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Abstract. It is shown that the variance of a random physical quantity F can be expressed and directly
calculated with the help of a microscopic parameter which under certain conditions may be called the
invariable intrinsic «micro-quantity of chaos» (MQC). MQC is a self-sufficient concept that character-
ises a physical system or a stochastic process. The following statement is proposed: if a random physical
quantity F is additive and its fluctuations are statistically independent, then its variance <∆F2> can be
expressed as the product of the mean value <F> and the corresponding value of the MQC = q

F,
 i.e.,

<∆F2> = q
F
.<F>. Physical situations are considered in the frame of which this statement has been sub-

stantiated. The MQC concept is demonstrated for fluctuations in the ideal gas. Expressions of MQC are
proposed for fluctuations of black body radiation, electrical and photocurrents. Arguments for useful-
ness of the MQC concept are presented.
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1. Introduction

Previously, this problem had been touched on [1, 2 ] in con-
nection with a possibility of immediate calculation of the
variance of a macroscopic physical quantity using the meas-
ured mean value of this quantity and a well known micro-
scopic parameter q

F
 .The latter mirrors the macroscopic

physical quantity in the microscopic scale of the appropri-
ate physical system. This microscopic parameter q

F 
shows

up in the form of a small invariable quantity (e.g. electron�s
charge e, Boltzmann�s constant k, etc.) or a statistically de-
fined small quantity (e.g. the most probable thermal energy
per single particle kT and the like).

The formulation of the above-mentioned possibility is
already involved in the general expression for variance

<∆F
2
> = q

F
.<F>         (1)

in a number of cases, independently of the specific statis-
tics.

 It is well known (see e.g. [3, 4, 5]) that u n i f o r m,
b i n o m i a l,  g e o m e t r i c,  h y p e r - g e o m e t r i c,

P o i s s o n�s,  e x p o n e n t i a l and some other distribu-
tions of probability have the structure that can be rewritten
in terms of variance according to (1). Meanwhile, rigorous
determination of the variance requires more or less cum-
brous experimental procedures and calculations to be per-
formed with the help of statistical characteristics and meth-
ods.

The most popular characteristics of a random physical
quantity F are the correlation function K

F
(τ), spectrum of

fluctuations S
F
(ω), and variance <∆F2>. The latter is related

to K(τ) and S(ω) by the folowing equations:

<∆F
2
> = K

F
 (0) = ∫ S

F
(ω)dω.

Thus, measuring <∆F2> involves a more or less complicated
work. However, it turns out that the variance <∆F2 > of a
random physical quantity F can be evaluated in a different
way.

We try to answer the following question: what kernel
involves the quotient q

F
 of <∆F2> by <F> and is applicable

for stochastic physical phenomena?
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2. Identification of q
F

We start from fluctuations of thermodynamic characteris-
tics, e.g. energy � E, free energy � F, pressure � P, volume �
V, temperature � T, heat capacity � C

v
 and other parameters

used in the ideal gas model.
We have deliberately chosen more or less explicable

cases to establish a rule which is supposed to exist. The fol-
lowing denotement is used below: h is Plank constant, f is
number of degrees of freedom, N is number of particles, µµµµµ
is chemical potential, C is light velocity.

For fluctuations of thermodinamical parameters of an
ideal gas from [4, 5] one has (See Table 1) .

It can be seen that the «quotients» q
F
 may be considered

as physically (or mathematically) defined  c o n c e p t s  that
have adequate natural images in the observed phenomena.
Under predetermined physical conditions (P, V, T), q

F
 mani-

fests itself in the chaos much like an invariable intrinsic
�m i c r o - q u a n t i t y  o f  c h a o s� (MQC). Quantities
similar to q

F
 are well defined in irreversible thermodynam-

ics [6] as small parameters used to solve the kinetic equa-
tions by violation methods.

Proceeding from the Table 1 and following the above
logic, we venture to propose the following list of definitions
of MQC�s:
- 1, unity, e.g. a single particle out of N particles of a

physical system; then <∆N2> = 1.<N>.
- e, minimum charge of the whole one Q;

then <∆Q2> = e.<Q>.

- k/2, k / 2 is the least heat capacity (C
V
) related to a single

degree of freedom; then <∆C
v

2> =(k / 2) <C
v
>.

