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Microscopic parameters of a stochastic system
and variance of physical quantity

(ideal gas, electric current, thermal radiation of a black body)
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Abstract. It is shown that the variance of a random physical quantity F can be expressed and directly
calculated with the help of a microscopic parameter which under certain conditions may be called the
invariable intrinsic «micro-quantity of chaos» (MQC). MQC is a self-sufficient concept that character-
ises a physical system or a stochastic process. The following statement is proposed: if a random physical

quantity F is additive and its fluctuations are statistically independent, then its variadd€><can be
expressed as the product of the mean value <F> and the corresponding value of the MiQC = q
<AF?> = q..<F>. Physical situations are considered in the frame of which this statement has been sub-
stantiated. The MQC concept is demonstrated for fluctuations in the ideal gas. Expressions of MQC are
proposed for fluctuations of black body radiation, electrical and photocurrents. Arguments for useful-

ness of the MQC concept are presented.
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1. Introduction

Previously, this problem had been touched on [1, 2 ] in con-
nection with a possibility of immediate calculation of the
variance of a macroscopic physical quantity using the meas-
ured mean value of this quantity and a well known micro-
scopic parameter g, .The latter mirrors the macroscopic
physical quantity in the microscopic scale of the appropri-
ate physical system. This microscopic parameter q, shows
up in the form of a small invariable quantity (e.g. electron’s
charge e, Boltzmann’s constant k, etc.) or a statistically de-
fined small quantity (e.g. the most probable thermal energy
per single particle kT and the like).

The formulation of the above-mentioned possibility is
already involved in the general expression for variance

(1)

in a number of cases, independently of the specific statis-
tics.

It is well known (see e.g. [3, 4, S]) that uniform,
binomial, geometric, hyper-geometric,

<AF2> =q .<F>
F
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Poisson’s, exponentialand some other distribu-
tions of probability have the structure that can be rewritten
in terms of variance according to (1). Meanwhile, rigorous
determination of the variance requires more or less cum-
brous experimental procedures and calculations to be per-
formed with the help of statistical characteristics and meth-
ods.

The most popular characteristics of a random physical
quantity F are the correlation function K (1), spectrum of

fluctuations S_ (), and variance <A\F?>. The latter is related
to K(7) and S(w) by the folowing equations:

<A\F'> = K (0)=]8 (&da

Thus, measuring <AF*> involves a more or less complicated
work. However, it turns out that the variance <AF? > of a
random physical quantity F can be evaluated in a different
way.

We try to answer the following question: what kernel
involves the quotient q, of <AF?> by <F>and is applicable
for stochastic physical phenomena?
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Table 1.

Ph};§;calF Variance Variance Quotient of
qu;”.ltl v <AF?*> with  <AF?> in the <AF>/<F> =
and its mean = _

value <F> reference [...] form of (1) =MQC = q,
Thermal . _ 2o
energy: E, _ ;%E(; ; 5 jﬁg ZE> kT
<E>=T.C, o3l = kT
Free energy: <AF*> = <AF?> =
F,<F>=- uN =N [5] - p<F> H

<APZ> =

Preasure: P; _ ) <AP*> =
<P>=NKT/V N(kgfw) — (KT/V)<P> LA
Temperature: <AT* = <AT* = 2.<T>/N.,
T, <T> = = k<T>%C, = (k<T>/C,) because
= dE/dS [5] <T> C,=N.fk/2
éle.ai(c:a[;ailty: <ACVZ> _ <ACVZ> _ w2

5 — 2 =

=VN.f.k72 N.LkY4 [5] k/2.<C,>
<AVZ*> =
Volume: V; <AV = _
<V>= NKT/P =<V>2N [5] ’(<V‘f M- <V>N
Entropy: S; <A8*> = k.C, <AS*> = K
S = -(dF/dT), [4] =k.<S>

2. Identification of q,

We start from fluctuations of thermodynamic characteris-
tics, e.g. energy — E, free energy — F, pressure — P, volume —
V, temperature — T, heat capacity — C_ and other parameters
used in the ideal gas model.

We have deliberately chosen more or less explicable
cases to establish a rule which is supposed to exist. The fol-
lowing denotement is used below: h is Plank constant, f is
number of degrees of freedom, N is number of particles, i
is chemical potential, C is light velocity.

For fluctuations of thermodinamical parameters of an
ideal gas from [4, 5] one has (See Table 1) .

