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Anomauin. Bukniadeno noenuii onuc mMo8u 8UCOK020 pPiHs 015l BUPIULEHHS NPoOiemM Y HeOOHOPIOHUX 2e-
MmepoceHHUx OUHAMIYHUX cepax K pizuunux, max i eipmyaivhux. Mosa 6a3yemvcsi HA XOMICMCbKUX |
2eUMATbIMUCICOKUX NPUHYUNAX, SKI NPe0Cmasiaoms CeMaHmuyne piulents 8 po3noodileHomy cepedo-
suwyi y 6uensdi wabIoHie, Wo camopo3susaomscs, abo nameprie. OCmanti 8 pearbHOMy Yaci HOKPUBa-
oMb 1 3aXONTI0IMb cepedosuiyd 0YO0b-sKOi NPOMANCHOCII [ 00’ €MY, CRIBCMABIAIOYUCH 3 HUMU | (hopmy-
10uU po3n0OLIeHl aKmueHi IHhpacmpykmypu, wo QyHKYionyrome y pexcumi 2n00aivHoi yinbogol opieH-
mayii, ane 6e3 6y0v-aKux yeHmpanvbHux pecypcis. Ilputimaiouu 0o ysaeu ichyrouuii docmamuitl 06’ em nyo-
KAyt w000 po3pobaeH020 NiOX00y, Yy CMAammi HABeOeHi iuule eleMeHmapHi NPuKiaou eUKOPUCMAHHS
CNPULHAMMSA 8UKIAOEHUX MOGHUX KOHCIMPYKUYILL.

Knruoei cnosa:. cewumansm-ncuxono2is, npocmoposutl inmenekm, Mosa npocmopo8o20 3axeamy, CYeHa-
Pii, Wo camopo3eusaromspcs, Napaieibia cimvoga iHmepnpemayis, 2iOpuoni onepayii, inmeeposari pi-
uietHs1, po3nooinene YnpaseiiHus.

Annomayus. Hznaeaemcs noinoe onucauue si3blka 8blCOKO20 YPOGHsL OJi peuleHus npooiem 6 HeoOHO-
POOHBIX pacnpeesieHHbIX OUHAMUYECKUX MUPAX KAK (QU3UYeCKUXx, max u GUpmyaibHulx. A3vik 6azupyemcs
HA XOMUCMCKUX U 2eUMATbMUCTICKUX NPUHYUNAX, NPEOCMAGISIIOWUX CeMAHMU4ecKue peuenus 6 pacnpe-
OeneHHbIX cpedax 6 eude CaMopa3sUEarOWUXcs Wabaionos, uiu nammepnos. llociednue 8 peanvHom epe-
MEHU NOKPbIGAION U 3AX8aAMbIEAION CPeObl 000U NPOMANCEHHOCMU U 00beMa, CONOCMAGISISICL C HUMU U
Gopmupys pacnpedeieHHble AKMUGHble UHDPACPYKIMYPLL, DYHKYUOHUPYIOWUE 8 pedcume 2100anbHol
yenesoul opueHmayuu, Ho Oe3 KaKux-1ubo YeHmpaibHvlx pecypcos. [Ilpunumas 60 HUMAHUE Cyuecmsyio-
wull 0ocmamounbvlli 06vem nyoauUKayull no papabomaHHoMy nooxoody, 8 CHmambe NPUsedeHbl MoIbKO
NeMeHmapHvle npuMepbl UCNOIb308AHUSL H3bIKA NPOCMPAHCIMBEHHO20 3AX6aMd, A MAKdICe camble KO-
yegwle udeu e20 cemesoll UHMEPnPemayul ¢ Yeavto YayuuleHus 60CAPUSIUSL U3LONHCEHHBIX SI3bIKOBbIX KOH-
CMPYKYU.

Knwuesvie cnosa: ceiuumansm-ncuxonoeust, RPOCMpAHCmMEeHHbIIL UHMENLeKMN, SA3bIK NPOCMPAHCINEEHHO20
3ax6ama, camopassUEAIOWUecs: CYeHapuu, NApALIebHAs. Cemesds. unmepnpemayust, 2ubpuonsle onepa-
Yuu, UHMe2pUpoBaHHvle peulerus, pacnpeodesentoe YynpasieHue.

Abstract. A full description of a high-level language fol\dog arbitrary problems in heterogeneous, dis-
tributed and dynamic worlds, both physical anduatt will be presented and discussed. The langisge
based on holistic and gestalt principles represemsemantic level solutions in distributed envirents

in the form of self-evolving patterns. The latteg aovering, grasping and matching the distribuspac-
es while creating active distributed infrastructar@ them operating in a global-goal-driven manbeit
without traditional central resources. Taking indocount the existing sufficient publications on #pe
proach developed, the paper will be showing orgyreintary examples using the Spatial Grasp Language
and key ideas of its networked implementation.

Keywords: gestalt psychology, spatial intelligence, spatiaktern matching, Spatial Grasp Language,
self-evolving scenarios, parallel networked intetation, hybrid operations, integral solutions, tdisut-

ed control.
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1. Introduction

We are witnessing a dramatic change in the charatteational and international activity, espe-
cially in crisis and conflict areas, with the udeasymmetric, unconventional, and hybrid solu-
tions. They may simultaneously involve economy,l@gg international relations, ethnicity, cul-
ture, law, religion, etc., defense and military ,teacupying both physical and virtual environ-
ments. And these solutions may need to be multidgio@al and highly integral in order to suc-
ceed, aiming at the whole from start rather thaispa hope to achieve this whole.

A new philosophy, methodology, and supporting Heglel networking technology are
being developed oriented on effective managemenlistfibuted, dynamic and hybrid systems
[1-6], which may be useful within the context mengd above. They are based on holistic and
gestalt ideas [7-9] rather than traditional comroating agents stemming from [10].

The approach (called over-operability [11] ratheart traditional interoperability) allows
for integral global-goal-driven solutions in distnted environments. It has certain psychological
background in trying to follow existing ideas ofWhdiuman mind operates by solving complex
problems (like in waves, streams, states, etc.) [A@§l inherit them by information technologies
[13].

The resultant Spatial Grasp Technology (SGT) wiphatial Grasp Language (SGL) as its
key element has been prototyped and tested witheraus researched applications [14-35]. In
the most general terms it operates as follows. gh4evel scenario for any task in a distributed
world is represented as an active self-evolvinggpatrather than traditional program, sequential
or parallel. This pattern, expressing top semaraius key decisions of the problem to be solved
spatially propagates, replicates, modifies, cowmd matches the world, creating distributed op-
erational infrastructures throughout it, with theaf results retained in the environments or re-
turned as high level knowledge to the starting poin

The current paper describes, first time, the fpédfication of the latest, updated and im-
proved, version of SGL being currently used in anbar of projects related to intelligent man-
agement and control of large distributed dynamgteays with both civil and defence applica-
tions. It also serves as an exemplary refereneenaw patent on parallel and distributed mecha-
nisms for SGL types of languages, which is curgemntlprogress (succeeding the previous patent
on the approach [14]).

SGL is the latest and most advanced version irgaesee of spatial languages using free
however globally controlled movement of program eod networks, with the previous ones
named as WAVE [1], WAVE-WP (World Processing) [2]JdaDSL (Distributed Scenario Lan-
guage) [15].

2. SGL Orientation and Peculiarities

SGL differs fundamentally from traditional progranmg languages. Rather than working with
information in a computer memory it allows us teedily move through, observe, and make any
actions and decisions in fully distributed envirents, whether physical or virtual. In general,
the whole distributed world, which may be dynammd active, is considered in SGL as a substi-
tute to traditional computer memory, with multigfgocessors” (humans, robots, any manned or
unmanned units or devices, etc.) directly operaiing in a cooperative or competitive manner.
An SGL program (called scenario) can be viewed fdiffierent angles:

* As the first linguistic means towards describamgl formalizing the notion of gestalt [7],
often allowing us to grasp top semantics, integaityl super-summative features of large com-
plex systems.

« As an active recursive self-matching pattern Whiapplied against distributed physical,
virtual, executive, or combined worlds, can covete and change these worlds in the way re-
quired.

4 ISSN 1028-9768aremarnuni mamuny i cuctemu, 2016,Ne 2



* As a sort of a universal genetic mechanism exsge# a special integral formalism and
allowing any distributed systems, whether passivedive, to be created, grown, extended,
evolved, and modified.

» As a symbolic “soul” implanted into the distriledt world and self-spread throughout it,
providing local and global awareness and contieb the world’s meaning, sense, life, and con-
sciousness.

* As a powerful and globally controlled super-vinukich when injected from any point
into the world’s body can cause different effeatstpfrom full control and direction of evolution
to complete destruction, if required.

3. The SGL Worlds

SGL directly operates with:

» Physical World (PW), continuous and infinite, weach point can be identified and
accessed by physical coordinates expressed inpgpecoordinate system (terrestrial or celestial)
and with the precision given.

« Virtual World (VW), which is discrete and consisif nodes and semantic links between
them, both nodes and links capable of containibgrary information, of any nature and volume.
VW may be considered as finite as regards the velofrnformation the mankind accumulated
by today, but taking into account its continuinglaapid growth, also possible existence of other
civilizations in space, it may potentially be tegis infinite too.