- kT is the most probable thermal energy of a single par-
ticle of the system; then <∆E2> = kT.<E>;

- 2<T> / f.N is the mean «temperature» related to a single
degree of freedom of a single particle of the system;
then <∆T2> = (2<T> / f.N) <T>.

- V/N is the intrinsic volume, i.e., the mean volume occu-
pied by a single particle of the system; then <∆V2> =
= (<V> / N) <V>.

- µµµµµ is the single-particle chemical potential, i.e., the free
energy of the system (at constant V and T) related to
a single particle ; then <∆Φ∆Φ∆Φ∆Φ∆Φ2> = µµµµµ.<ΦΦΦΦΦ>.

-kT/V is the minimum pressure, i.e., the pressure related to
a single particle inside the volume V;
then <∆P2> = (kT / V).<P>;

-i = e / t
i 
 is the elementary random single-electron current

calculated as appropriate for a particular physical phe-
nomenon. This �intrinsic� current is measured dur-
ing the characteristic time t

i
 that will be discussed

below.
-k is the minimum variation of entropy ∆∆∆∆∆S of a system

(ideal gas !) as a result of the transition of this system
between the states W

eq
 and W

fl 
which differ from one

another in entropy by a factor of k or in free energy
ΦΦΦΦΦ by the amount of kT. Here, W

eq
 is the probability

function of  the equilibrium state, W
fl
 is the prob-

ability function of the state with a fluctuation occur-
ring. Then we ventured to write down <(∆∆∆∆∆S)2> =
= k.<S>

It seems timely to emphasise at this point that the search
for MQC has to be started from ascertaining the
«c o n c e p t i b i l i t y» of the MQC itself.

3. MQC = q
F
 for electric current noise

3.1. Thermal noise of a resistor

Derive the MQC for the case of «thermal electric current»
 = I

th
 which corresponds to the thermal noise. We assume

that q
th 

is the current of a single electron which moves with
the most probable thermal velocity V

th 
=

= (2kT/m
e
)1/2 inside a resistor having the resistance

R = L/eµµµµµ
e 
<N> (here L is the length of the resistor, µµµµµ

e
 =

= τττττ
re
.e / m

e
 is the mobility, m

e
 is the effective mass, <N> is

the number of electrons, τττττ
re
 is the electron momentum re-

laxation time). Between the collisions (time interval is t
C
)

such electron induces a random current - impetus = e / t
C

resulting in a measurable random current - impulse i
th

 =
= MQC

th
 in the external circuit within the same time interval

t
C
. The concept of a �single electron current � had been used

also in [7] for a more exact derivation of thermal noise.
Using the equation the electric dipole momentum con-

servation in the entire circuit in the form

e.|V
th

 |. t
C
 = Q

th
. L         (2)

(here Q
th

 is the charge induced in the external circuit), one
can write for the absolute value of | i

th
 | the following ex-

pression

Table 1.

lacisyhP
-ytitnauq FFFFF

naemstidna
<eulav FFFFF>

ecnairaV
< ∆∆∆∆∆FFFFF22222 htiw>

]...[ecnerefer

ecnairaV
< ∆∆∆∆∆FFFFF22222 ehtni>

)1(fomrof

fotneitouQ
< ∆∆∆∆∆FFFFF22222 </> FFFFF =>
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lamrehT
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| i
th

 | = | Q
th

 / t
re

 | = e.|V
th

| / L = e / T
t
.         (3)

T
t
 �is the electron  t r a n s i t  time between the  terminals

of the resistor.
There is a reason to believe that the mean value of the

«thermal voltage» across the resistor is equal to
<|U

th
 |> = kT / e ; then, the «mean value of the thermal

current» of N electrons is

<|I
th

|> = 2.kT / eR.         (4)

The factor 2 appears because the two directions of current
I

th
 are taken into account. Constructing the product of

2<|I
th

|>⋅| i
th

 | for the variance of I
th

 according to the above
conjecture, we have

<∆∆∆∆∆I
2

th
> = (2kT / eR)e / T

t 
= (2kT / R) T

t

-1
.         (5)

It turns out that (5) can be brought to quite a good agree-
ment with the classic Nyquist-Johnson formula [5, 7 ] by
using the expression (1) and assuming T

t
-1 = 2∆∆∆∆∆f in accord-

ance with the Bracewell theorem [8].
If ∆∆∆∆∆f is the frequency band of the measuring circuit, lim-

ited by the time constant RC (where C is the capacitance of
the circuit), then, obviously, MQC ≅ e / RC.