It can be seen that the «quotients» q, may be considered
as physically (or mathematically) defined concep ¢ s that
have adequate natural images in the observed phenomena.
Under predetermined physical conditions (P, V, T), q, mani-
fests itself in the chaos much like an invariable intrinsic
“micro-quantity of chaos”(MQC). Quantities
similar to q, are well defined in irreversible thermodynam-
ics [6] as small parameters used to solve the kinetic equa-
tions by violation methods.

Proceeding from the Table 1 and following the above
logic, we venture to propose the following list of definitions
of MQC’s:

-1, unity, e.g. a single particle out of N particles of a
physical system; then <AN?> = 1.<N>,

-e,  minimum charge of the whole one Q;
then <AQ*> = e.<Q>.
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-k/2, k/2istheleast heat capacity (C,) related to a single

degree of freedom; then <AC *>=(k / 2) <C >.

is the most probable thermal energy of a single par-

ticle of the system; then <AE?*> = KT.<E>;

- 2<T>/f{.N is the mean «femperature» related to a single
degree of freedom of a single particle of the system;
then <ATZ> = 2<T>/f.N) <T>.

- V/N is the intrinsic volume, i.e., the mean volume occu-
pied by a single particle of the system; then <AV?>=
= (<V>/N) <V>,

-H  isthesingle-particle chemical potential, i.e., the free
energy of the system (at constant V and T) related to
a single particle ; then <AP*> = P.<P>,

-KT/V is the minimum pressure, i.c., the pressure related to
a single particle inside the volume V;
then <AP*> = (KT / V).<P>;

-i = e/ t_is the elementary random single-electron current
calculated as appropriate for a particular physical phe-
nomenon. This “intrinsic” current is measured dur-
ing the characteristic time ¢, that will be discussed
below.

-k is the minimum variation of entropy AS of a system
(ideal gas !) as a result of the transition of this system
between the states W and W which differ from one
another in entropy by a factor of k or in free energy
@ by the amount of KT. Here, W is the probability
function of the equilibrium state, W/ is the prob-
ability function of the state with a fluctuation occur-
ring. Then we ventured to write down <(AS)*> =
=k.<S>

It seems timely to emphasise at this point that the search
for MQC has to be started from ascertaining the

«onceptibility»ofthe MQC itself.

-kT

3. MQC = q, for electric current noise

3.1. Thermal noise of a resistor

Derive the MQC for the case of «thermal electric current»
=1, which corresponds to the thermal noise. We assume
that q,, is the current of a single electron which moves with
the most probable thermal wvelocity V, =
= (2kT/m)"* inside a resistor having the resistance
R = L/ep <N> (here L is the length of the resistor, g, =
=T .e/ m_is the mobility, m_is the effective mass, <N> is
the number of electrons, T_ is the electron momentum re-
laxation time). Between the collisions (time interval is t_)
such electron induces a random current - impetus = e / t_
resulting in a measurable random current - impulse i, =
=MQC, in the external circuit within the same time interval
t.. The concept of a ““single electron current *“ had been used
also in [7] for a more exact derivation of thermal noise.

Using the equation the electric dipole momentum con-
servation in the entire circuit in the form

elV .t =Q .L )
th C th

(here Q,, is the charge induced in the external circuit), one
can write for the absolute value of | i, | the following ex-
pression
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li |=|Q /t |=e|V |[/L=e/T. 3)
th th re th t

T, —is the electron transit time between the terminals
of the resistor.

There is a reason to believe that the mean value of the
«thermal voltage» across the resistor is equal to

<|U, [> = KT / e ; then, the «mean value of the thermal

currenty» of N electrons is

<|I |>=2.KT/eR. ()]
th

The factor 2 appears because the two directions of current
I, are taken into account. Constructing the product of
2<|Ith|>[|]1 | for the variance of I according to the above
conjecture, we have

<AI" >=(2KT/eR)e/T =KT/R) T . (5)
th t t

It turns out that (5) can be brought to quite a good agree-
ment with the classic Nyquist-Johnson formula [5, 7 ] by
using the expression (1) and assuming T, " = 2Af in accord-
ance with the Bracewell theorem [8].

If Afis the frequency band of the measuring circuit, lim-
ited by the time constant RC (where C is the capacitance of
the circuit), then, obviously, MQC [Je / RC.