» Executive world (EW), consisting of active doaigh communication channels between
them, where doers may represent any devices oringgltapable of operating on the previous
two worlds and include humans, robots, mainfrariaggpps, smartphones, etc.

Different kinds of combination of these worlds aso be possible within the same for-
malism. For example, Virtual-Physical World (VPWhaynallow not only for a mere mixture of
the both worlds but also their deep integrationgrehindividually named VW nodes can be asso-
ciated with certain PW coordinates, thus allowing their presence in physical reality too. On
the other side, the whole regions of PW of arbjtrsinape and size may have certain virtual
names identifying them, and this naming can beahihical. Another possibility is Virtual-
Execution World (VEW), where doer nodes may be @ased with virtual nodes (say, in the
form of special names or nicknames) assigned tm thgth semantic relations in between, simi-
larly to pure VW nodes. Execution-Physical WorldP{f) can pin some or all doer nodes to cer-
tain PW coordinates and consider them insepardldacah other, and Virtual-Execution-Physical
World (VEPW) can combine all features of the prergicases.

4, Top SGL Syntax

SGL has a recursive structure with its top
level shown in Fig. 1. Such organization, as

by .

grasp ———— rule [({grasp,})]

i

constant

matter

custfom
special
{grasp}

]

information

variable

global
heritable
frontal
nodal

environmental

INRRRRRRRERRRN

movement
creation
echoing
verification
assignment
advancement
branching
transference
timing
granting
fype

usage
application
{grasp}

I

Fig. 1. SGL recursive syntax
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will be shown throughout this book, allows
us to express any spatial algorithm, create
and manage any distributed structures and
systems, static or dynamic, passive or ac-
tive, also solve any problem in, on, and
over them, and this often can be expressed
in a compact, transparent and unified way.
Let us explain the language basics
in a stepwise top-down manner. The SGL
topmost definition with scenario named as
grasp (reflecting the spatial navigation-



grasp-conquest model explained in previous chaptatiser than the usual program) can be as
follows:

grasp = constant variable|rule [( { grasp }) ]

where syntactic categories are shown in italicgjcad bar separates alternatives, square brackets
identify optional constructs, and parentheses amdneas being the language symbols. Braces
indicate repetitive parts with the delimiter (hemmma) at the right.

As follows from this notation, an SGL scenario,gvasp (applied from a certain world
point, i.e. of PW, VW, EW or their combination) its simplest form can be just a constant pre-
senting the result explicitly. It can also be aiafalle containing data assigned to it previously, sa
by another SGL scenario branch which visited tlospbefore (otherwise empty, or nil). The
third variant is called a rule, which can be opailby supplied with parameters (enclosed in pa-
rentheses and separated by comma if more than ©he¥e parameters, due to recursion, can
generally be arbitrary grasps again (as constantar@bles in the simplest cases, as above, up to
scenarios of any complexity and space-time covérage

The rules, starting their influence in the curremtrld positions, can be of different na-
tures and levels — from local matter or informatpyocessing to full depth management and con-
trol. They can produce results which may residdhésame or other world positions. The results
obtained and world positions reached by rules nepime operands and/or starting positions for
other rules, with new results and new positionsgls or multiple) obtained after their comple-
tion, and so on.

The SGL scenario can dynamically spread & processafch the world or its parts need-
ed, with the scenario code capable of virtuallypbysically splitting, replicating, and moving in
the distributed spaces (accompanied with transtidata). This movement can take place in sin-
gle or multiple scenario parts dynamically linkedhaeach other under the overall control, the
latter (both forward and backward) spreading aneting the navigated world too.

SGL constants can represent information, physicatten (physical objects including),
self-identifying custom items (relating to infornwat, matter or both), or special words used
throughout the language as standard parametersdifiens for different constructs:

constant - information | matter | custom | special | grasp

The word “constant” is used rather symbolicallySGL definition, as the last option is
recursively defined as grasp again. This capablemiesenting any objects (passive or with em-
bedded activities) and with any structures withia tecursive SGL syntax for their further pro-
cessing by SGL rules.

SGL variables, called “spatial”, containing infortie& and/or matter and serving differ-
ent features of distributed scenarios, can beostaty or mobile. They are classified as global
(with residence and mobility usually undefined)ritadble (event-born and remaining stationary
to it, being shared by all subsequent events),tdtof@ccompanying evolution, mobile), nodal
(temporarily associated with, and stationary t@eased world nodes), and environmental (exter-
nal and internal world-accessing, stationary or ihedb

variable - global | heritable|frontal | nodal | environmental
And rules belonging to the following classes:

rule - movement | creation | echoing | verification |sigament | advancement | branching |
transferencitiming | granting | type | usadepplication| grasp

The final rule’s optiongrasp brings another level of recursion into SGL whepera-
tions may not only be explicitly set up in advaree rather represent results of spatial develop-
ment of SGL scenarios (of any world coverage amdpiexity), also act in aggregates with other
rules and modifiers or data on the same operands.
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5. SGL Main Features
5.1. How Scenarios Evolve

In order to explain main SGL features, we will shbaw its scenarios generally evolve in dis-
tributed worlds, with the points following:

» SGL scenario is considered developing in stegschwcan be parallel, with new steps
produced on the basis of previous steps.

* Any step, including the starting one, is alwagsaiated with a certain point or position
of the world (i.e. physical, virtual, executive,@mbined) in which the scenario (or its particular
part, as there may be many parts working simultasigpis currently developing.

« Each step provides a resultant value (which nagibgle, multiple, and/or structured)
representing information, matter or both, and alteg control state (as one of possible states,
ranging by their strength), in the same or otherdvpoint (or points) reached.

« Different scenario parts may evolve from the sate@ in ordered, unordered, or parallel
manner, providing new independent or interdepensiets.

« Different scenario parts can also succeed edurolvith new parts evolving from final
steps produced by the previous parts.

*This (potentially parallel and distributed) sceaavolution may proceed in synchronous
or asynchronous mode, also their any combinations.

SGL operations and decisions in evolving scenaaitspcan use control states and values
returned from other scenario parts whatever comafekremote they might be, thus combining
forward and backward scenario evolution in distigéouspaces.

« Different steps from the same or different scenparts can be associated with the same
world points, sharing persistent or temporary infation in them.

« Staying with world points, it is possible to clganlocal parameters in them, whether
physical or virtual, thus impacting the worlds th&se locations.

» Scenarios navigating distributed spaces cane@ditrary distributed physical or virtu-
al infrastructures in them, which may operate airtown after becoming active, with or without
external control. They can also subsequently (enaluring their creation) be navigated, updated,
and processed by the same or other scenarios.

» Overall organization of the world creation, natign, coverage, modification, analysis,
and processing can be provided by a variety of 8(s which may be arbitrarily nested.

As will be shown throughout this book, any sequardr parallel, centralized or distribut-
ed, stationary or mobile algorithm operating witbttbinformation and physical matter can be
written in SGL at any levels and their combinatiohisese can range from top semantic (like set-
ting global goals, basic operations, and key decgsonly) to those detailing system partitioning,
composition, subordination between components aedati management and control.

5.2. Sense and Nature of Rules

In explaining the language basics further, let husdssome light on the general sense and nature
of rules, to be explained later in detail. A ruépresenting in SGL any action or decision may,
for example, belong to the following categories:

» Elementary arithmetic, string, or logic operation

* Move or hop in a physical, virtual, executioncombined space.

« Hierarchical fusion and return of (potentiallymete) data.

« Distributed control, both sequential and paralield in breadth or depth.

* A variety of special contexts detailing navigatio space and the character of embraced
operations and decisions.

» Type and sense of a value or its chosen usagénguautomatic language interpretation.
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* Creation or removal of nodes and/or links inrdlisited knowledge networks, allowing us
to work with arbitrary structures, including theiitial creation and any modification.

* A rule can also be a compound one integratingrothles whether elementary or com-
pound again, due to recursion.

All rules, regardless of their nature, sense orlerity, are pursuing the same ideology
and organization, as follows.

» They start from a certain world position, beingially linked to it.

« Perform or control the needed operations in &idiged space, which may be stepwise,
parallel, and arbitrarily complex.

e Produce concluding results by the final stepgressed by control states and values
there.

» These final steps may associate with the samer@nine rule started) or new world posi-
tions, reached by the rule’s activity.

This uniformity allows us to effectively composeéedgral and transparent spatial algo-
rithms of any complexity and world coverage, opatpgltogether under unified and automatic
(generally parallel and distributed) control.

5.3. Spatial Variables

Let us consider some more details on the naturesansge of spatial variables, stationary or mo-
bile, which can be used in fully distributed physjairtual or executive environments, effectively
serving multiple cooperative processes under thigedncontrol. They are created upon declara-
tion by special rules, see later, or by first assignt to them.

* Global variables — the most expensive ones, wbéchserve any SGL scenarios and can
be shared by their different branches. Their l@cegtj mobility capabilities, and life span can de-
pend on the features of distributed environments&@L implementations.

» Heritable variables — stationary, appearing withiscenario step and serving only all
subsequent steps, generally multiple and parailtglffom other branches), which can share them
in both read and write operations.