3.2. Shot noise

The formula for variance of current <i
SN

 > in the presence
of shot noise is well known (e.g. see [7]) :

<∆∆∆∆∆i
2
> = 2< i

SN
>e∆∆∆∆∆f.         (6)

It can obviously be written in the manner of (1) as well.
Assuming the MQC to be a single-electron random current
pulse (pulse duration is t

C
) under the external voltage U =

= E.L (E is the field strength), one has
<i

sn
(1)> = <e.µµµµµ

e
E / L > = e/T

de
.         (7)

Here T
de

 = L/µµµµµ
e
E is the  d r i f t  time of electron between

the terminals (compare with (3)). If T
de

-1 = 2.∆∆∆∆∆f [8], one can
get (6) merely by multiplying (7) by < i

SN
 >.

3.3. Generation-recombination (G-R) noise

This kind of noise is typical for nondegenerated semicon-
ductors where random events of generation and subsequent
recombination of electrons and/or holes take place. Vari-
ance of the G-R current can be constructed in the same way
as we have expressed the shot noise.

 Examine the following situation: the electric charge is
measured for a time T >> τττττ

re.
 The total charge in the exter-

nal circuit Q
Ex 

consists of the sum of single-electron induc-
ed charges Q

j
(1). By analogy with (2), the equality e.|E.et

c
/

m
e
 |.dt

C
 = dQ

j
(1).L is fulfilled, which after integrating and

averaging over collision times gives
<Q

ex
(1)> = e.τττττ

re
 / T

de
.         (8)

Hence, if the number of Q
ex

(1)- �pulses� over the measure-
ment time T is approximately equal to T/τττττ

re
, then for the

total external charge we have

Q
Ex

 = ∑ Q
j
(1) ≅ (T/τττττ

re
) ⋅ <Q

ex
(1)>.         (9)

 To collect the maximum charge in the external circuit,
we assume that the time T of current measurement is equal
to the drift time (T

de
) for an equilibrium electron, and to the

time of recombination (τττττ
Re

) for a nonequilibrium one. Then,
we have

Q
Ex

(T
de

) = e    (9*),      and    Q
Ex

(t
Re

) = e.t
Re

 / T
de

.    (9**)

One can see from (9*) and (9**) that the charge gain
G

e 
= τ= τ= τ= τ= τ

Re 
/ T

de
 [9] takes place for a  n o n e q u i l i b r i u m

electron only.
The expression for the m i c r o s c o p i c  i n t r i n s i c

c h a o t i c  c u r r e n t, i.e. MQC
GR

,
 
in the external circuit

can be found with the help of (8) and (9**)

MQC
GR

 =(e / T
de

).(τττττ
Re

 /τττττ
re

) .                    (10)

Then, let us consider three examples.
1) Ordinary GR. According to (9**), MQC

GR
 is equal to

G
e
.(e / τττττ

re
), where G

e
 = τττττ

Re
 /T

d
 is the above-mentioned gain.

Keeping in mind that 2Df = τττττ
re

-1 [8], we can easily write
down

<∆∆∆∆∆I
2
>

GR
 = G

e
 (e / t

re)
. <I

GR
> = 2eG

e
<I

GR
>⋅Df.        (11)

2) A strong electric field E is applied. Nonequilibrium carri-
ers are extracted from the sample, and their lifetime τττττ

Re
* is

decreased proportionally to [1 - exp(-L / τττττ
Re

.m
e
.E)]. Thus,

the current I
GR 

of nonequilibrium electrons (e.g. those ex-
cited by light) will have the following variance:

<∆∆∆∆∆I
2

GR
>= 2e.G

e
*.<I>.∆∆∆∆∆f.=

= 2e <I
GR

> ∆∆∆∆∆f.G
e
.[1 - exp(-L/τττττ

Re
.µµµµµ

e
.E)].        (12)

3) Bipolar conductivity, with photocurrent carried by elec-
trons and holes. Then, for the bipolar micro-quantity of chaos
(MQC)

b
 = (MQC)

e 
+ (MQC)

h
 we can write

(MQC)
b
 = (e/τττττ

re
).G

e
 + (e/τττττ

h
).G

h
 = e

2
.E.t

b.
(m

e

-1
 + m

h

-1
)/L

Here we assumed that  τττττ
n 
= τττττ

h 
= τττττ

b.
 Then, for the variance of

b i p o l a r   I
GR

 one has

<∆∆∆∆∆I
2

GR
> = 2e.G

b
.<I

GR
>.∆∆∆∆∆f =

= 2e
2
.<I

GR
> ∆∆∆∆∆f.t

b. 
(m

e

-1
 + m

h

-1
).E / L.        (13)

The multiplier 4 (instead of 2 in formula (13)) can obviously
appear when equality m

e
 = m

h
 is satisfied. So, (11) and (13)

are found to coincide with the well-known expression for
the G-R noise [ 7, 10].