3.2. Shot noise

The formula for variance of current <ig, > in the presence
of shot noise is well known (e.g. see [7]) :

<Ai’>=2<i >eAf. (6)
SN

It can obviously be written in the manner of (1) as well.
Assuming the MQC to be a single-electron random current
pulse (pulse duration is t_) under the external voltage U =
= E.L (E is the field strength), one has

<i 1)>=<epdE/L>= e/Td . (7)

Here T, = L/WE is the drift time of electron between
the terminals (compare with (3)). If T, ' = 2.Af [8], one can
get (6) merely by multiplying (7) by <ig, >

3.3. Generation-recombination (G-R) noise

This kind of noise is typical for nondegenerated semicon-
ductors where random events of generation and subsequent
recombination of electrons and/or holes take place. Vari-
ance of the G-R current can be constructed in the same way
as we have expressed the shot noise.

Examine the following situation: the electric charge is
measured for a time T >> T The total charge in the exter-
nal circuit Q, consists of the sum of single-electron induc-
ed charges Q (1) By analogy with (2), the equality e.|E.et /

m_|.dt. = dQ (1).L is fulfilled, which after integrating and
averagmg over collision times gives
<Q ()»=ex /Td . (8)

Hence, if the number of Q_ (1)- "pulses” over the measure-
ment time T is approximately equal to T/t_, then for the
total external charge we have

Q, =3 QM) I(TA ) xQ (1>, ©)
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To collect the maximum charge in the external circuit,
we assume that the time T of current measurement is equal
to the drift time (T ) for an equilibrium electron, and to the
time of recombination (T, ) for a nonequilibrium one. Then,
we have

Q (T )=c (9%, (9*%)

One can see from (9%*) and (9**) that the charge gain
G,=1,/T, [9] takes place fora nonequilibrium
electron only.

The expression forthemicroscopic intrinsic
chaotic current,ie MQC,,in the external circuit
can be found with the help of (8) and (9*%*)

and QE (tR )= e.tR / Td .

MQCG =e/T ).(t /T). (10)
R de Re re

Then, let us consider three examples.

1) Ordinary GR. According to (9™), MQC,,, is equal to

G.(e/T ), where G, =T, /T, is the above- mentloned gain.
Keepmg in mind that 2Df T " [8], we can easily write

down
<AI'> =G (e/t (11)
GR e re)

2) A strong electric field E is applied. Nonequilibrium carri-
ers are extracted from the sample, and their lifetime T, * is
decreased proportionally to [1 - exp(-L / T, .m _.E)]. Thus,
the current I, of nonequilibrium electrons (e.g. those ex-
cited by light) will have the following variance:

<AI' >=2e.G *<I>.Af=
GR e

<I >=2eG<I >[Df.
GR e GR

=2e<I >Af.G.[1-exp(-Lx .Ju.E)]. (12)
GR e Re e

3) Bipolar conductivity, with photocurrent carried by elec-
trons and holes. Then, for the bipolar micro-quantity of chaos
MQCQC), = (MQC), + (MQC), we can write

(MQO) = (e/t ).G + (el ).G. =¢ Ei (m’ +m L

Here we assumed that T=T1=T, Then for the variance of
bipolar I onehas
<A’ >=2e.G <I >Af=

b GR

GR

=2¢’<I >Aft (m" +m ).E/L. (13)
GR b. e h

The multiplier 4 (instead of 2 in formula (13)) can obviously
appear when equality m = m, is satisfied. So, (11) and (13)
are found to coincide with the well-known expression for
the G-R noise [ 7, 10].

These boring speculations are needed here only to em-
phasise that application of the MQC concept requires one to
keep intra-correspondence in the hierarchy of characteristic
times and quantities for each specific physical situation.

4. MQC for thermal emission of a black body
(b.b.)

Fluctuations of the energy of b.b. emission involve two as-
pects: quantum and wave. Let us evaluate these fluctuations
separately [1]. The energy of a single photon hv can be ac-
cepted as MQC,, for the quantum mechanism of fluctua-
tions. Then, for the b. b. emission with a mean energy <E(v)>
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in the q u a n t u m range we, according to (1), have the
variance

<AE’> =hv.<E(V)>. (14)
Q

Next, for the w a v e range the quotient <E(V)>/ Z(V) Av
may also be interpreted as MQC,,, i. e. the mean radiation
energy per one mode out of the whole number of modes [5]
Z(v).Av = V.8Tv2.Av/C? (here V is the volume of b.b. cav-
ity). Then, we have

<AE2>W =<E(v)>/ Z(V).Av. (15)

As we deal with a Bose gas, the total variance is written as
the sum of (14) and (15)

<AE™> =hv.<E(W)> + <E(V)>"/ Z(v).Av. (16)
tot

It can be rigorously shown [5] that fluctuations of b.b. pho-
ton numbers N within a frequency band from v to V+Av is
equal to

<AN2> =<N>.(1 +<n>).

