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YncieHHBI pacyeT TPaeKTOPHMH PACNPOCTPAHEHHS] TPEIIMHBI ¢ MOMOIIBIO
YCOBEpIICHCTBOBAHHOIO MeETOAa MOJeIHPOBAaHHUs IIpolecca TPelnHo00pa3o-
BaHMs

3. II. :xonr, C. Ban', 3. B. ksiur
dakynpTeT TPaHCHOPTHBIX KOMMYyHHKanui, OxHO-BocTOuHBIN yHUBepcutet, Hanmxunr, Kuraii

Onpedenenue mpaeKmopuu mpeuwjunsl A6IAEMC 6AHCHLIM NPU NPOSHOZUPOBAHUU HENPEeOBUIEHHO20
paspyuienus un npu oyenke YCmanoCmHol 001206e4HOCIU KOHCMPYKYUOHHO20 Mamepuand. [Ipeo-
JIOJICEH HOBbIU Memo0d MOOEAUPOBAHUsS. MPAEKMOPUL JIOKAIbHOU MPEWUHbL NPU HASPYICEHUU CMe-
WAHHO2O0 MUNA ¢ NOMOWbIO MOOEU, OCHOBAHHOU HA MemoOe KOHEYHbIX 2NeMEeHmos. DieMenn,
Mooenupylowuil mpewuny, pasousaiom Ha 08a 6001b PACNPOCMPAHEHUSs MPEUUHbl ¢ UCNONb306d-
HueM Kpumepus MaKcuManbHolx Kacamenvrolx nanpsiicenui (K, =0). 3amem uzmenaemcs unghop-
Mayus 0 HOMEpax S1eMeHmd U y3id, NOCKOAbKY Menoo MpaHCOHUKYUL UCKTIOUAem UCNOIb308AHUEe
CUHRYNAPHBIX 2aeMenmos. [Ipeumywecmea He3HAUUMENbHO20 NepecmpoeHuUs KOHEeYHOINeMEHMHOU
CemKu MobKo 8 JIOKAIbHOU 30He NO360UNU UCCTIE008AMb C NOMOUbIO NPEOTIONCEHHO20 MemOoOd Mpu
Kiaccuyeckue npobnemvl pocma CMAyUOHAPHOU MPewunsbl, m.e. pAcnpOCMpaHeHue Kpaesoi mpe-
WUHBL 8 OBYXKOHCONLHOU OaiKe, MOOEIUPOSAHUe MPewuHooopazoeanus 6 ac@aibmodemonHbix
bankax u mpewuna 6 CmaHOapmHOM NPOOOILHOM COeOUHeHUU 6 2azonposode. Pacuemmuiii kos¢-
uyuenm UHMEHCUBHOCIIU HANPANCEHUT U MPAEKMOPUS MPEWUHbL, CNPOSHO3UPOBAHHAS C NOMOUWBIO
ONUCAHHO20 MemOoOd, XOPOWO COOMBEMCMBYIOM MeOPEMU4ecKUM OAHHbIM, NPeOCMAGIeHHbIM 8
AUMepamypHbIX UcmouHuKax. Paccmompena onmumanvhas KOHCMPYKYUS CIMPYKMYpbl, KOMOPOU
HeC80UCMBEHHO ObICmpoe paspyuleHue.

Knruegwie cnoga: KOHEUHONIEMEHTHBIH aHANN3, TPAGKTOPHs TPEIUHBI, dJIEMEHT, MOJe-
JTUPYIOMUI TpenuHy, Ko3()(OUIMEHT HHTEHCUBHOCTH HANPSDKEHUH, pa3pylIeHUEe CMEIIaH-
HOrO THUIA.