* Frontal variables — mobile, temporarily assodatath the current step and not shared
with other parallel steps; they are following saama&volution being transferred between subse-
guent steps. These variables replicate if fronep atnumber of other steps directly emerge. (The
replication procedure, also physical mobility, ntegve implementation peculiarities if working
with physical matter rather than information.)

« Environmental variables — these allow us to agcasalyze, and possibly change differ-
ent features of physical, virtual and execution dgoduring their navigation. Most of them are
stationary, associated with the world positionschea, but some, especially related to the lan-
guage execution, can be mobile, some even gldtethie absolute time.

» Nodal variables — stationary, being a sole priypef the world positions reached by the
scenarios. Staying at world nodes, they can besaedeand shared by all activities having
reached these nodes under the same scenarioydantitat any time.

These types of variables, especially when usedhegeallow us to create advanced algo-
rithms working directly in space, actually in beamecomponents of distributed systems rather
than in them, providing flexible, robust and s&tovering solutions (stealthy as well if needed).
Such algorithms can freely self-replicate, pantfispread and migrate in distributed environ-
ments (partially or as an organized whole), whileags preserving overall awareness and global
goal orientation.
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5.4. Control Statesand Their Hierarchical Merge

The following control states can appear after penfing different scenario steps. Indicating local
progress, they can be used for distributed cordfainultiple processes, allowing us to make
proper decisions at a variety of levels.

e thru - reflects full success of the current branchhefd4cenario with capability of fur-
ther development (i.e. indicating successful opanahot only in but also through this step of
control). The following scenario steps, if any,Maé allowed to proceed from the current step.

» done - indicates success of the current scenario stdfs @lanned termination, after
which no further development of this branch frora tlurrent step will be possible. This state can,
however, be subsequently changed to thru at higkiels by a special rule, as explained later.

e fail - indicates non-revocable failure of the curremainich, with no possibility of fur-
ther development. This state directly relates ®dtrrent branch and step only. It, however, can
influence decisions at higher levels by rules camog engagement of other branches (same can
be said about the previous two states).

» fatal — reports fatal, terminal failure with nonlocafesft, triggering abortion of all
currently evolving scenario processes and remaivall @ssociated temporary data, regardless of
their current world locations and operational sgscélhe scope of this spreading termination
process may be the whole scenario, by default, my be restricted by a certain rule explained
later (supervising the scenario part in which thége may potentially occur).

These control states appearing in different brasictiea parallel and distributed scenario
at bottom levels can be used to obtain generatimatiol states for higher levels, up to the whole
scenario, for making proper decisions. The hielaethbottom-up merge and generalization of
states is based on their comparative importancepwoer, where the stronger state will always
dominate when ascending towards the decision root.

For example, merging statdsu anddone will result inthru , thus generally classify-
ing successful development at a higher scenariel Mith possibility of further expansion from
at least some of its branches. Mergithgy andfail  will result inthru too, indicating gen-
eral success with possibility of further developt@gspite some branch (or branches) terminated
with failure, while the others remaining open tatler evolution. Merginglone andfail — will
result indone indicating generally successful termination wigeoring local failures, however,
without possibility of further development in dfiegse directions. Antatal  will always domi-
nate when merging with any other states unlestessructive influence is contained within a cer-
tain higher level rule, as already mentioned (dttef will itself terminate with fail in such a &s
So ordering these four states by their powers fmgiimum to minimum will be as follow$a-
tal ,thru ,done, fail

These four states, their merge, and use in conifes are standard, language-embedded
ones. SGL, as a universal spatial language, alsawsus to artificially set up any possible con-
trol states, with any numbers and any merge orrgémnation procedures, which may include the
mentioned standard ones or be completely different.

6. Description of Main SGL Constructs
6.1. Constants
6.1.1. Information

String can be represented as any sequence of trarambraced by opening-closing single quo-
tation marks. This sequence should not contairsihgle quotes itself or they should appear in
opening-closing pairs only, with any nesting allowe

Examples:John’ , ‘Peter and Paul !

ISSN 1028-9763MaremarnuHi Mamuay i cucremu, 2016 Ne 2 9



Instead of single quotes, a sequence of characaersilso be placed into opening-closing
curly brackets (or braces {}), which can be usesida the string in pairs too. Braces will indicate
the text as a potential scenario code which camipgediately optimized (like removing unnec-
essary spaces and/or adjusting to the standards§@hx, say, after using constructs typical to
other programming languages for convenience, akieeaal later). If single quotes are used to
embrace texts as a potential SGL code, such cotieipation will have to be done during its
interpretation, not before, and each time it iolaed, with the original text remaining intact.

Number can be represented in a standard way, sitoil&raditional programming lan-
guages, generally in the fornsignl{ digit}[.{ digit}[ E[sign[{ digit}]].

Examples105, 88.56 , -15, 3.3E-5 .

Numbers can also use words instead of digits andnaganying characters (using under-
score as separator if more then a single word i eds follows:
zero , one, two , three ,four ,five ,six ,seven,eight ,nine ,ten ,eleven ,twelve , thir-
teen , fourteen | fifteen , sixteen , seventeen , eighteen , nineteen ,twenty , thirty
forty ,fifty ,sixty ,seventy ,eighty ,ninety ,hundred ,thousand , million |, billion
trillion ,dot , minus , plus .

The four examples above may look like follows.

a) with mixed representation:

hundred_five , eighty eight.56 , minus_fifteen , three.3E-five
b) up to the full and detailed wording:
one_zero_five , eight_eight_dot_fifty_six , minus_one_five

three_dot_three_E_minus_five

6.1.2. Physical Matter

Physical matter (incl. physical objects) can beesented by a sequence of characters embraced
by opening-closing double quotation marks.

Examples: “truck” , “white sand” , “brick ", “water”

The above mentioned self-identified constants §tengs, scenarios, numbers, and mat-
ter) may also be set up by explicit naming theiety with the use of corresponding rules.

6.1.3. Custom Constants

For extended applications, other self-identifiechstants can be introduced too, if not conflict
with the language syntax, to be directly interpilddy an extended SGL interpreter. For example,
these may be coordinates in physical spaces sitalat7.5 , y44.2 , z-77 , as well as their
combination: x17.5 y44.2 z-77 , or internet addresses liketp://www.amazon.com/

Special type-defining rules can be used for morepiex cases.

6.1.4. Special Constants

Special verbal constants can be used as standeaoh@i@rs (or modifiers) in different language
rules, as will be shown later. The basic list oflswords (consisting of lower case letters only)
with comments on their possible use is as follows:

thru - indicates (or sets) control state as a succibgwassibility of further evolution.

done - indicates (or sets) control state as a sucdessfuination, with blocking further
development.

fail - indicates (or sets) control state as failuréheuit further development.

fatal — indicates (or sets) control state as absolulgréa with abortion of active dis-
tributed processes.

infinite — indicates infinitely large value.
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nil  — indicates no value at all.

any, all , other — stating that any, all, or other (i.e. except therent one) elements
under consideration can be used.

passed - hinting that the world nodes to be considerecehaready been passed by the
current scenario branch.

existing — hinting that world nodes with the given names already existing and
should not be created again (i.e. duplicated).

neighbors - stating that the nodes to be accessed are adimw neighbors of the
current node, i.e. within a single hop from it bysting links.

direct — stating that the mentioned nodes should be sedesr created (if not exist)
from the current node directly, regardless of gaesinon)existence of direct links to them.

noback - not allowing to return to the previously occuprede.

firstcome  — allowing to access the next-hop nodes only firse with the given sce-
nario ID.

forward , backward - allowing to move from the current node via exigtlinks along
or against their orientations (ignored when dealiith non-oriented links, which can be trav-
ersed in both directions).

global ,local - may indicate the scope of operations or the dvadcess in different
rules.

syncl[hronous] , async[hronous] — a modifier setting synchronous or asynchro-
nous mode of operations induced by different rules.

virtual , physical , executive — indicating or setting the type of a node the sce
nario is currently dealing with (the node can dsmf a combined type).

engaged , vacant - indicating or setting the state of a resour@dinrent scenario is
dealing with (like, say, human or robot, or any gibgl, virtual or combined world node).

existing — indicating that the node (or nodes) of interestadready existing.

passed - indicating that the nodes under consideratiore ledready been passed by the
current scenario branch.

6.1.5. Compound Constants, Grasps

Constants can also be arbitrarily complex, as agges (possibly hierarchical) from elementary
types (not necessarily the same) described abameg [supported by the full SGL syntax (i.e.
generally as grasps again). They can be composedibyg either standard rules described later
or, if not sufficient, any additional, custom ormgented on specific application areas.

6.2. Variables

Different types of variables can be self-identifggh.e. by the way their names are written. Vari-
ables of different types can also have any idamsfif explicitly declared by special rules, ex-
plained later.

6.2.1. Global, Heritable, Frontal, and Nodal Variables

The sense and use of these variables have beesiregbefore, in Section 4.3. In the case of
self-identification, they should start with capitattersG H, F or N, respectively, followed by a
sequence of alphanumeric characters (letters aiis dnly).

ExamplesGlobe , H214b, Frontal5 , Nina37 .
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6.2.2. Environmental Variables

All these variables have specific names writtealircapital letters, with brief explanation of thei
sense and usage following.