(7

Here <n> = [exp (hv / KT) - 1] is the Plank distribution.
As a consequence of (16) and (17), we can add to the
above-listed MQCs the following new ones for b.b. radia-
tion:
<E>/ Z(v)dv-is the mean radiation energy per single
mode of b.b. radiation field,
(1+<n>) - intrinsic photon number in b.b. emission,
(1+<n>).AV - intrinsic b.b. photon flow,
(1+<n>).hv - intrinsic energy in b.b. emission,
(1+<n>).hv.Av - intrinsic b.b. photon flow power.
Thus, formula (1) works in the case of thermal b.b. ra-
diation as well. This involves processes of interference (cor-
relation) mirrored by the presence of the term <n> which,
within the quantum region of b.b. spectrum, can be consid-
ered as a first order small correction, following the termi-
nology of [6, 11].

5. Conclusion

In the framework of the above consideration, the concept of
variance takes on certain heuristic meaning directly con-
nected with micro parameters of a stochastic physical sys-
tem.

It seems that the following statement may be suggested
in view of formula (1): if a random physical quantity F is
additive and its fluctuations are statistically independent, then
its variance <AF?> can be expressed asthe product of
the mean value of <F>bythe microscopic
parameter, i.e. MQC = q, which corresponds to the
physicalessenceof F.

What is the utility of the MQC concept? The answer, as
we suggest, is as follows:

®KO, 1(1), 1998
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1) an ordinary measurement of the mean value of F ena-
bles us to evaluate <AF*> without measuring the fluctuation
spectra S (w) or correlation functions K, (t) in many practi-
cal situations if MQC is known with certainty;

2) comparison of <AF 2>exp obtained by integration of
experimental spectra S (w) or by measuring K_ (t) with
<AF*> which is «constructed» in accordance with the MQC-
concept (i. e. formula (1)) provides information about ad-
equacy of our notions concerning the physical details of the
stochastic phenomenon under study.

3) determination of MQC for a new or inadequately stud-
ied stochastic phenomenon by applying formula (1) to <AF?>
obtained by integration of the fluctuation spectra S (w), or
from measurements of the correlation function K(t), pro-
vides quantitative data about the micro parameters of
stochastic system. This MQC can become a starting point
for physical simulation of the phenomenon under study.

4) theoretical investigation of fluctuations by means of
extracting the MQC from the subtleties of the physical na-
ture of the phenomenon makes it easy to develop concepts
of the essence of the stochastic phenomenon. These con-
cepts could amplify the common «fluctuation formalismy
with useful physical imagery.

Nevertheless, the following question is of most interest
for us: why the microparameter multiplied by the mean value
of physical quantity gives us the variance of this physical
quantity ?
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MIKPOCKOIIIYHI TAPAMETPH C’]‘OXACTPI‘IHOT CHUCTEMM 1 JUCHEPCIS ®I3UYHOI BEJIUWUYUHA
(LAEAJIBHUU T'A3, EJEKTPUYHUU CTPYM, TEINJIOBE BUIIPOMIHEHHS YOPHOI'O TLIA)