Introduction. In engineering complex structures, the determination of the crack path
is important to analyze the failure mode, and assess structure strength and residual life
[1-3]. Different theoretical, numerical, and experimental methodologies have been developed
to investigate the crack propagation problem [4, 5] , among which, numerical simulation is
widely used due to its simplicity and economy, including the meshless methods and finite
element method (FEM) with remeshing [6—19]. Massless methods do not require crack
propagation paths to coincide with the meshes. Recently, Belytschko et al. [6, 7] predicted
the simple crack propagation with a high accuracy using the moving least-squares
interpolation with the Galerkin method. The numerical manifold method (NMM) was first
reported by Shi and Goodman to deal with rock joints and block [8, 9]. The displacement
discontinuity across a crack surface is approximated by independent cover functions on
different physical covers. Meanwhile the additional functions extracted from the asymptotic
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near tip field are incorporated into cover functions of singular physical covers to simulate
the stress singularity around the crack tips. Stay et al. [10] and Chou et al. [11] applied the
N.M. for crack propagation problems successfully. The extended finite element method
(XFEM) [12, 13] is another technique to solve the crack propagation problem without the
computational mesh, in which the discontinuous Heaviside function and the near-tip
asymptotic functions through a partition of unity method are added to the FEM to account
for crack. Besides, the generalized finite element method (GFEM) takes advantage of
high-order terms or handbook functions of boundary value problems to tackle the crack
problem [14, 15].

However, improvements of meshless methods should be done to dispose multiple
cracks and large deformation crack propagation problems. In an actual situation, a real
mesh discontinuity represents the crack [16], which can be effectively solved by finite
element method with remeshing despite the complicated mesh generation. Many
researchers have applied the finite-element method with remeshing algorithms to model
crack propagation problems [17—19]. Shephard et al. [18] adopted remeshing the entire
model in every step to realize crack propagation. However, a large number of state
variables such as displacement, stress and strain need to be transferred from the old to the
new mesh model in every step. Souiyah et al. [19] employed a local remeshing technique
whereby only the region around the crack tip is modified, but the well-shaped elements
can’t be generated usually due to the existing mesh surrounding the region.

An advanced remeshing technique combined with a nodal relaxation is proposed to
predict the crack growth. In order to avoid complete remeshing on the global region, we
firstly calculate the direction vector of crack propagation at the crack tip based on the
maximum circumference (K ; = 0) criterion and the direction vector of the edge by taking
the crack tip point as an initial point in the triangular element. Then, after determining the
waiting crack element by vector cross product, the intersection point coordinates between
crack direction and cracking boundary are also confirmed, and the unit is split. Finally, a
new unit is added, and the node number and element number are modified. As the mesh
division is only on the local region, the modifying grid data and the interpolation of
displacement field are small. This method has such advantages as less modified area,
easiness of programming, high reliability etc. In the end, the numerical model is verified by
comparing the numerical results with the benchmark solutions and the laboratory test
results.

1. Grid Generation Strategy. In simulation of crack growth in finite element
modeling, the technique of mesh generation is very significant in dynamic crack propagation.
Various publications focus on the automatic crack propagation using finite elements
remeshing [5, 17-19]. Different from the traditional remeshing in finite modeling, the
element cracking technique is developed in this work.

1. When the equivalent stress intensity factor (SIF) of crack satisfies fracture critical
value, the crack is going to propagate along propagation direction within the element. The
element where the crack propagation direction is located should be confirmed first. Then,
search all elements around the crack tip node 4, such as the cell /, 2, 3, 4, 5, 6, and 7
(Fig. 1a).

The vector of propagation direction and vector setting point 4 as the initial point are
given as (Fig. 1b):

r=(cos)i+(sin0)j, AB = (xp—x)i+(yp—y4)J
AC = (x¢ —x4 )it (yc = y4)is s
where 6 is the propagation direction angle, x, , yy (N= 4, B,...) are longitudinal

coordinate and transverse coordinate values, respectively, while iand j denote the unit
vector in the x and y directions, respectively.
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Fig. 1. Elements’ remeshing: (a) the cracking direction; (b) the vector in rectangular coordinate.
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Fig. 2. Vector cross product: (a) in element 4; (b) in element 3.

Fig. 3. Increment of a cracking node.

By appling vector cross direction of r and two edge vectors, when the vector cross
direction is different, the element waiting crack is determined. For example, setting
F,=rXAD and F, =rXAC in element 4 (Fig. 2a), F; =rXAC and F,=rXAB in
element 3 (Fig. 2b), if F} - F, <0 in element 4, and F; - F; >0 in element 3, element 4 is
the cracking element.

2. Considering the increment of crack propagation being the size of the element, the
coordinates of a new crack vertex F can be found by intersection operations as follows
(Fig. 3):
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Xp—Xx Xc—Xx Yc—y
cos = F X4 cTXr _YeT VF

\/(XF_XA)2+(yF_yA)2 Yc=™p Y= Vp

)

Via Eq. (1), the coordinate values x; and yr can be obtained.