These boring speculations are needed here only to em-
phasise that application of the MQC concept requires one to
keep intra-correspondence in the hierarchy of characteristic
times and quantities for each specific physical situation.

4. MQC for thermal emission of a black body
(b.b.)

Fluctuations of the energy of b.b. emission involve two as-
pects: quantum and wave. Let us evaluate these fluctuations
separately [1]. The energy of a single photon hννννν can be ac-
cepted as MQC

Q
 for the quantum mechanism of fluctua-

tions. Then, for the b. b. emission with a mean energy <E(ννννν)>
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in the q u a n t u m range we, according to (1), have the
variance

<∆∆∆∆∆E
2
>

Q
 = hννννν.<E(ννννν)>.                   (14)

Next, for the w a v e range the quotient <E(ννννν)> / Z(ννννν) ∆ν∆ν∆ν∆ν∆ν
may also be interpreted as MQC

W
, i. e. the mean radiation

energy per one mode out of the whole number of modes [5]
Z(ννννν).∆ν∆ν∆ν∆ν∆ν = V.8πνπνπνπνπν2.∆ν∆ν∆ν∆ν∆ν/C3 (here V is the volume of b.b. cav-
ity). Then, we have

<∆∆∆∆∆E
2
>

W
 =<E(ννννν)

2
> / Z(ννννν).∆ν∆ν∆ν∆ν∆ν.                   (15)

As we deal with a Bose gas, the total variance is written as
the sum of (14) and (15)

<∆∆∆∆∆E
2
>

tot
 = hννννν.<E(ννννν)> + <E(ννννν)>

2 
/ Z(ννννν).∆ν.∆ν.∆ν.∆ν.∆ν.                 (16)

It can be rigorously shown [5] that fluctuations of b.b. pho-
ton numbers N within a frequency band from ννννν to ννννν+∆ν∆ν∆ν∆ν∆ν is
equal to

<∆∆∆∆∆N
2
> = <N>.(1 + <n>).                   (17)

Here <n> = [exp (hννννν / kT) - 1]-1 is the Plank distribution.
As a consequence of (16) and (17), we can add to the

above-listed MQCs the following new ones for b.b. radia-
tion:
<E> / Z(ννννν)dννννν-is the mean radiation energy per single

mode of b.b. radiation field,
(1+<n>) - intrinsic photon number in b.b. emission,
(1+<n>).∆ν∆ν∆ν∆ν∆ν - intrinsic b.b. photon flow,
(1+<n>).hννννν - intrinsic energy in b.b. emission,
(1+<n>).hννννν.∆ν∆ν∆ν∆ν∆ν - intrinsic b.b. photon flow power.

Thus, formula (1) works in the case of thermal b.b. ra-
diation as well. This involves processes of interference (cor-
relation) mirrored by the presence of the term <n> which,
within the quantum region of b.b. spectrum, can be consid-
ered as a first order small correction, following the termi-
nology of [6, 11].

5. Conclusion

In the framework of the above consideration, the concept of
variance takes on certain heuristic meaning directly con-
nected with micro parameters of a stochastic physical sys-
tem.

It seems that the following statement may be suggested
in view of formula (1): if a random physical quantity F is
additive and its fluctuations are statistically independent, then
its variance <∆∆∆∆∆F2> can be expressed as the p r o d u c t  of
the m e a n  v a l u e of <F> by the m i c r o s c o p i c
p a r a m e t e r,  i. e. MQC = q

F,
 which corresponds to the

physical e s s e n c e of F.
What is the utility of the MQC concept? The answer, as

we suggest, is as follows:

1) an ordinary measurement of the mean value of F ena-
bles us to evaluate <∆∆∆∆∆F2> without measuring the fluctuation
spectra S

F
(w) or correlation functions K

F
(t) in many practi-

cal situations if MQC is known with certainty;
2) comparison of <∆∆∆∆∆F2>

exp
 obtained by integration of

experimental spectra S
F
(w) or by measuring K

F 
(t) with

<∆∆∆∆∆F2>
1
 which is «constructed» in accordance with the MQC-

concept (i. e. formula (1)) provides information about ad-
equacy of our notions concerning the physical details of the
stochastic phenomenon under study.

