
Інструментальні засоби та середовища програмування

© Jakub Křoustek, 2015

ISSN 1727-4907. Проблеми програмування. 2015. № 1 29

UDC 004.3+004.4+004.9

Jakub Křoustek

ON DECOMPILATION OF VLIW EXECUTABLE FILES

Machine-code decompilation (i.e. reverse program compilation) is a process often used in reverse engineering.

Its task is to transform a platform-specific executable file into a high-level language representation, which is

usually the C language. In present, we can find several such tools that support different target architectures

(e.g. Intel x86, MIPS, ARM). These architectures can be classified either as RISC (reduced instruction set

computing) or CISC (complex instruction set computing). However, none of the existing decompilers support

another major architecture type – VLIW (very long instruction word).

In this paper, we briefly describe the VLIW architecture together with its unique features and we pre-

sent several novel approaches how to handle these VLIW-specific features in the decompilation process. We

focus on handling of instruction lengths, instruction bundling, and data hazards.

Introduction

Decompilation (i.e. reverse compila-

tion) is a process of program transformation,

which converts an input low-level program

into a higher form of representation. This

process can be used for dealing with several

security-related issues (e.g. forensics, mal-

ware analysis) as well as re-engineering (e.g.

migration of legacy code, source-code re-

covery), see [1–3] for more use-cases.

In this paper, we focus on machine-

code decompilation, where the input is a bi-

nary executable file containing machine in-

structions for a particular processor architec-

ture. This type of decompilation is much

harder than any other type (e.g. byte-code

decompilation) because it deals with a mas-

sive lack of information stored within exe-

cutable files. A retargetable machine-code

decompiler is even harder to implement be-

cause it tries to be independent of any partic-

ular target architecture, operating system, or

used compiler.

Despite several attempts of retargeta-

ble decompilation, there still exists a family

of processor architectures that is not support-

ed by any existing decompiler. It is the

VLIW (very long instruction word) family

[4]. VLIW processors are used less frequent-

ly than RISC and CISC processors (which

are well supported in decompilers), but they

are very popular in several specific areas,

e.g. digital signal processing (DSP).

In this paper, we discuss the most

important caveats and pitfalls of the VLIW

architecture from the decompilation point of

view. Afterwards, we try to address these

issues and propose several VLIW decompila-

tion techniques. Those techniques will be

used in the existing retargetable decompiler

developed within the Lissom project1 in the

near future.

The paper is organized as follows.

The next section briefly characterizes the

VLIW processor architecture. Then, we dis-

cuss existing decompilers and their support

of VLIW. Our retargetable decompiler is

presented together with an example of its

usage in the subsequent section. Afterwards,

we depict the most important parts of the

VLIW architecture that need to be addressed

during decompilation. We also present sev-

eral approaches how to handle these specific

features during decompilation. A discussion

of future research closes the paper.

VLIW Architecture Overview

The first reference about the VLIW

processor architecture dates back to 1983

[4]. Since this time, all VLIW processors are

characteristic by high performance and ex-

plicit instruction level parallelism (ILP). The

performance speed-up (against RISC and

CISC) is achieved via scheduling of a pro-

gram execution at compilation time. There-

fore, there is no need for run-time control

mechanisms and hardware can be relatively

simple. On the other hand, all constraints

checks must be done by the compiler during

compilation. These constrains will be de-

scribed in the subsequent sections.

1 http://www.fit.vutbr.cz/research/groups/lissom/

http://www.fit.vutbr.cz/research/groups/lissom/

Інструментальні засоби та середовища програмування

30

Each VLIW instruction specifies a set

of operations that are executed in parallel.

Each of these operations (also known as syl-

lables) are issued and executed simultane-

ously. VLIW operations are minimal units of

execution and are similar to RISC instruc-

tions [4]. Whenever the compiler is unable to

fully utilize all operation slots, it must fill the

gap with a nop (No OPeration) operation.

This may lead to a rapid performance de-

crease because instruction cache will be full

of inefficient nop instructions. Therefore, all

the major VLIW processors use some kind

of instruction encoding (i.e. compression).