3. After the intersection point F' determined, then element 4 is split, and node 4 is
separated into two nodes. Update and output the data of the modified finite element grid,
and enter into the next calculation step.

To avoid the calculated crack propagation path to deviate from the true experiment
path, the crack propagation length should be limited to one or two elements every time, and
the load step magnitude should be chosen accordingly. More details of operation are
discussed in [20]. During the process of crack growth, the singular element such as the
shortest and the longest edges /#/H less than a given value ¢ may be raised, thus affecting
computational accuracy. A node combination method is handled to deal with the above
problem (Fig. 4).

VS

=

AV4 N/
< W/ /. R /
AN /\ N 7 Y N

Fig. 4. Node elimination, node S is eliminated, and ill-elements are removed.

2. Crack Propagation Theory. Within a framework of the linear elastic fracture
mechanics, the fracture criterion for crack growth prediction is very important. The fracture
criterion based on the stress intensity factor (SIF) is selected as

Ko > K, )
where

_ 0\’ 3 0.
K=K cos _EKHCOSESHI@-

Here K,y is the effective stress intensity factor, in which K; and Ky are the SIFs
related to mode I and mode II loading configurations, respectively, and 6 is the crack
initiation angle. The value of K. is mode I critical fracture toughness determined by
experimental test.

Prediction of deflection angles 6 for cracks under mixed-mode loading presents a
further challenge. There are various criteria such as the maximal strain energy release rate
[21], the criterion of maximal normal stress [22], the strain energy density fracture criterion
[23]. Based on the maximum circumferential stress theory, the angle of crack propagation 6

was computed by
1
0= 2arctan (K /Ky + (K, /Ky )? +8). 3)

In Egs. (2) and (3), the mode I and mode II stress intensity factors K; and Ky
should be computed by interaction integral derived from the J-integral by Rice [24]. For
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Fig. 5. Conventions at crack tip. Domain 4 is enclosed by I, C*, C~, and Cy. Unit normal

m; =-n; on TI.

simplicity, the coordinates are located at the crack tip with the x;-axis parallel to the crack
faces, as shown in Fig. 5.
The standard J-integral is

= 11mf(W61] o ugy ndl, )

where W is the strain energy density, W =0 ¢, / 2, the symbol 0 ; ( is Kronecker delta,
and n; is the unit outward normal vector to the contour I'. Let (0; D (l), u}l)) be the

i o€y
(2) (2)

present state and (GU ) €5

, ul@)) be an auxiliary state. The J-integral for the sum of the

two states is

(OB
Lo, @ m, @ 15 Ou; " +u;™")
JU*D = 1im [|= (0" +0? )& +e; g% [op ———|n,dl.
M{ S0+ ey W1 = ( [ ®)
By expanding and re-organizing terms,
g2 — ;@ 4 53 +[(1:2), (6)

where 70%? s called the interaction integral for states 1 and 2,

(2) 1)
o(u; o(u.:
109 = f W(l,z)élj_ol(jl) (u; )—0(2) (u; ) ndT,

i J
T axl 8x1

where W% s the interaction strain energy, w2 = ol(.;)gf.jz) = of.jz)gg).

For isotropic materials, the relationship between the J-integral and the SIF is
2 2
_ (K +Ky)

b 7
= ™

where E is the Young modulus, v is Poisson’s ratio,
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" E for plane stress,
E = 2 .
E/ (I=v~) for plane strain.

Similarly, the interaction integral can be written as

1) - (2) 1) - (2)
702 2AKy Ky E-:KII Ky )' ®

By assigning KI(Z) =1, KI(IZ) =0 and KI(Z) =0, KI(IZ) = 1, mode I and mode II SIFs
can be decoupled. The interaction integral [/ (12) is not suitable for FEM and should be

translated into the equivalent domain integral form. More detail can be seen in [13].

3. Numerical Analysis and Validation. In order to evaluate the accuracy of the
present approach, three examples are applied. First, the result of a steel double cantilever
beam (DCB) specimen simulated by FEM is compared with that produced by an analytical
method. Then, attention is focused on the propagation of mode I crack in an asphalt
concrete beam and crack growth from a fillet.