3) determination of MQC for a new or inadequately stud-
ied stochastic phenomenon by applying formula (1) to <∆∆∆∆∆F2>
obtained by integration of the fluctuation spectra S

F
(w), or

from measurements of the correlation function K
F
(t), pro-

vides quantitative data about the micro parameters of
stochastic system. This MQC can become a starting point
for physical simulation of the phenomenon under study.

4) theoretical investigation of fluctuations by means of
extracting the MQC from the subtleties of the physical na-
ture of the phenomenon makes it easy to develop concepts
of the essence of the stochastic phenomenon. These con-
cepts could amplify the common «fluctuation formalism»
with useful physical imagery.

Nevertheless, the following question is of most interest
for us: why the microparameter multiplied by the mean value
of physical quantity gives us the variance of this physical
quantity ?
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Ì²ÊÐÎÑÊÎÏ²×Í²  ÏÀÐÀÌÅÒÐÈ  ÑÒÎÕÀÑÒÈ×ÍÎ¯  ÑÈÑÒÅÌÈ  ²  ÄÈÑÏÅÐÑ²ß  Ô²ÇÈ×ÍÎ¯  ÂÅËÈ×ÈÍÈ
(²ÄÅÀËÜÍÈÉ  ÃÀÇ,  ÅËÅÊÒÐÈ×ÍÈÉ  ÑÒÐÓÌ,  ÒÅÏËÎÂÅ  ÂÈÏÐÎÌ²ÍÅÍÍß  ×ÎÐÍÎÃÎ  Ò²ËÀ)

ª. À. Ñàëüêîâ

²íñòèòóò ô³çèêè íàï³âïðîâ³äíèê³â ÍÀÍ Óêðà¿íè

Ðåçþìå.  Ïîêàçàíî, ùî äèñïåðñ³ÿ âèïàäêîâî¿ ô³çè÷íî¿ âåëè÷èíè F ìîæå áóòè âèðàæåíà ³ áåçïîñåðåäíüî ï³äðàõîâàíà çà äîïîìîãîþ
ì³êðîñêîï³÷íîãî ïàðàìåòðà, êîòðèé, ïðè ïåâíèõ óìîâàõ, ìîæå ââàæàòèñü íåçì³ííîþ ïðèòàìàíîþ ö³é F «ì³êðî-ê³ëüê³ñòþ õàîñó»
(ÌÊÕ). ÌÊÕ º ñàìîäîñòàòíº ïîíÿòòÿ, ùî õàðàêòåðèçóº ô³çè÷íó ñèñòåìó, àáî ñòîõàñòè÷íèé ïðîöåñ. Ïðîïîíóºòüñÿ òàêå
ñòâåðäæåííÿ: ÿêùî âèïàäêîâà ô³çè÷íà âåëè÷èíà F º àäèòèâíîþ, à ¿¿ ôëóêòóàö³¿ ñòàòèñòè÷íî íåçàëåæí³, òîä³ ¿¿ äèñïåðñ³ÿ <∆F2>
ìîæå áóòè âèðàæåíà ÿê äîáóòîê ñåðåäíüîãî çíà÷åííÿ <F> ³ â³äïîâ³äíîãî çíà÷åííÿ ÌÊÕ = q

F
 , òîáòî <∆F2> = q

F
.<F> . Ðîçãëÿäàþòüñÿ

ô³çè÷í³ ñèòóàö³¿, â ìåæàõ ÿêèõ öå ñòâåðäæåííÿ ìîæå áóòè ï³äòâåðäæåíèì. Ïîíÿòòÿ ÌÊÕ äåìîíñòðóþòüñÿ äëÿ ôëóêòóàö³é â
³äåàëüíîìó ãàç³. Ïðîïîíóþòüñÿ âèðàçè ÌÊÕ äëÿ ôëóêòóàö³é òåïëîâîãî âèïðîì³íåííÿ À×Ò, åëåêòðè÷íèõ ³ ôîòîñòðóì³â.
Âèñëîâëþþòüñÿ àðãóìåíòè ùîäî êîðèñíîñò³ ïîíÿòòÿ ÌÊÕ.