It basically packs each instruction into a

so-called bundle that is smaller in size be-

cause the compression removes the nop in-

structions.

From the micro-architectural point of

view, VLIW processors consist of clusters

with register files and functional units [5].

Functional units are usually specialized. It

means that every functional unit has its

own task (adder, multiplier, unit for memory

access, etc.), which is managed by opera-

tions. Therefore, this architecture contains

several different decoders, while it usually

contains only one fetch unit for fetching the

whole long instruction words. Clusters can

be interconnected, so data needed for a func-

tional unit in one cluster can be transported

from another cluster. This is done by special

operations.

Most of the VLIW processors are

used in DSP [6], e.g. SHARC by Analog

Devices, the C6x DSP family by Texas In-

struments (TI), ST2xx family from

STMicroelectronics. The most well-known

example is Itanium IA-64 by Intel.

State of the Art

Decompilation of RISC and CISC

executable code is a well-known topic with

history longer than three decades. Contrari-

wise, VLIW decompilation is mostly an un-

touched area of machine-code decompila-

tion. Even the most modern decompilers do

not support any VLIW architecture. A brief

overview of these decompilers follows:

 Boomerang2 is the only existing

2 http://boomerang.sourceforge.net/

open-source machine-code decompiler.

However, it is no longer developed;

 REC Studio3 (also known as REC

Decompiler) is freeware, but not an open-

source decompiler. It has been actively de-

veloped for more than 25 years;

 SmartDec4 is another closed-

source decompiler specialising on the de-

compilation of C++ code;

 Hex-Rays decompiler5 is a well-

known plugin to the commercial IDA disas-

sembler;

 The dcc6 decompiler was the first

of its kind, but it is unusable for modern real-

world decompilation because it only supports

decompilation of DOS executable files. It is

also no longer developed;

 The Decompile-it.com7 project

looks promising, but the public beta version

is probably still in an early version of devel-

opment.

In table 1, we summarize the support-

ed architectures of the decompilers. Archi-

tectures marked with an asterisk (*) are

claimed by the authors, but are not included

in any publicly available release. In conclu-

sion, we can state that none of the nowadays

decompilers supports decompilation of

VLIW executable files.

Lissom Project

Retargetable Decompiler

The Lissom project's retargetable de-

compiler aims to be independent of any par-

ticular target architecture, operating system,

or object-file format. The decompiler is par-

tially automatically generated based on the

description of target architecture. For our

decompiler, we have chosen the ISAC archi-

tecture description language (ADL) that is

developed also within the Lissom project.

The ISAC processor model specifies

resources (registers, memory, etc.) and the

instruction set (i.e. assembler language syn-

3 http://www.backerstreet.com/rec/rec.htm
4 http://decompilation.info/
5 www.hex-rays.com/products/decompiler/
6 http://itee.uq.edu.au/~cristina/dcc.html
7 http://decompile-it.com/

http://boomerang.sourceforge.net/
http://www.backerstreet.com/rec/rec.htm
http://decompilation.info/
http://www.hex-rays.com/products/decompiler/
http://itee.uq.edu.au/~cristina/dcc.html
http://decompile-it.com/

Інструментальні засоби та середовища програмування

31

tax, binary encoding, and behavior of each

instruction). Furthermore, two decompilation

phases (the middle-end and pack-end parts)

are built on the top of the LLVM Compiler

Infrastructure [7]. The LLVM assembly lan-

guage (LLVM IR) is used as an internal code

representation of decompiled applications in

particular decompilation phases. A more de-

tailed description can be found in [1, 8].

The decompiler consists of the pre-

processing part and the decompilation core,

see Figure 1.

At first, the input binary executable

file is analyzed and transformed within the

preprocessing part. This part tries to detect

the used file format, compiler, and packer,

see [8] for details. Afterwards, it unpacks

and converts the input platform-dependent

application into an internal uniform Com-

mon-Object-File-Format (COFF)-based rep-

resentation. This COFF format is textual for

better readability. The conversion is done

via our plugin-based converter described

in [9].