3.1. Edge Crack Propagation in Double Cantilever Beam. The beam has an initial
crack length a, =100 mm, the length 2L = 200 mm, height 2/ = 20 mm. The mechanical
properties of materials are chosen as steel for replication with E = 2:10° MPa, v =03,
and K, =483 MPav/m. Before the DCB achieves the critical fracture toughness, the
computed values of the stress intensity factor are compared with the analytical solutions
provided by [25], as shown in Fig. 6. The present values of stress intensity factors are very
close to the theoretical solutions and manifest a good agreement with the virtual crack
closure technique (VCCT) [26] with the maximum percent differences of 1.8%, which
demonstrates the validity of the SIF computed via the interaction integral.

45T
40
35T
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251
20 —— Present study

15t —=— Theory zolution
—— VCCT
10T

st
0

&, MPam"?

L i L L 1 L |

0 200 400 600 800 1000 1200 1400
Load P, N

Fig. 6 Stress intensity factor values for DCB.

The load/deflection curve (P vs A) is plotted in Fig. 7. It shows that the load P
increases nearly linearly with the increasing deflection A at first. The strain energy
accumulates at the crack tip, and the SIF increases at this time. When the SIF exceeds the
critical value, the crack starts to grow and the strain energy releases, then the load
decreases. Therefore, the load in point A4 is called critical load.

Figure 8 shows the crack propagation path with the initial crack offset 0 = 10 mm (0
is the distance between the neutral axis and the crack), which is similar to the calculated
results in [27].
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Fig. 7. Load/deflection curve for crack growth in DCB.

<>

Fig. 8. The crack propagation path for DCB after limited steps of loading.

3.2. Three-Point Bend Specimen. Mode-1 fracture characterization of concrete and
rock materials adapting the notched three-point bend beam specimens has been researched
widely. The test configuration of an asphalt concrete specimen under three-point bending is
shown in Fig. 9. The span length of beam between the supports is S = 200 mm, the beam
height is A = 50 mm and the initial crack length a, = 25 mm as illustrated in Fig. 10. The
asphalt concrete properties E= 989 MPa and v = 0.3 were chosen for the specimen, in
order to compare the numerical results with the experimental data in [28]. Figure 11a—b
shows four steps of typical crack propagation. The predicted crack propagation seems to
follow the mode I with evident tensile stress concentration at the crack tip. Figure 12 shows
the crack propagation path by the experiment [28], which is consistent with the calculated
one. The load—displacement curve is depicted in Fig. 13. The results agree well with the
experiment when the load increases, and deviate when decreasing, which may be attributed
to the linear elastic fracture mechanics. Therefore, a more complicated constitutive model
should be introduced, such as plasticity and viscoelasticity.

e
7
s
—
I
Fig. 9 Fig. 10

Fig. 9. Test configuration of three-point bending beam for mode I fracture.
Fig. 10. Three-point bending geometry dimensions.

112 ISSN 0556-171X. Ilpobremvr npounocmu, 2014, Ne 2



Numerical Analysis of Crack Propagation Path ...

Fig. 11. Crack growth process in three-point bending beams.

Fig. 12. Process of crack propagation of specimen in [28].
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Fig. 13. Load—displacement curve of three-point bended beam.
Fig. 14. Crack growth from a fillet.

a

Fig. 15. Comparison of crack paths calculated via the proposed FEA crack propagation method (a)
and calculated by [30] (b) for low values of # (k=10 mm).

3.3. Crack Growth from a Fillet. This last example, performed experimentally by
Sumi [29], shows the growth of a crack from a fillet in a structural member (Fig. 14). The
results presented here are for a simplified model, which only considers the bottom I-beam
for a very thick beam and a thin beam #, and various length L values. The mechanical
properties of materials are assumed to be linear elastic under plane-strain conditions with
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IR

a b

Fig. 16. Comparison of crack paths calculated via the proposed FEA crack propagation method (a)
and calculated by [30] (b) for high values of # (A= 30 mm).

a b
Fig. 17. Crack paths for various length L values: (a) L =362.5 mm; (b) L =162.5 mm.

E=10MPa and v = 0.3. The applied load is F = I N, the fillet radius is 20 mm, and the
initial crack length is ay = 5 mm.