TYPE- indicates the type of a node the current stepaates with. This variable returns
the node’s type (i.evirtual , physical , executive , or their combination as a list with
more than one value). It can also change the agisyipe by assigning to it another value (simple
or combined too) if needed.

CONTENT returns content of the current node (only ifihgwirtual or executive di-
mension, or both), which can be any string of ctiara (in the simplest case the latter just serv-
ing as its name). Assigning ONTENTallows us to change the existing node’s contergrwh
staying in it. In a purely physical nod@ONTENTeturnsnil (as physical nodes can be identi-
fied by their addresses only). If a node is of battual and executive nature, this variable deals
with the virtual one.

ADDRESS- returns address of the current virtual nodes Thread-only variable as node
addresses are set up automatically by the undgrhjistributed interpretation system during the
creation of virtual nodes, or by a system it hasnijgut on top of (for example, it can be an inter-
net address of the node).

QUALITIES - identifies a list of available physical paramgtassociated with the cur-
rent physical position, or node, depending on th@sen implementation and application (for ex-
ample, these may be temperature, humidity, airspres visibility, radiation, noise or pollution
level, density, salinity, etc.). These parametgenérally as a list of values) can be obtained by
reading the variable. They may also be changede(apg on their nature and implementation
system capabilities) by assigning new valueQWALITIES, thus locally influencing the world
from its particular point (or at least attemptiog. t

WHERE keeps physical coordinates of the current playsiode in the chosen coordinate
system (the node can be combined one, additiomaiyng virtual and/or executive features).
These coordinates can be obtained by reading tiebl@ Assigning a new value to this variable
causes physical movement of the current node imgméw position (while preserving its identity,
all information surrounding, and control and dat&d with other nodes).

BACK - keeps internal system link to the preceding @varbde (virtual, executive or
combined one with virtual or executive dimensialpwing the scenario to most efficiently re-
turn to the previously occupied node, if neededeRiag to internal interpretation mechanisms
only, the content dBACKcannot be lifted, recorded, or changed from tlemaio level.

PREVIOUS- refers to an absolute and unique address opria@ous virtual node (or
combined with execution and/or physical dimensipaldwing us to return to the node directly.
This may be more expensive than usBACK but the content dPREVIOUS unlike BACK can
be lifted, recorded, and used elsewhere in theasizen

PREDECESSOR refers to the content/name of the precedingdvodde (the one with
virtual or executive dimension). Its content canlifted, recorded, and used subsequently, in-
cluding for organization of direct hops to this Bo&uch hops, however, can also lead to other
nodes with the same content/name, as node comtamtss are generally not unique throughout
the world operated in SGT. AssigningRREDECESSO&an change content/name of the previ-
ous node.

DOER- keeps a name of the device (say, laptop, ra@mart sensor, or even a human)
which interprets the current SGL code. This dewzae be chosen for the scenario automatically,
say, from the list of offered ones, or just pickgrfrom those known or guessed to be available.
It can also be appointed explicitly by assignirggname tdOER causing the current SGL code
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move into this device and execute there unlessminhates or another device is assigneD@
ER say, when the current one becomes inefficiefits.

RESOURCES keeps a list of available or recommended ressuficuman, robotic, elec-
tronic, mechanical, etc., by their types or namvesich can be used for execution of the current
and subsequent parts of the SGL scenario. Thigdistcontain potential doers too, which after
being selected by different scenario branches agpgaheir names) in variabl&OERassociat-
ed with the brancheRESOURCESan be accessed and changed by assignment, aaddarof
distributed SGL interpretation it can be replicateith its content, the latter, possibly, parti-
tioned between different branches by the intemigrpretation planning and optimization proce-
dures.

LINK — keeps a name (same as content) of the virtuaWhich has just been passed. By
assigning new value to it you can change the limdatent/name. Assigningil or empty to
LINK removes the link passed.

DIRECTION — keeps direction (along, against, or neutraljhef passed virtual link. As-
signing to this variable values likgus , minus , ornil (same as, -, or empty) can change
its orientation or make non-oriented.

WHEN- assigning value to this variable sets up anlatesstarting time for the following
scenario branch, thus allowing us to suspend aheldside certain operations and their groups in
time.

TIME - returns current absolute time, being read-oldpa) variable.

SPEED- reflects speed of physical movement of the npthgsical, executive or com-
bined, the latter may include virtual dimension)taowhich control (represented by the current
step) is staying. By assigning to this variabley yan change the speed of the current node. In
case of a pure virtual node, the notion of speedatevant and will returmil when accessed,
also causing no effect when assigned to.

STATE- can be used for explicit setting of control estat the current step by assigning
to it one of the followingthru , done, fail , orfatal . (These states, as mentioned before,
are also generated implicitly, automatically on tesults of success or failure of different opera-
tions, belonging to the overall internal controlsazienarios.) ReadinGTATE will always return
thru as this could only be possible if the previousrapen terminated witthru too, thus let-
ting this operation to proceed. A certain statelieitly set up in this variable can be used subse-
guently at higher levels (possibly, together wintination states of other branches) within dis-
tributed control provided by SGL rules, whereasiggesg fatal to STATE causes already
mentioned abortion of distributed processes witveaisted data.

VALUE - when accessed, returns the resultant valueeofatiest operation (say, an as-
signment to a variable or just naming a variableanstant). Assignment tdALUE leaves its
content available to the next operation. This \@eiallows us to organize balanced processing
combining sequences of operations with their repriegion as nested expressions in SGL. (As
follows from syntax of Fig. 1, the resultant valwdsoperations can also be accessed implicitly if
these operations or their sequences are themsghsgding as operands of higher level rules.)

COLOR- keeps identity of the current SGL scenario sthitanch, which propagates to-
gether with the scenario and influences groupindiféérent nodal variables under this identity at
world nodes. This means that different scenariogheir branches with different identities are
protected from influencing each other via the uselentically named nodal variables. However,
scenarios with different colors can penetrate gdoh other information areas if they know the
other’s colors, by temporarily assigning the needed identity toCOLORto perform coopera-
tive or stealth operations) while restoring thevpyas color afterwards. Any numerical or string
value can be explicitly assigned @OLORBY default, different scenarios are implicitlysagm-
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ing the same value IBOLORat the start, thus being capable of sharing &tirimation at navi-
gated nodes, unless change their personal colorsitiges.

IN — special variable reading from which asks foadabm the outside world in the cur-
rent point of it; this input data becoming its rksnt value.

OUT- special variable allowing us to send informatioom the scenario to the outside
world in its current point, by assigning the outpatue to this variable.

STATUS- retrieving or setting the status of a doer nod&hich the scenario is currently
staying éngaged or vacant , possibly, with a numerical estimate of the leskkengagement
or vacancy). This feedback from the implementatayer could be useful for a higher-level su-
pervision, planning, and guidance of the use asttidution of resources executing the scenario,
rather than doing this fully automatically by stardi procedures which may not always be opti-
mal, especially under resource shortages.

Other environmental variables for extended appboat can be introduced and identified
by unique words in all capitals too, or they mag asy names if explicitly set up by a special
rule, as mentioned later.

As can be seen, most environmental variables avéengeas stationary ones, excdpit-
SOURCE&Nd COLORwhich are mobile. The global variabléME may symbolically be con-
sidered as stationary too but in reality may depamdnplementation details.

6.3. Rules

The concept of rule is not only dominant in SGL $etting most diverse activities ranging from
elementary data & knowledge & physical matter pssagg to overall management and control,
but also the only one. This provides a universaggral and unified approach to expressing any
operations in distributed dynamic worlds, and iéded, in parallel and fully distributed mode.
This section describes the main repertoire of duoed and researched SGL rules with summary
of their sense and possible applications.

6.3.1. Movement

Rules of this class result in virtual hopping te #xisting nodes (the ones having virtual or exec-
utive dimensions) or real movement to new phydmedtions, associating the remaining scenario
(with current frontal variables and control) withetnodes reached. The resultant values of the
movements are represented by the reached node Iigmecase of virtual, executive or combined
nodes) omil in case of pure physical nodes, with control stiate in them if the movement
was successful. If no destinations reached, theemewt results with statail and valuenil

hop — sets virtual propagation to node(s) in virtadecution, or combined worlds (the
latter may have physical dimension too), directlyia links connecting them. In case of a direct
hop, except node name or address, special modifiect  should be included into parameters
of the rule. If a hop to take place from a noda tmde via an existing link, both destination node
name/address and link name (with orientation ifdee@ should be among parameters of the rule.
This hop rule can also cause independent and pbpatipagation to a number of nodes if there
are more than one node connected to the currenbytiee named link, and only link name men-
tioned (or given by indicataall , for all links involved). In a more general caparallel hops
can be organized from the current node if the dastin attributes are given by a list of
names/addresses of nodes and names of linldirmt  orall indicators) which should lead
to them.

move — sets real movement in physical world to a paldiclocation given by coordinates
in a chosen coordinate system. The destinatiortiotéecomes a new temporary node with no
name (omil ) which disappears when all current scenario datwvileave it for other nodes. If,
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however, the destination node is to have virtualafision too (indicated hbyirtual in the pa-
rameters of the rule, possibly, accompanied byraicename otherwise default name used), it
will remain intact and can be accessed by otherasaes or different branches of the current one
unless removed explicitly.

shift  — differs from theamove only in that movement in physical world is setdsvia-
tions of physical coordinates from the current posirather than by absolute physical coordi-
nates.

follow - allows us to propagate in both virtual and phaisgpaces by following arbi-
trary routes set up by sequences of links, nodegigal coordinates, etc., or via obtained inter-
nal interpretation tracks using recorded entriehéon (as explained later).