After the conversion, such a COFF

file is processed in the decompilation core,

which decodes machine-code instructions,

analyses them, and tries to recover HLL

constructions (functions, loops, etc.). Finally,

it generates the target code in one of the

supported languages. Currently, we support

the C language and a Python-like language

for his purpose. The decompiler is able to

process MIPS, ARM, and x86 executables in

UNIX ELF, Windows Portable Executable

(WinPE), and Apple Mach-O file formats.

To give a brief demonstration of our

solution, we present a decompilation of a

simple program calculating the Fibonacci

function for the Intel x86 architecture. The C

source code for this program is given in Fig-

ure 2. It was compiled by using the GNU

gcc compiler (v. 4.7.2) for the Linux/ELF

file format. Debugging information and op-

timizations were disabled (-O0). The result-

ing HLL code generated by our decompiler

is shown also in Figure 2. As can be seen,

both codes have the same behavior. Howev-

er, we can notice small differences, such as a

usage of a switch statement instead of

multiple if statements, or missing variables

names.

It should be also noted that this

decompiler is capable to decompile real-

world RISC and CISC malware samples,

see [10].

In conclusion, this decompiler is ca-

pable to produce a highly accurate code for

the supported architectures. The decompila-

tion can be also done online by using the

web decompilation service [11].

Table 1. List of supported architectures in the common decompilers

Name MIPS SPARC PPC ARM x86 VLIW

Boomerang x x x

REC Studio x x x

SmartDec x x x x x

Hex-Rays decompiler x x x x

dcc x x x x x

decompile-it.com
* x x

* x

Інструментальні засоби та середовища програмування

32

Figure 1. The concept of the Lissom project's retargetable decompiler

Figure 2. Example of a decompilation process – Fibonacci number computation

(left – input C code, right – decompiled C code)

int fib(int n) {

 int f;

 if (n == 1)

 {

 return 0;

 }

 if (n == 2)

 {

 return 1;

 }

 f = fib(n - 1) + fib(n - 2);

 return f;

}

int main()

{

 int x = 25;

 return (fib(x) != 46368);

}

int32_t fib(int32_t a1) {

 int32_t v1, v2;

 switch (a1) {

 case 1:

 v1 = 0;

 break;

 case 2:

 v1 = 1;

 break;

 default:

 v2 = fib(a1 - 1);

 v1 = v2 + fib(a1 - 2);

 break;

 }

 return v1;

}

int main(int a1, char **a2) {

 return fib(25) != 46368;

}

Інструментальні засоби та середовища програмування

33

Decompilation of VLIW

Executable Files

According to our analyses, the exe-

cutable code of VLIW applications differs

from the other architectures in several as-

pects. Those differences are described in the

following text and we propose methods how

to handle them in a decompilation process.

Instruction Length As the VLIW

abbreviation indicates, the VLIW instruc-

tions are much larger than instructions on

any other architecture (especially RISC). A

short comparison of the common VLIW ar-

chitectures and their instruction (i.e. bundle)

lengths is depicted in table 2. It is usual to

issue a 256-bit or larger instruction for

VLIW architectures, while on RISC it is

usually only 16/32/64-bit (based on architec-

ture) instructions [4]. In past, the VLIW ar-

chitecture allowed even larger lengths, such

as 512-bit or 1024-bit [12].

The main pitfall of this difference is

related to implementation because not all

programming languages and compilers have

a proper data type to hold and effectively

operate with such large integral numbers.

Roughly speaking, in order to decompress

and decode such instructions, we must be

able to store them in memory. For example,

C/C++ does not implicitly support integers

larger than 64-bits. Some of its compilers

support language extensions (e.g.

__int128 in the GNU gcc compiler)

however, it is still not enough for all VLIW

processors.