Crack paths obtained by the element-free Galerkin method [30] and the results by the
proposed crack propagation technique are compared for a part containing a flexible I-beam.
Figures 15 and 16 show the excellent correlation of the two techniques. Figure 16 depicts
that the crack turns sharply downwards and propagates towards the structure bottom, in
case of low values of /. In contrast, when the structure is supported by a rigid I-beam, the
crack will propagate horizontally towards the opposite fillet, as shown in Fig. 16.

The crack paths for various lengths L are shown in Fig. 17. In case of high values of
L, the crack propagates to the bottom of the structure at some angle (Fig. 17a), while in
case of small values of L, it first propagates to the bottom, then goes upward to the other
side of structure (Fig. 17b).

Conclusions. In this paper, a new element cracking technique is used to simulate the
crack propagation by the finite element model. With only local remeshing and step-by-step
node relaxation in the crack zone, this technique can be applied to complex industrial
structures without complicated computation. To validate this technique, three examples are
examined by displaying the stress redistribution and consternation at the crack tip during
crack propagation. The stress intensity factors predicted by the interaction integral and the
cracking direction are in good agreement with the exact solutions and experimental
observations. The path of crack growth affects the condition of load and the geometric
parameter of structure. Hence, it is crucial to decrease the amplitude of SIFs and change the
failure model to make sure the crack extension occurs along the predetermined path by
proper designing. Further work will focus on simulating the interface crack propagation
between different materials using this method.
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Pe3zwome

BusHaueHHs1 TpaekTopii TPINIMHU € BaXKIMBHM IIPH IPOTHO3YBAaHHI Helepen0adyBaHOro
pyiHyBaHHs! 200 IPH OLIHIII JIOBFOBIYHOCTI BiJl YTOMJIEHOCTI KOHCTPYKIIIHOTO Marepiaiy.
3anporoHOBaHO HOBHHM METOJ MOJCTIOBAaHHS TPAEKTOPii JIOKAIBbHOI TPIMMHU TMiJ dac
HABAaHTAXXCHHS 3MIIIAHOTO THITY 3a JOMOMOTOI0 MOJEINi, o 0a3yeThcs Ha METOII CKiH-
YEHHHUX EJIEMEHTIB. EJleMeHT, 10 MOJeNoe TpillMHy, po30MBAIOTH HA JBA B3JIOBXK IIO-
LIMPEHHs TPIIIMHU 3 BUKOPHCTaHHSIM KPHUTEPII0 MaKCHUMalbHUX IAOTHYHUX HAaIpyKeHb
(K = 0). Haui 3MiHIO€TBCS 1HPOPMALiS MO0 HOMEPIB eIeMEeHTa 1 By3/1a, OCKIIBKH METOJ
TpaHC)IKIii BUKIIOUYa€ BHKOPUCTAHHA CHUHTYJIPHHUX elleMeHTIB. [lepeBarn He3Ha4HOI mepe-
OyZOBH CKIHYEHHOCIEMEHTHOI CITKH TUTPKH B JIOKAJBHIH 30HI JO3BOIMIH 32 JOTIOMOTOIO
3aIIPOIIOHOBAHOT0 METOAY AOCIIANTH TPH KIACHYHI MPOOJIEMU POCTY CTalliOHAPHOI TPily-
HU: MOUIMPEHHsI KPAaeBOi TPIIIMHKM B JIBOKOHCOJBbHINA Oalllli, MOAEIIOBAHHS TPIIMHOYTBO-
peHHst B achanbToOETOHHUX Oaiikax i Tpill[MHA B CTAHAAPTHOMY IO3/I0BXKHBOMY 3’ €JJHAHHI
y TazonpoBofi. Po3paxyHKOBHI KOeQIIlieHT iHTEHCHBHOCTI HAmpyKEHb 1 TPAEKTOpis Tpi-
LIMHM, CIIPOTHO30BaHA 3a JONOMOIOK OIKMCAHOTO METOXY, NOOpe BiIIOBiIalOTh Teope-
TUYHUM JIaHWM, TIPEJCTABICHUM Yy JIITEPaTypHHUX JUKepenax. Po3ristHyTo onTuMmaibHy
KOHCTPYKLIIO CTPYKTYpH, SIKiil HEBJIACTUBE IIBHJKE PyHHYBaHHSI.
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