6.3.2. Creation

This class of rules creates or removes nodes ahaksrleading to them during distributed world
navigation. After the creation, the resultant valuell be their names (there may be more than
one destination node created) with terminationestaty , and the next steps will be associated
with the nodes reached, starting in them. If therafon fails, its resultant value will i and
control statefail  in the node it started. After the node(s) sucegssimoval operation, the re-
sultant value in the starting node will be the sam®efore and control stateu

create - starting in the current world position, creagdéber new virtual link-node pairs
or new isolated nodes. For the first case, theisugipplied with names and orientations of new
links and names of new nodes these links shoultl teawhich may be multiple. For the second
case, the rule has to use modifiigrect  indicating direct nodes creation, i.e. withoukino
them. If to use modifiergxisting or passed for the link-node creation hinting that such
nodes already exist (also if nodes are given byesdes, thus indicating their existence) only
links will be created to them lyreate

linkup  — just simplifies the latest rule, creating orihkk with proper names from the
current node to the already existing nodes, withtbet need to use modifieexisting or
passed . However, still using modifigpassed may help us narrow direct search of the already
existing nodes.

delete — removes links together with nodes they shouddl f®, starting from the cur-
rent node. Links and nodes to be removed shoulédither explicitly named or represented by
modifiersany or all . Using modifierdirect instead of link name together with node name
will allow us to remove such node (or nodes) frdva turrent node directly. In all cases, when a
node is deleted, all its links with other noded W removed too.

unlink  — removes only links leading to neighboring nodéere, similar to the previous
case, they should be explicitly named or modifaarg orall used instead. The resultant values
on the rule will be represented by these node namiéls stateghru in them, similar tchop
andlinkup  operations. The next scenario step will starhase neighboring nodes.

The above creation rules, depending on the impléatien, can also be used in a broader
sense and scale, as contexts embracing arbitranasos and influencing hop operations within
their scope (the same scenarios will be capablgpefating in creation or deletion mode with
them).

6.3.3. Echoing

The rules of this class use terminal control statesterminal values from the embraced scenario
(which may be remote) to obtain the resultant shaig value in the world point it started, also
being it's terminal point (from which the rest diketscenario, if any, will develop). The usual re-
sultant control state for these rulesghieu (fail  occurs only when certain terminal values hap-
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pen to be unavailable or result unachievable, aayivision by zero). Depending on the rule’s
semantics, the resultant value can be compouralalikst of values, which may be nested.

state — returns the resultant generalized state of theraced SGL scenario upon its
completion, whatever its complexity and space cager This state being the result of the as-
cending fringe-to-root generalization of termingtes of the scenario embraced, where states
with higher power (from max to min astal , thru , done, fail ) dominate in this potential-
ly distributed and parallel process, as alreadytimeead. The resultant state returned is treated as
the resultant value on the rule, the latter alwaysiinating with own control stateru , even in
the case of resultafdital , thus restricting its spreading by echo rules.diher restriction of
influence offatal by a special rule will be explained later.)

order - returns an ordered list of final values of thersario embraced corresponding to
the order of launching related branches rather thanorder of their completion. For parallel
branches these orders may, for example, relateviothey were activated, possibly, with the use
of time stamping upon invocation.

rake — returns a list of final values of the scenamabeaced in an arbitrary order. This
order may, for example, depend on the order of ¢etiop of branches; it can also be influenced
by peculiarities of the echoing collection procexaf the results.

sum — returns the sum of all final values of the scenembraced.

count —returns the number of all resultant values aaset with the scenario embraced,
rather than values themselves as by the prevides.ru

first ,last , min, max, random, average - return, correspondingly, the first, the
last, minimum, maximum, random, or average valoenfall terminal values returned by the sce-
nario embraced, whefgst  andlast will depend on ordering of the results with destaimi-
lar to the ruleorder above.

element - returns the value of an element of the listteriaft operand by index or con-
tent (see corresponding usage rules later) givetihdyight operand. If the right operand is a list
of indices/contents, the result will be the listamfrresponding values from the left operand. If
element is used within the left operand of assignment l@rpd later), instead of returning
values it will be providing an access to them.

sortup , sortdown return an ordered list of values produced by therand embraced,
starting from maximum or minimum value and termimgt correspondingly, with minimum or
maximum one.

reverse — changes to the opposite the order of values thenembraced operand.

add, subtract , multiply , divide , degree - perform the corresponding opera-
tions on two or more operands of the scenario eoalralf the operands represent multiple val-
ues as lists, these operations are performed bettheepeer elements, with the resulting value
being multiple too.

separate — separates the left operand string value by thegsat the right operand
used as a delimiter in a repeated manner for fhetleng, with the result being the list of sepa-
rated values. If the right operand is a list ofirdékrs, its elements will used sequentially and cy
clically unless the string at the left is fully paoned. If the left operand represents a list of
strings, each one is separated by the right opemarabove, with the resulting lists of separated
values merged into a common list in the order theye received.

unite — integrates the list of values at the left (amgs$, or to be converted into strings
automatically if not) by a repeated delimiter astrang (or a cyclic list of them) at the right in&o
united string.

attach — makes the resultant string by connecting thiet istying operand to the end of
the left one. If operands are lists with more tlome element, the attachment is made between

16 ISSN 1028-9768aremarnuni Marmuay i cuctemu, 2016 Ne 2



their peer elements, receiving the resultant lisiroted strings. This rule can also operate with
more than two operands.

append - forms the resultant list from left and right cgeds, appending the latter to the
end of the former, where both operands may betlssiselves. More than two operands can be
used too.

common-— returns intersection of two or more lists asrapds, with the result including
same elements of all lists, if any, otherwmsle .

withdraw — its result will be the first element of the Ibvided by the embraced oper-
and, with this element also simultaneously withdradwom the list (the latter makes sense only
for a variable containing a list of values as tiperand). This rule can work with more than one
element by adding another operand providing thebmirof elements to be withdrawn and repre-
sented as the result.

access - returns an internal access (which can be redosdgy, in a variable) to all ter-
minal positions of the embraced scenario, whichlmamsed to reenter them most efficiently af-
terwards (on internal system level). This reentrgynibe performed by the rufellow de-
scribed before.

6.3.4. Verification

These rules provide control stateu orfail  reflecting the result of certain verification pro-
cedures, alsail as own resultant value, while remaining in the savorld positions after com-
pletion.

equal , notequal , less , less [or ]Jequal , more, more[or Jequal , bigger |,
smaller , heavier , lighter , longer , shorter — make comparison between left and
right operands, which can represent informatioplorsical matter, or both. In case of vector op-
erands, statthru appears only if all peer values satisfy the caodiset up by the rule (except
notequal , for which even a single non-correspondence betwesers will result irthru ).
The list of such rules can be easily extended forenspecific applications, if supported properly
on implementation level.

empty , nonempty — checks for emptiness (i.e. non-existence, sasmala) or non-
emptiness (existence) of the resultant value obtafrom the embraced scenario.

belongs , notbelongs - verifies whether the left operand value (singiea list) be-
longs as a whole to the right operand, potentalligt too.

intersects , hotintersects — verifies whether there are common elements (val-
ues) between left and right operands, being gdgdistls. More than two operands can be used
for this rule too, with at least a same single epto be present in all of them to resulthru

6.3.5. Assignment

This class of rules assigns the result of the rgglenario operand (which may be arbitrarily re-
mote, also as a list of values) to the variablseadrof variables directly named or reached by the
left scenario operand, which may be remote too. [Efeoperand can also provide pointers to
certain elements of the reached variables whiclilghwe changed by the assignment rather than
the whole variables (see rudéement above). These rules will leave control in the samoed
position they've started, its resultant stdteu if assignment was successful otherwigd
and the same value as assigned to the left opefaede are two options of the assignment.
assign — assigns the same value of the right operandcfwimay be a list) to all varia-
bles accessed (or their elements pointed) by theperand. If the right operand is represented
by nil or empty, the left operand variables as a whoteo(y their elements pointed) will be
removed.
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assignpeers  — assigns values of different elements of thedisthe right operand to
different variables (or their pointed elements)oassted with the destinations reached on the left
operand, in a peer-to-peer mode.

6.3.6. Advancement

Rules of this class organize forward or “in depdldancement in space and time. They can work
in synchronous or asynchronous mode using modifigns [hronous ] or async [hronous |
(the second one optional as asynchronous is defade).

advance - organizes stepwise advancement in physicaljalirexecutive or combined
spaces, also in a pure computational space wiaijensf in the same world nodes (thus moving in
time only). For this, the embraced SGL scenariesused in a sequence, as written, where each
new scenario applies from all terminal world nodesched by the previous scenario (these nodes
may happen to be the same as before if only cortipnsatook place). The resultant world posi-
tions and resultant values on the rule are assatiaith the final steps of the final scenarios on
the rule. And the rule’s resultant state is a galineation of control states associated with itsffin
steps. The frontal variables, if any, are beingemibd at new steps from the preceding steps
(with their copies removed from the previous posi$i), thus moving from one step to another,
and between scenario operands, being also remlicataultiple steps emerge from a previous
step.