€. A. Canvkos
Incmumym ¢pizuxu nanienposionuxie HAH Yxpainu

Pesiome. [lokazaHo, o aucnepcist BunaakoBoi ¢izunuHoi BenuunHu F Moxe Oy T BupaxxeHa i 6e3rnocepeiHbo ITiipaxoBaHa 3a J0IOMOT 00
MiKPOCKOTIIYHOTO MTapaMeTpa, KOTPHiA, IPH IIEBHUX YMOBaX, MOJKE BBXKATHCh HE3MIHHOIO MIPUTAMAHOIO i F «MiKpO-KITBKICTIO Xa0Cy»
(MKX). MKX € camonmocTaTHe TMOHATTS, IO XapakTepusye (i3uuHy cucTeMy, abo cToXacTH4HHUIl mpouec. [IponoHyeTbest Take
CTBEpKEHHS: SKIIO BUMAAKOBa (i3nuHa BenmunHa F € afuTuBHOIO, a 11 GIyKTyallil CTaTUCTUYHO He3alexHi, TOi ii mucnepcis <AF>>
Moke OyTH BUpaxkeHa K 100y TOK cepeIHboro 3HauenHs <F> i Binnosignoro sHauenns MKX = g, , o610 <AF*> = q,.<F>. Posmiapatorscs
¢i3uuHi cuTyarii, B MeXax SIKMX IIe CTBEpIKeHHs Moxke OyTtH miarBepkeHuM. [Tousatrs MKX nemoHCTpyroThes 1uis IIyKTyariid B
ineanpHOMY Ta3i. [Ipomonytorscs Bupasn MKX mns ¢mykryarniit TemmoBoro BunmpoMineHHs AUT, enekTpudHUX i POTOCTPYMIB.
BHCIOBTIOIOTHCS apryMEHTH 1010 KOPUCHOCTI moHATTS MKX.

KurouoBi ci1oBa: BunaskoBa QiznyHa BETHYMHA, MAKPO ITapaMeTp, MIKpo MapamMeTp, AUCIEpPCis, eIeKTPUIHHUN CTPYM, BUIIPOMIHEHHS,
TEIUTOBUH IIyM, IpOOOBHIA IIyM, TeHepaliiHO-peKOMOIHALIHHHHN 1Ty M.

MUKPOCKONIMYECKUE ITAPAMETPBI CTOXACTPI‘IVECKOI?'I CHUCTEMBI U JUCNEPCUSI ®UZAUYECKOMN
BEJIMYUHbI MAEAJIBHBINU TI'A3, QJJIEKTPUYECKHUU TOK, TEPMUYECKOE H3JIYYEHUE YEPHOI'O TEJIA)

E. A. Canvkos
Hucmumym ¢pusuxu nonynposoonuxoe HAH Yxkpaunot

Pe3iome. M3BecTHO, uTO qucrepcus cirydaiiHo# ¢usmyeckoil BennuuHbl F MoxkeT OBITh BBIpaXkeHa U MPSIMO BBIYHCIICHA C TOMOLIBIO
MHKPOCKOITMYECKOTO MapaMeTpa, KOTOPBIH MPH ONPEIeNICHHBIX YCIOBUIX MOXKET Ha3bIBATHCS MIOCTOSHHAS IEHCTBUTEIbHAS «MUKPO-
BermynHA xaocay (MQC). Iorsatue MQC camo-1ocTaTogHOE, KOTOPOE XapaKTepu3yeT (PU3NUIecKyr0 CHCTEMY WM CTOXAaCTHYECKHUN
npouecc. [Ipeiaraercs cieyroliee yTBepKICHUE: €ClH CiTydaiHas ¢pusndeckas BennurHa F ananTieHa 1 ee (ITyKTyaliy CTaTHCTHYECKH
HE3aBHCHMBI, Torma aucnepcust <AF’> MoxeT OBITh BBIpaKCHA KaK IIPOU3BEICHHE CPEJHEro 3HaueHUs <F> U COOTBETCTBYIOIIECTO
snadenns MQC = q,, T. e. <AF*> = q,<F>. PaccmarpuBaioTcs (hpusnuecKue CUTyalllH, B pAMKaX KOTOPBIX 3TO yTBEPIKIAEHHE MOXKET ObITh
obocuoBaHo. [Torarne MQC mponeMOHCTPHPOBAHO A (DIOKTyallii B uaeaidbHOM rasze. Breipaxkennss MQC mpeanmoxeHsl ams
(ITIOKTyaIMil N3TydeHNs YePHOTO Tea, MIEKTPUIecKkoro u oroTokos. [IpencTaBneHs! apryMeHTs! o monezHoctu noustus MQC.

KuroueBnle c10Ba: ciydaiiHas pusndIeckas BeIMINHA, MAKpOIIapaMeTp, MEKpOTIapaMeTp, AUCTICPCHS, SIEKTPUIECKHH TOK, H3ITyIeHHE,
TEPMUYECKHHU LIyM, IPOOOBOH IIyM, IIIyM reHepalui-pEeKOMOVHALIH.
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