX IONATKIB NPU JOBUTBHHX XBHJIBOBUX YHCIAX, OCKUIBKH BCi
iHTeTpan® B HiIA € omHOBUMipHUMH. Ll Qopma sBuse iHTepec 3 TOYKHA 30py MAOAATKIB JUISI BHBUYCHHS
OCpHINTEHHIBCHKUX ENEKTPOHHUX LUKIOTPOHHHX XBHIIb B JIa0OpaTOpHIN TepMosaepHO! IasMmi 1 JOBUIBHHUX
€JIEKTPOHHMX T4 IOHHUX IHKJIOTPOHHHUX XBWJIb B Tapsdiil acTpodi3HIHOT 1m1a3mi.
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