If no final step occurs with statéisru or done, the whole advancement on this rule is
considered as failed (with generalized state ), resulting in no possibility to continue the sce-
nario evolution in this direction. On default ortivimodifierasynchronous , the sequence of
scenarios develops in space and time independendijferent directions, and different operand
scenarios in the sequence may happen to be attiie aame time. With the use ssfnchro-
nous maodifier, all invocations of every new scenariotheir sequence can start only after full
completion of all invocations of the previous saema

slide — works similar to the previous rule unless thgtrseenario fails to produce re-
sultant statehru or done from some world node; in this case the next seerfesm their se-
guence will be applied from the same starting pasitand so on. The resultant world nodes and
values in them will be from the last successfulbpleed scenario (not necessarily the same in
their sequence when independently developing iferdifit directions). The results on the whole
rule, in their extreme, may even happen to cornegfo the existing results in the node the rule
started (including node’s position) before the milgpplication, with statéhru always being
the resultant state in any cases. Both synchroandsasynchronous modes of parallel interpreta-
tion of this rule, similar to the previous rudelvance , can be possible, where in the synchro-
nous case different scenarios can start only ftecompletion of the previous ones.

repeat — invokes the embraced scenario as many timessssye, with each new itera-
tion taking place from all final positions with s#dhru reached by the previous invocation. If
no final steps of the scenario invocation completetth statethru , the starting position from
which this iteration failed together with its valuall be included into the set of final positions
and values on the whole rule (and this set may paséions from different iterations).

Similar to the previous rulslide , in the extreme case the final set of positionghan
whole rule may happen to contain only the posifrom which the rule started, with stateu
and value it had at the beginning. By supplyingi@gaital numeric modifier to this rule, it is pos-
sible to explicitly limit the number of allowed regitions of the embraced scenario (of course, the
operand scenario may be organized to properly abtite needed number of iterations itself, but
with additional modifier this may be more conventie come cases).
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Both synchronous and asynchronous modes of pamal&pretation of this rule, similar
to the previous ruleadvance andslide are possible. In the synchronous mode, at any mo-
ment of time only the same scenario iteration cawebbp in a potentially distributed space-time
continuum, whereas in the asynchronous case thagéappen to be different iterations working
in parallel.

6.3.7. Branching

These rules allow the embraced set of scenaricaadsrto develop “in breadth”, each from the
same starting position, with the resultant setasfifons and order of their appearance depending
on the logic of a concrete branching rule. Branghimay be static and explicit if we have a clear
set of individual operand scenarios separated bynta. It can also be implicit and dynamic, as
explained later. For all branching rules that fad]dhe frontal variables associated with the start-
ing position will be replicated together with cami® with the copies obtained developing inde-
pendently within different branches. The originatiable will be removed from the starting posi-
tion then. Details of this replication if variabields physical matter rather than information can
depend on the application and implementation detail

branch — most general variant with logical independentesaenario operands from
each other, and any possible order of their invonand development from the starting position
(from strictly sequential to fully parallel, andof chaotic to absolutely ordered). The resultant
set of positions and associated values will uniteeaminal positions & values on all scenario
operands involved, and the resultant control siatthe whole rule is the generalization of gener-
alized states on all scenario branches.

sequential - organizing strictly sequential invocation of sdenario operands, regard-
less of their resultant generalized control stases] launching the next scenario only after full
completion of the previous one. The resultant §@bsitions, values, and rule’s control state will
be same as fdiranch .

parallel — organizing fully parallel development of all seeio operands from the
same starting position (at least as much as tmseaachieved within existing environment, re-
sources, and implementation). The resultant spbsitions, values, and rule’s control state will
be same as for the previous two rules.

if — usually has three scenario operands. If thedims results with generalized termina-
tion statethru or done, the second scenario is activated, otherwise hivel bne will be
launched.

The resultant set of positions & associated valude exactly the same as achieved by
the second or third scenarios after their comptetiiothe third scenario is absent and the firg on
results withfail , the resultant position will be the one the rulted from, with statéhru
and value it had at the start. If only a singlerapd (i.e. the first one) is under the rule, itlwil
also result with its starting position, initial wal in it, and statéhru , regardless of the general-
ized termination state of this single operandpisitions reached and values in them (all these
will be ignored for the further scenario developmé&many).

or — allows only one operand scenario in their sega€not specifying which, may be
any) with the resulting stateru or done to be registered as successful and resultant,tivith
resulting positions & associated values on it taHgeresulting ones on the whole rule. The activi-
ties of all other scenario operands and all reguttsuced by them will be cancelled. If no branch
results withthru ordone, the rule will terminate witffiail  andnil value. Used in combina-

tion with the previous rulesequential ~ andparallel , it may have the following more clar-
iflied and detailed options.
orsequential — launches the scenario operands in a strictlyesggal manner, one af-

ter the other as they are written, waiting for tHall completion before launching the next one,
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unless the first one replying with generalizedestatu or done, providing the result on the
rule as a whole. Invocation of the remaining scesan the sequence will be aborthed, and all
results of the previous scenarios will be removed.

orparallel — activates all scenario operands in parallel ftbensame current position,
with the first one in time replying with generalizéhiru  or done being registered as the result-
ant branch for the rule. All other branches willfbecefully terminated without waiting for their
completion (or just ignored, depending on impleragah, which in general may not be the same
as the termination for global results)

The resultant scenario in all three cases abovwedes its final set of positions with val-
ues and states in them as the result on the whidelf no scenario operand returns stdkes
or done, the whole rule will result with stafail in its starting position andil as resultant
value.

and — activates each scenario operand from the sasigqmy demanding all of them to
return generalized statédsru or done. If at least a single operand returns generalfaéd ,
the whole rule results with statail andnil value in the starting position while forcefully
terminating the development of all other branché@sch may still be in progress. If all operand
scenarios succeed, the resulting set of positioitesiall resultant positions on all operands with
their associated values. Combining the rule witegsequential  andparallel (as we did
for or ) clarifies their activation and termination ordag follows. (These two options can, in
principle, produce differing general results iffdient scenario operands work in intersecting
domains and share intermediate results.)

andsequential — activates each scenario operand from the sasiggooin the writ-
ten order, terminating the rule when first one hasy with fail, while ignoring other operands
and removing all results produced by this and @l/jpus operands.

andparallel — activates each scenario operand from the sasigqug terminating the
rule when the first one in time results withl , while aborting all other operands activity and
removing all results produced by the current one.

choose - chooses a scenario branch in their sequenceebigfcexecution, using certain
parameters among which, for example, may be itsemigal order in the sequence (or a list of
such orders to select more than one branch). Tlescan also be aggregated with other rules like
first | last , random, or any clarifying the branch to be chosen (used here adifrars
among parameters rather than rules). The resud&rdf positions, their values and states will be
taken from the branch(es) chosen.

firstrespond — selects the first branch in time replying itsngdete termination, re-
gardless of its generalized termination state, Wwini@ay happen to bail  too, even though the
other branches (to be forcefully terminated aftedsacould respond later withru or done.
The set of positions on this selected branch aatt #ssociated values (if any) will be taken as
those for the whole rule. This rule assumes thii¢rént branches are launched independently
and in parallel. But it differs fundamentally frotime ruleorparallel as the latter selects the
first in time branch replying with success (itketu or done) for which, in the worst case, all
branches may need to be executed in full to fimdkdranch needed. A modification of this rule
my have an additional parameter establishing, kamgle time limit within which replies are
expected or allowed from branches (where there lmeayore than one branch as the result), oth-
erwise failure if no branch responded in time.

cycle - repeatedly invokes the embraced scenario frarséime starting position until
its resultant generalized state remaimsi or done, where on different invocations same or
different sets of resultant positions with differealues may emerge. The resultant set of posi-
tions on the rule will be an integration of all gmss on all successful scenario invocations with
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their values. If no invocation of the embraced scensucceeds, the resultant staié in the
starting position andil  value will emerge.

loop - differs from the previous rule in that the réant set of positions on it being only
the set produced by the last successful invocatidhe embraced scenario (it will terminate, as
before, withfail andnil in the starting position if no invocation succeeds

sling - invokes repeatedly the embraced scenario wiibvides statéhru or done,
resulting in the same starting position with state  and its associated value when the last iter-
ation results witHalil

whirl  — endlessly repeating the embraced scenario fhenstiarting position regardless
of its success or failure with no resultant possgi@r values produced. External forceful termina-
tion of this construct may be needed, like usimgt fin time termination of a competitive branch
(say, under higher-level rutaparallel ).

It could also be possible to set a limit on the bamof repetitions (or duration time) in
these cycling-looping-slinging-whirling rules — Bypplying them with an additional parameter
restricting the repeated scenario invocations.

split  — performs, if needed, additional static or dyrapuartitioning of the embraced
scenario to different branches, especially in cax@aind not clear at first sight cases, all starting
from the same current position. It may be usedetmmn combination with the above mentioned
branching rules, preparing separate branches édatter. Some examples follow.

o If split embraces explicit branches separated by commaiges$ nothing as the
branches are already declared.