The easiest solution is to implement a

decompiler in a language supporting arbi-

trary precision integers (e.g. Python,

Haskell). Whenever this solution is not ap-

plicable, it is often possible to use some ex-

isting library for manipulation of these num-

bers, e.g. GMP (The GNU Multiple Preci-

sion Arithmetic Library) [13], LLVM APInt

(Arbitrary Precision Integers) [7], MPIR

(Multiple Precision Integers and Rationals)

[14]. In general, this solution is slower than

usage of native data types. Another approach

is to think of instruction as a sequence of bits

rather than a large integer. In this case, one

can use arrays or strings of bits. However,

this approach is even slower.

The last approach suits best to our re-

targetable decompiler because the input in-

structions are stored in a textual COFF rep-

resentation where each bit is stored as a sin-

gle symbol. Therefore, we can manipulate

them as a string of bits.

Instruction Bundling As has been

said in the previous sections, VLIW instruc-

tions are in most cases stored in an encoded

Table 2. Comparison of common VLIW processors: number of operations,

operation lengths, and maximal instruction length

name manufacturer ops op length instruction length

VEX J. A. Fisher (HP) 4 32 128

ST2xx STMicroelectronics 4 32 128

TigerSHARC Analog Devices 4 32 128

Itanium IA-64 Intel 3 41 128

CHILI OnDemand 4 40 160

Efficeon Transmeta 8 32 256

C6x Texas Instruments 8 32 256

Інструментальні засоби та середовища програмування

34

form as bundles. Each architecture uses dif-

ferent method of nop compression; however,

we can find four basic encoding types, see

Figure 3.

Therefore, the very first step of

VLIW decompilation is a decompression of

operations from a bundle (process so-called

debundling). Within this step, it is neces-

sary to (1) properly decompress each oper-

ation from a bundle and (2) associate the

operation to a functional unit. The second

part is important because each functional

unit (e.g. adder, multiplier) may support dif-

ferent set of operations and an improper as-

sociation may lead to wrong decoding of

such operation.

We have already made a preliminary

step for the decompression of VLIW bundles

via an enhancement of our ISAC ADL [15].

By using a new DEBUNDLE construction, we

are able to describe a debundling process, see

Figure 4. Based on this description, the de-

compression routine will be automatically

generated in the same way as the current de-

coder.

During the execution of a VLIW in

struction, all of its operations are executed

in parallel. VLIW compilers are always re-

sponsible for the elimination of dependencies

between operations issued in the same in-

struction because the VLIW architecture

lacks of any run-time protection (e.g. out-of-

order execution). Those dependencies are

called hazards. We will focus on the data

hazards.

The data hazard occurs when an oper-

ation modifies the same data (e.g. register,

memory) as another operation reads/writes.

We can find three types of this hazard (haz-

ards are marked bold) [5]:

 Read after Write (RAW), e.g.

operation1: reg1 = reg2 + reg3

operation2: reg4 = reg1 + reg2

 Write after Read (WAR), e.g.

operation1: reg1 = reg2 + reg3

operation2: reg3 = reg1 + reg2

 Write after Write (WAW), e.g.

operation1: reg1 = reg2 + reg3

operation2: reg1 = reg4 + reg5

Figure 3. Typical instruction encodings used in VLIW processors.

 a) Simple encoding without compression, which is not used in real-world processors.

 b) Fixed-overhead encoding, e.g. the Multiflow TRACE architecture.

 c) Distributed encoding, e.g. TI C6x, STMicroelectronics ST2xx, Fujitsu FR-V.

 d) Template-based encoding, e.g. Intel Itanium, TI C64x+

32b 32b 32b 32b

a

b

c

operation A operation B nop operation D 128b

operation A 1101 operation B operation D 100b

operation A 1 1 operation B 0 operation D 99b

I1 – operation A template I1 – operation B I2 – operation E 104b

d

Інструментальні засоби та середовища програмування

35

Figure 4. Example of VLIW debundling description in the ISAC ADL

(a simplified CHILI processor with two operation slots)

 Although it should not occur in theo-

ry, data hazards are common in practice.