Êëþ÷îâ³ ñëîâà: âèïàäêîâà ô³çè÷íà âåëè÷èíà, ìàêðî ïàðàìåòð, ì³êðî ïàðàìåòð, äèñïåðñ³ÿ, åëåêòðè÷íèé ñòðóì, âèïðîì³íåííÿ,
òåïëîâèé øóì, äðîáîâèé øóì, ãåíåðàö³éíî-ðåêîìá³íàö³éíèé øóì.

ÌÈÊÐÎÑÊÎÏÈ×ÅÑÊÈÅ  ÏÀÐÀÌÅÒÐÛ  ÑÒÎÕÀÑÒÈ×ÅÑÊÎÉ  ÑÈÑÒÅÌÛ  È  ÄÈÑÏÅÐÑÈß  ÔÈÇÈ×ÅÑÊÎÉ
ÂÅËÈ×ÈÍÛ  (ÈÄÅÀËÜÍÛÉ  ÃÀÇ,  ÝËÅÊÒÐÈ×ÅÑÊÈÉ  ÒÎÊ,  ÒÅÐÌÈ×ÅÑÊÎÅ  ÈÇËÓ×ÅÍÈÅ  ×ÅÐÍÎÃÎ  ÒÅËÀ)

Å. À. Ñàëüêîâ

Èíñòèòóò ôèçèêè ïîëóïðîâîäíèêîâ ÍÀÍ Óêðàèíû

Ðåçþìå. Èçâåñòíî, ÷òî äèñïåðñèÿ ñëó÷àéíîé ôèçè÷åñêîé âåëè÷èíû F  ìîæåò áûòü âûðàæåíà è ïðÿìî âû÷èñëåíà ñ ïîìîùüþ
ìèêðîñêîïè÷åñêîãî ïàðàìåòðà, êîòîðûé ïðè îïðåäåëåííûõ óñëîâèÿõ ìîæåò íàçûâàòüñÿ ïîñòîÿííàÿ äåéñòâèòåëüíàÿ «ìèêðî-
âåëè÷èíà õàîñà» (MQC). Ïîíÿòèå MQC ñàìî-äîñòàòî÷íîå, êîòîðîå õàðàêòåðèçóåò ôèçè÷åñêóþ ñèñòåìó èëè ñòîõàñòè÷åñêèé
ïðîöåññ. Ïðåäëàãàåòñÿ ñëåäóþùåå óòâåðæäåíèå: åñëè ñëó÷àéíàÿ ôèçè÷åñêàÿ âåëè÷èíà F àääèòèâíà è åå ôëóêòóàöèè ñòàòèñòè÷åñêè
íåçàâèñèìû, òîãäà  äèñïåðñèÿ <∆F2>  ìîæåò áûòü âûðàæåíà êàê ïðîèçâåäåíèå ñðåäíåãî çíà÷åíèÿ <F> è ñîîòâåòñòâóþùåãî
çíà÷åíèÿ MQC = q

F
, ò. å. <∆F2> = q

F
<F>. Ðàññìàòðèâàþòñÿ ôèçè÷åñêèå ñèòóàöèè, â ðàìêàõ êîòîðûõ ýòî óòâåðæäåíèå ìîæåò áûòü

îáîñíîâàíî. Ïîíÿòèå MQC ïðîäåìîíñòðèðîâàíî äëÿ ôëþêòóàöèé â èäåàëüíîì ãàçå. Âûðàæåíèÿ MQC ïðåäëîæåíû äëÿ
ôëþêòóàöèé èçëó÷åíèÿ ÷åðíîãî òåëà, ýëåêòðè÷åñêîãî è ôîòîòîêîâ. Ïðåäñòàâëåíû àðãóìåíòû î ïîëåçíîñòè ïîíÿòèÿ MQC.

Êëþ÷åâûå ñëîâà: ñëó÷àéíàÿ ôèçè÷åñêàÿ âåëè÷èíà, ìàêðîïàðàìåòð, ìèêðîïàðàìåòð, äèñïåðñèÿ, ýëåêòðè÷åñêèé òîê, èçëó÷åíèå,
òåðìè÷åñêèé øóì, äðîáîâîé øóì, øóì ãåíåðàöèè-ðåêîìáèíàöèè.