« |t the embraced single operand represents bretidganove or hop (creative or destruc-
tive including) in multiple directions, the branshare formed from all possible variants of ele-
mentary moves or hops, before their execution.

« If the rule’s operand is an arbitrary scenariot (belonging to the two cases above), the
branches are formed after their completion, whahgosition reached (with associated values)
starts a new branch.

« If an arbitrary scenario terminates with a singtenultiple positions which have multi-
ple values associated with them (i.e. lists), eamfstituent value in these lists starts an indiaidu
branch, becoming its sole value.

fringe  — being the most general variant of splitting doly scenario after its execution,
is considering all final positions reached by thersrio as individual branches. It may also have
additional parameters helping us to select or teafexreceived branches as candidates for a fur-
ther scenario evolution (possibly, with involvemehboth forward and echo operations over the
control hierarchy produced by the scenario, forimgkroper decisions).

6.3.8. Transference

This class of rules organizes different controtlata transference activity.

run — transfers control to the SGL code (treated poeedure) resulting from invocation
of the embraced scenario (which can be of arbitcamplexity and space coverage). The proce-
dure (or procedures, if a list of them) obtaineduch a way and activated will produce the re-
sultant set of positions with associated values @mdrol states as the result on the rule, similar
to other rules.

call - transfers control to a code produced by the aodat scenario which may repre-
sent activation of external systems (including éhesrking in other formalisms), with resultant
position being the same where the rule startedjeval it corresponding to what has been re-
turned from the external call, and stdtru if the call was successful, otherwisd

input — provides input of external information or phydimatter (objects) on the initia-
tive of SGL scenario, resulting in the same positiat with value received from the outside. The
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rule may have an additional argument clarifyingadtipular external source from which the input
should take place. The rule extends possibilittesigded by reading from environmental variable
IN explained before.

output — outputs the resultant value obtained by the aodat scenario, which can be
multiple, with the same resultant position as befout associated value just sent outside (for vir-
tual data only). The rule may have an additionahigo to a particular external sink. The rule ex-
tends possibilities provided by assignment to thevipusly explained environmental variable
OuUT

transmit  — represents a variant ofitput for specific applications, say, involving
long distance radio communications and broadcastiamres, with potentially multiple address-
es. It may have additional parameters clarifyirgydbtion needed.

send — staying in the current position associated vplttysical, virtual, executive (or
combined) node, transfers information or matteaintetd by the scenario on the first operand to
other similar node given by name, address or caatds provided by the second operand, assum-
ing that a companion ruleceive is engaged there. The rule may have an additimsrameter
setting acceptable time delay for a consumptiothisfdata at the receiving end. If the transaction
is successful, the resultant position will be thene where the rule started with stdtes and
value sent (virtual only) otherwisel and statdail

receive — a companion to rulsend, naming the source of data to be received from
(defined similarly to the destination nodesiend ). Additional timing (as a second operand) may
be set up too, after expiration of which the ruié lne considered as failed. In case of successful
receipt of data, the rule will result in the sanusipon with the value obtained frosend and
statethru , otherwise witmil and statéail

6.3.9. Timing

sleep - establishes time delay defined by the embracedasio operand, with no activities in
the meantime by this particular scenario brancte Stlarting position and its existing value will
be the result on the rule after the time passeth statethru . Such time delay of the related
branch can also be achieved by assigning the duaibmolute time (received from environmental
variableTIME), incremented by the delay value returned fromsttenario embraced lsjeep
to environmental variab//HENiescribed before.

allowed - sets time limit by the first operand for actvdf the scenario on second op-
erand. If the scenario terminates before time lewpires, its resultant positions with values and
states will define the result on this rule. Othessvihe scenario will be forcefully aborted with
statefail  in the starting position as the rule’s result.

6.3.10. Granting

contain - restricts the spread of destructive consequesagsed by control statatal  with-
in the ruled scenario. This state may appear autoatlst or can be assigned explicitly to envi-
ronmental variabl&TATE triggering emergent completion of all scenariogasses and removal
of data associated with the scenario. The resuftasition will the one the rule started, its value
nil , and statdail . Without occurrence ofatal , the resultant positions, their values and
states on the rule will be exactly the same ak@ktenario embraced.

release — allows the embraced scenario develop free fteemain scenario, abandon-
ing bilateral control links with it, starting frotie current position (the main scenario after the
rule’s activation “will not see” this construct ampore). The released, now independent, scenario
will develop using standard subordination and comunand control mechanisms, as usual. For
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the main scenario, this rule will result in itsritag position with statéhru and original value
there.

free — differs from the previous case in that despgeandependence and control free-
dom from the main scenario, as before, it is néebess obliged to return data obtained in its
terminal positions if such a request has been @sbyeules at higher levels.

blind - blocks the embraced scenario from engagemeuttimer development after its
completion, but retains the possibility to replyhigher levels with values associated with final
positions reached. This being equivalent to settmgrol state&lone in each terminal position.

lift — removes the blocking of further development edusy stateslone in terminal
positions of the embraced scenarios (includingdfiect caused by rulblind ), substituting
them withthru , thus allowing further development from these poiss by a subsequent scenar-
i0.

none — setxil (or empty) as a returned value of the whole seermanbraced, with the
rule resulting in the same starting position wileshru

stay — whatever the scenario embraced and its evolitigpace, the resultant position
will always be the same this rule started fromhwite latest value in it and stdteu . As can
be seen, this rule differs from the previous onlg by its resultant value.

seize — establishes, seizes, an absolute control owerabources associated with the
current virtual, physical, executive or combinedi@oblocking these from any other accesses and
allowing only the embraced scenario to work witarnth thus preventing possible competition for
the node’s assets which may lead to unexpectedtsesihis resource blockage is automatically
lifted after the embraced scenario terminates. rélaltant set of positions on the rule with their
values and states will be the ones from the sceraambraced (the latter may potentially be of
any complexity and space-time coverage). If theenloals already been blocked by another sce-
nario exercising its own rulseize , the current scenario will be waiting for the esde of the
node. If more than two scenarios are competinghfernode’s resources, they will be organized
in a FIFO manner at the node.

6.3.11. Type

These rules explicitly assign types to differenhstoucts generally represented as strings (given
explicitly or being the result of an arbitrary oged scenario with single or multiple elements).
These rules result in the same positions the naleesl,nil value and statthru (fail  ap-
pears only if a string element does not satisfyateiconstrains mentioned below).

global , heritable , frontal , nodal , environmental — allow different types
of variables to have any identifiers (letter andimits only) rather than those restricted for self
identification, as explained before. These new rsamill continue represent the variables with
their types in the subsequent scenario developreeits full depth unless redefined by these
rules. As regards environmental variables, thememdiffering from the standard ones and new
kinds of such variables may need special adjustwéhtthe implementation layer which is di-
rectly accessing corresponding physical or virteaburces.

matter , number, string , scenario — allow arbitrary strings (with letters, digits
and some other characters but not violating the S@itax) obtained by the scenario embraced
to represent corresponding values rather than usaffgdentifiable representations mentioned
before (with automatic internal types conversiémeeded).

6.3.12. Usage

address , coordinate , content , index , time , speed, name, place , center |,
range , doer , human, robot , node[s], link [s] — explicitly clarify the purpose or usage of
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different values in other rules, adding flexibility composition of SGL scenarios for which strict
order of operands and presence all of them maybenal. The rules result in the same positions
they've started with the values clarified by them.

unit — identifies the set of values produced by therewdx scenario as an integral unit
(liker list) for further processing. This may albe useful for hierarchical structuring of data,
where elements within declared units may be othés uhemselves, and so on. The rule results
in the same position it started with the value behe unit formed.

6.3.13. Application

Additional application, or custom, rules can all®&L to be extended unlimitedly while effec-
tively embracing and embedding specifics of differapplication areas. They can be used simi-
larly to other language rules while obeying estdi®d internal interpretation principles and uni-
fied command and control. These rules will, howevered extension of and adjustment to the
standard language interpretation system.

6.3.14. Aggregated, Grasp

This brings another level of recursion into thegiaage structure where rules can themselves be
defined by arbitrary scenarios, or grasps (andombt by the explicit names described above),
possibly, aggregated with each other and their fiewdj to operate jointly on the scenarios em-
braced. Such aggregation can increase and shdrpgrotver and flexibility of the language and
reduce redundancy in complex operations over Higied environments.