Compilers know how each particular archi-

tecture reacts on those situations and they

can exploit it. For example, they know the

order in which the results of operation slots

are stored (e.g. the result of the last slot is

stored lastly) and they can issue an instruc-

tion with such operations.

On the other hand, decompilers are

processing instructions sequentially on RISC

and CISC architectures – they are decoding

and analyzing one instruction after another

without their interference [16]. In order to

decompile VLIW code, parallel execution of

operations has to be supported. Therefore,

the information about handling of hazards

must be available to the decompiler for each

target VLIW processor. It can be done either

via a description of instruction semantics or

microarchitecture (e.g. pipeline modelling).

Both methods are available in ISAC. After-

wards, the decompiler may skip the conflict-

ing effects of operations. For example, the

decompiler can ignore the first assignment in

the WAW example above whenever it knows

that only the last assignment is stored into

the same register.

Compilers

The final remark is related to compil-

ers and file formats. According to our re-

search, there is only a limited number of

compilers supporting VLIW architectures.

For example, the GNU compiler supports

Itanium IA-64, TI C6x, and FR-V. Most of

the VLIW-friendly compilers use only the

ELF as a target file format of executable

files. From a decompilation point-of-view,

this is promising because it does not differ

from other architectures and the same de-

compilation methods may be applied (e.g.

ELF loader, de-optimizations for gcc).

However, many of VLIW-processor

manufacturers supply their own compiler

toolchain (e.g. VEX toolchain, Open64 for

Itanium, st200cc for ST2xx). Some of

these compilers are not publicly available or

not distributed as source code. Therefore, it

is harder for the decompiler developer to

properly test all constructions that may arise

in executable code. It should be also noted

that any particular compiler may use its

own VLIW-code optimizations. This may

lead to the implementation of compiler-

specific de-optimizations in the decompiler

as described in [8].

DEBUNDLE

{

 IF (OPCODE_1 == NOP) { // 1st slot

 slot_1(NOP_CODING); // issue NOP to 1st decoder

 } ELSE {

 slot_1(OPCODE_1 OPERANDS_1); // issue useful operation

 }

 IF (OPCODE_2 == NOP) { // 2nd slot

 slot_2(NOP_CODING);

 } ELSE {

 IF (OPCODE_1 == NOP) { // control of 1st slot

 slot_2(OPCODE_2 OPERANDS_1);

 } ELSE {

 slot_2(OPCODE_2 OPERANDS_2);

 }

 }

};

Інструментальні засоби та середовища програмування

36

Conclusion

This paper was focused on the de-

compilation of VLIW executable files. Ac-

cording to our research, this architecture

is not supported by any existing decom-

piler. There are basically two reasons. First-

ly, the VLIW architecture is not so popular

as the other ones (RISC and CISC). Second-

ly, the inner design of VLIW processors

significantly differs and it is hard to adapt

its constructions and constraints in a de-

compiler.

The main contribution of this paper is

a study of VLIW-specific features and

presentation how to handle them within de-

compilation process. The implementation of

these approaches is not ready yet. However,

it is planned to adapt them within the Lissom

project retargetable decompiler. The prelimi-

nary steps (e.g. support of VLIW in the

ISAC ADL) were already done. In future, we

would like to adapt the remaining approach-

es presented in this paper. Finally, it will be

necessary to analyze VLIW-specific optimi-

zations (software pipelining, hyperblock

scheduling, etc.) and reconstruct such code

during decompilation.

Acknowledgments

This work was supported by the BUT

grant FIT-S-14-2299 Research and applica-

tion of advanced methods in ICT.

1. Ďurfina L., Křoustek J., Zemek P., and Ká-

bele B. Detection and recovery of functions

and their arguments in a retargetable de-

compiler // In 19-th Working Conference on

Reverse Engineering (WCRE’12), (King-

ston, ON, CA). IEEE Computer Society,

2012. – P. 51–60.

2. Eilam E. Reversing: Secrets of Reverse En-

gineering. Wiley, 2005.