7. Full SGL Summary

The following is full SGL formal description sumnmang the listed above language constructs,
where, as already mentioned, syntactic categoreesl@own in italics, vertical bar separates al-
ternatives, parts in braces indicate zero or mepetitions with a delimiter at the right if more
than one, and constructs in brackets are optidria. remaining characters and words are the
language symbols (including boldfaced braces).
grasp - constant variable|rule [({ grasp }) ]
constant > information | matter | custom | special | grasp
variable > global|heritable|frontal | nodal | environmental
rule - movement | creation | echoing | verification |[sigament | advancement | branching |
transferencétiming | granting | type | usadeapplication| grasp
information - string | scenario] number
string - ‘' {characte}’
scenario > {{characte}}
number -> [sigri{ digit}[ . {digit}] e[sign{ digit}]]
matter -> “{characte}”
special - thru |done |fail |fatal |infinite [nil |any |all |other |passed |
existing  |neighbors |direct |noback |[firstcome |forward |
backward |global |local |sync [hronous ] |async [hronous ]|

virtual |physical |executive |engaged |vacant |existing |
passed

global -> alphameri¢

heritable > H{alphameri¢

frontal - F{alphameri¢

nodal - N{alphameri¢

environmenta® TYPE|CONTENTADDRESSQUALITIES | WHEREBACK| PREVIOUS|
PREDECESSORPOER RESOURCERLINK | DIRECTION | WHENTIME |
SPEED| STATE|VALUE|COLORIN |OUT|STATUS
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movement -> hop |move |shift |follow

creation - create |[linkup |delete |unlink

echoing - state |order |rake |sum|count |[first |last |min |[max|random |
average |element |sortup |[sortdown |reverse |add |subtract |
multiply  |divide |degree |separate |unite |attach |append |
common|withdraw |access

verification - equal |notequal |less |less [or]equal |more |more[or Jequal |
bigger |smaller |heavier |lighter |longer |[shorter |empty |
nonempty |belongs |notbelongs |intersects | notintersects

assignment - assign |assignpeers

advancemen® advance |slide |repeat

branching - branch |sequential |parallel |if Jor |orsequential | orparallel |
and |andsequential | andparallel | choose |firstrespond |cycle |
loop |[sling [whirl |split |fringe

transference-> run |call |input |output |transmit |send |receive

timing - sleep |allowed

granting - contain |release |free |blind [lift |none |stay |seize

type - global | heritable |frontal  |nodal |environmental | matter |
number |string |scenario

usage - address |coordinate |content |index |time |speed |name|place |
center |range |doer |human |soldier Jrobot |node[s]|link [s]]
unit

8. Elementary Examplesin SGL

Let us consider some elementary scenarios in S@h the mentioned three worlds (PW, VW,
and EW).

(a) Assignment of the sum of three const&mns33, and55.6 to a variabldResult
assign(Result, add(27, 33, 55.6))

(b) Independent moves in physical space to coatdgkl, y3) and &5, y8):
branch(move(place(x1, y3)),

move(place(x5, y8)))

(c) Creation of a virtual nodeeter
create(direct, node(‘Peter’))

(d) Extending the previous virtual network (so ¢antaining nodé€eter only) with a new
link-node pairfather of Alex (Fig. 5):
advance(

hop(direct, node(‘Peter’)),

create(link(+‘fatherof’), node(‘Alex’)))

(e) Giving direct order to rob&hooter to fire at certain coordinates,(y) (Fig. 6):
advance(hop(direct, robot(‘Shooter")), fire(place(x )

(f) Orderingsoldier  John to engage&obot Shooter to fire at coordinatex(y), with
John confirming completion of the robot’s action:
advance(hop(direct, soldier(‘John’)),

if(advance(hop(direct, robot(‘Shooter’)), f ire(place(x, y))),

output(OK))).

9. Simplifications and Use of Conventional Notations

To simplify SGL programs, traditional to existingpgramming languages abbreviations of oper-
ations, also conventional delimiters can be usedTbese can include semicolons for separation
of actions following one another in space (i.e.hwiit the ruleadvance , but not related to its
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modificationslide ), just using commas for separating of indepentbeabhches (omitting the
most general ruldranch for such cases), omitting single quotes for siimged as names
which do not intersect with the language variablles,use of traditional characters for arithmetic
operations and infix notations, skipping identifioa rules in cases where contents are clear
without them, or reduction of the number of pares#s with the help of other characters, like
semicolon.

These and similar simplifications should, howevsr,used with a good deal of caution,
especially for complexly structured and nested akes, otherwise may distort the scenario
structures, also leading to their wrong interpretatWith the presence of such deviations, the
scenario text can be readily updated to SGL stalsday a preprocessing converter, with subse-
guent distributed execution by the networked inegy oriented and optimized on the universal
syntax of Fig. 1.

Such code simplifications will be used throughotiteo chapters when describing SGL
for solving concrete tasks. For the examples ofptfevious section these simplifications may
look like follows.

(a) Assignment of the sum of constants to a vagiabl
Result =27 + 33 + 55.6

(b) Independent moves in physical space to gooemdinates:
move(x1, y3), move(x5, y8) or
move((x1, y3), (x5, y8)) or
move(x1_y3, x5_y8)
(c) Creation of a virtual node:
create(Peter)

(d) Extending the virtual network with a new linkde pair:
hop(Peter); create(+fatherof, Alex)
(e) Giving direct command to a robot to fire:
hop(Shooter); fire(x, y) or
hop(Shooter); fire(x_y)
() Ordering soldier to engage robot to fire byegivcoordinates, confirming the action’s com-
letion:
ﬁop(\]ohn); if((hop(Shooter); fire(x, y)), output(OK )
or even more compact
hop:John; if((hop:Shooter;fire:x_y),output:OK)

10. SGL Networked Interpretation

The developed technology if used in distributedimments operates as follows. A network of
SGL interpreters embedded into key system poiniméns, robots, sensors, mobile phones, etc.)
collectively interprets high-level mission scenarigritten in SGL. Capable of representing any
parallel and distributed algorithms, these scesaran start from any node, covering at runtime
the whole world or its parts needed with operatiamd control.

The spreading scenarios can create knowledge infcagres arbitrarily distributed be-
tween system components. Navigated by same or etierarios, these can effectively support
distributed databases, command and control (C2)gt8dn awareness and autonomous decisions,
also simulate any other existing or hypothetic caotaponal and/or control models. Many SGL
scenarios can operate within the same environmepgijally cooperating or competing in the
networked space as overlapping fields of solutions.

The dynamic network of SGL interpreters coveringy astributed spaces, the whole
world including, can be considered as a new typeaoéllel supercomputer, which can have any
(including runtime changing) networking topologydanperate without any central facilities or
control. A backbone of the networked interpreteitssspatial track system providing global
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awareness and automatic C2 over multiple distribyecesses, also creating, supporting, and
managing (including removing when becoming uselesgrent distributed information and
control resources.

11. Some SGT Application Areas

The following are only some researched, discusaed,reported applications of SGT and SGL
summarizing their advantages, with other applicatioeas and possible solutions in them de-
scribed in detail in the existing publications.

Intelligence, Surveillance and Reconnaissance ([$&)17].SGT can integrate distribut-
ed ISR facilities into flexible goal-driven systemserating under unified command and control,
which can be automatidhese integrated systems can analyze and propepigct critical infra-
structures, both native and adversary’s, as wethreate new infrastructures for a variety of pur-
poses.

Military robotics [18-21]. SGT paves the way for unified transition to autcedatip to
fully unmanned systems with massive use of advarmestics. One of practical benefits may be
effective management of advanced robotic collestivegardless of their size and spatial distri-
bution, by only a single human operator, due td h&yel of their internal self-organization and
integral external responsiveness.

Human terrain[22, 23]. SGT allows this new topic, originallyined in military, to be
considered and used in a much broader sense alaltsaa initially planned, allowing us to
solve complex national and international confliatgl problems by intelligent and peaceful, pre-
dominantly nonmilitary means, while fully obeyingigting ethical standards.

Air and missile defend@4, 25]. Providing flexible and self-recoveringstiibuted C2 in-
frastructures it can, for example, effectively ulistributed networks of cheap ground or low-
altitude sensors to discover, trace and destroyipheilcruise missiles with complex routes, ver-
sus existing expensive high-altitude planes, droaed aerostats (with an example already shown
above). Other examples, also related to ballisigsitkes, show the applicability of SGT for the
defence against.

Command and ContrdR6]. Description in SGL of semantic-level milijamissions is
much clearer and more compact (up to 10 times) ifharitten in traditional Battle Management
Languages (BML). This simplicity may allow us reidef the whole scenario or its parts at
runtime when goals and environment change rapadigecially in asymmetric situations and op-
erations, also naturally engage robotic units.

Distributed interactive simulatiof27, 28]. The technology can be used for both live con-
trol of large dynamic systems and distributed extéwve simulation of them (the latter serving as
a look-ahead to the former), also any combinatioerdof, with watershed between the two
changing at runtime.

11. Conclusions

We have described ideology, syntax, basics of sgéosarand main constructs of a completely
different language, oriented on programming andgssing of distributed spaces directly. With
the use of it, the whole distributed world, equiggpath communicating SGL interpreters, can be
considered as an integral and universal spatialhmaccapable of solving arbitrary complex
problems in this world (machine rather than compate it can directly operate with physical
matter and objects too).

Multiple communicating “processors” or “doers” ¢iig machine, being stationary or mo-
bile, can include humans, computers, robots, srsamnsors, any mechanical and electronic
equipment capable of cooperatively solving probléamsulated in SGL. Being understandable
and suitable for both manned and unmanned compsniet language offers a real way to uni-
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fied transition to massively robotized systemsl|udmg fully unmanned ones, as within the SGL
operational scenarios any component can easilygehas manned to unmanned status and vice
versa, and at any moment of time.
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