3. Ďurfina L., Křoustek J., and Zemek P. Ge-

neric source code migration using decompi-

lation // In 10-th Annual Industrial Simula-

tion Conference (ISC’2012). EUROSIS,

2012. – P. 38–42.

4. Fisher J.A., Faraboschi P., and Young C.

Embedded Computing a VLIW Approach to

Architecture, Compilers and Tools. – San

Francisco, US-CA: Morgan Kaufmann Pub-

lishers, 2005.

5. Křoustek J., Židek S., Kolář D., and Meduna

A. Exploitation of Scattered Context Gram-

mars to Model VLIW Instruction Con-

straints // In 12-th Biennial Baltic Electron-

ics Conference (BEC’10). IEEE Computer

Society, 2010. – P. 165–168.

6. Faraboschi P., Brown G., Fisher J.A., Des-

oll G. and Homewood F. Lx: A Technology

Platform for Customizable VLIW Embed-

ded Processing // In 27-th International

Symposium on Computer Architecture (IS-

CA’00), (New York, US-NY). IEEE Com-

puter Society, 2000. – P. 203–213.

7. The LLVM Compiler Infrastructure.

http://llvm.org/, 2013.

8. Křoustek J. and Kolář D. Preprocessing of

binary executables towards retargetable

decompilation // In 8-th International Mul-

ti-Conference on Computing in the Global

Information Technology (ICCGI’13), (Nice,

FR). International Academy, Research,

and Industry Association (IARIA), 2013. –

P. 259–264.

9. Křoustek J., Matula P., and Ďurfina L. Ge-

neric plugin-based convertor of executable

formats and its usage in retargetable de-

compilation // In 6-th International Scien-

tific and Technical Conference (CSIT’11).

Ministry of Education, Science, Youth and

Sports of Ukraine, Lviv Polytechnic Na-

tional University, Institute of Computer

Science and Information Technologies,

2011. – P. 127–130.

10. Ďurfina L., Křoustek J., and Zemek P.

Psyb0t malware: A step-by-step decompila-

tion case study // In 20-th Working Confer-

ence on Reverse Engineering (WCRE’13),

(Koblenz, DE). IEEE Computer Society,

2013. – P. 449–456.

11. http://decompiler.fit.vutbr.cz/decompilation/

12. Fisher J.A. Very long instruction word ar-

chitectures and the ELI-512 // In 10-th An-

nual International Symposium on Computer

Architecture (ISCA ’83), (New York, US-

NY). ACM, 1983. – P. 140–150.

13. http://gmplib.org/

14. http://www.mpir.org/

15. Přikryl Z., Křoustek J., Hruška T., Kolář D.,

Masařík K., and Husár A. Design and de-

bugging of parallel architectures using the

ISAC language // In Annual International

Conference on Advanced Distributed and

Parallel Computing and Real-Time and

http://decompiler.fit.vutbr.cz/decompilation/
http://gmplib.org/
http://www.mpir.org/

Інструментальні засоби та середовища програмування

37

Embedded Systems (RTES’10). Global Sci-

ence and Technology Forum (GTSF), 2010.

– P. 213–221.

16. Emmerik M. van and Waddington T. Using a

decompiler for real-world source recovery //

In Proceedings of the 11-th Working Confer-

ence on Reverse Engineering (WCRE’04),

(Washington, DC, USA). IEEE Computer

Society, 2004. – P. 27–36.

Data received 18.09.2014

Information about author:

Jakub Křoustek

Ph.D. student at the Faculty of Information

Technology, Brno University of Technology,

Czech Republic. He received his MSc degree

from the same university in 2009. He is cur-

rently working on the Lissom research project

as the leader of the retargetable decompiler.

His current research interests include reverse

engineering, malware detection, and compiler

design, with special focus on code analysis

and reverse translation.

Affiliation:

Faculty of Information Technology,

Brno University of Technology,

Božetěchova 1/2, 612 66 Brno,

Czech Republic.

E-maіl: ikroustek@fit.vutbr.cz

