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DATA ASSIMILATION AND SENSITIVITY
OF THE BLACK SEA MODEL TO PARAMETERS

An adjoint based technique is applied to a Shalléater Model in order to estimate
influence of the model’'s parameters on the solu##anong parameters the bottom topo-
graphy, initial conditions, boundary conditions rigid boundaries, viscosity cfficients
and the amplitude of the wind stress tension arsidered. Their influence is analyzed
from different points of view.

Two configurations have been analyzed: an academsie of the model in a square
box and a more realistic case simulating Black &egents. It is shown in both experi-
ments that the boundary conditions near a rigichdaty influence the most the solution.
This fact points out the necessity to identify ol boundary approximation during a
model development.

KEYWORDS:. Variational Data Assimilation, Sensitivity to paratars, Boundary
conditions, Shallow water model.

1. Introduction

Thirty years ago model and data were considerethdependent one on
another. Observational data were interpolatedomibael grid in order to provide
the model with the initial conditions, forcings aalll the other necessary parame-
ters. However, since the pioneering work [1] of BdivLorenz, we know that a
geophysical fluid is extremely sensitive to inittainditions. A perturbation of ini-
tial state may grow exponentially in time limititige validity of the forecast. This
discovery leads to understanding that observatidat can not be considered as
independent of the model. We must perform a janatysis of the model and data
in order to choose the optimal initial point foetimodel.

This become possible by using variational datan@ksgion technique, first
proposed in [2, 3], which is based on the optinsaitol methods [4] and perturba-
tions theory [5]. This technique allows us to mté an optimal data for a given
model from heterogeneous observational fields emgarbetter forecast.

However, even now, all other forcings and paramsetérthe model are ob-
tained from data by more or less sophisticatedpotation and they can not be
considered as optimal for a given model. In theeséime, we may suppose, that
their influence on the models solution is as stiagthe influence of initial state. In
this case, we should also analyze the possibititility to apply the data assimi-
lation techniques to identify optimal values fdrthese parameters in order to im-
prove the forecast.

The purpose of this paper is to analyze the semginf a Shallow-Water
model and, in particular, compare the influence rofial conditions with the
influence of other parameters. Among these paraseter consider the boundary

conditions on the rigid boundaries, bottom topobyagempirical cofficients like
reduced gravity, forcing amplitude and dissipation.
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2. Sensitivity and control of the boundary conditims

We shall focus our attention on the boundary caotitbecause (as we shall
see later) they represent the most unusual cordrible.

However, as it has been noted in [6], particuleerdaion must be paid to the
discretization process which must respect sevetat tbecause it is the discreti-
zation of the model’s operators that takes intmant the set of boundary condi-
tions and introduces them into the model. Consetyyenstead of controlling
boundary conditions them-self, it may be more ugefidentify optimal discreti-
zation of dfferential operators in points adjacent to bounddr@sause this is
more general case. Indeed, boundary conditiongcipeatte in discretized opera-
tors, but considering the discretization itself, take into account additional pa-
rameters like the position of the boundary, lackesolution of the grid, etc.

Boundary conditions are usually introduced into thedel by a particular
discretization of operators near the boundary. &@mple, taking into account
the conditionu, = O we can calculate the derivative at the point h/2 as

oul  _up
0x|;, h

In this paper, we shall write the approximationtted derivative in a general
form

ou _aotay

1) 4 12 h

Codficients agand a;will be used as controls. That means we shallHetnt

vary in the data assimilation procedure in orddirtd an optimal pair that realiz-
es the minimum of the cost function.

2.1. Example: one-dimensional wave equation

In order to understand what happens when the datsaimilated to control the
boundary conditions, we propose to take a look osclolar example: one-
dimensional wave equation written for u(x,t)andp = p(x,t)in the following way:

ou_odp_,
ot 0ox
1)
op 0u_
o ox

This equation is defined on the interval 0 < x <ifhwoundary conditions
prescribed fou only:

u(0)=u(1t) =0 2
Initial conditions are prescribed for batrandp
ux0) =u; p(x0)=p 3)
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The equation is discretized on a regular grid thabmewhat similar to Ara-
kawa C grid [7] in two dimensions:

Bz P32 B2 NP2 Pnez Pneae
p—t——e——— ——————]
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Discrete derivatives af andp are defined as follows

(@)_ _ Piv12 7 Pi-pi2 (@)' _ Yiv1/2 “Ui-p/2
ax | ’ i+1/2 h

h )4 @)

in all internal pointsi.e. 2i <N- 2 for (?)i and 1<i <N -2 for (g—u)m/z-
X X

Near the boundary, at points 1/2N.- 1,N — 1/2, we write the derivatives
in a general form, like

op, _alpy,—alps, ,0u ap +ajy
), = , (— =_J -4 5
(ax)l " (ax)l/z H %)

consideringoy andajas the control coefficients. Leap-frog scheme wsesdufor
time stepping.

We introduce the simplest cost function that repnés the distance between
the model solution and observation at time

T1
L (@)= [ [w@,xt)-u"01)? +(p(@,xt) = p*>*(x,1))*dxdt (6)
00

and we calculate its gradient using the adjointhi® derivative of the solution
with respect to control coefficients”,a :

aL = 2}[%«), p(t))* (U(a,x,t) ~u(x,1) Jdt )
o0 0@ p@,xt) = p*(xt)

Once we prescribe the initial conditions for thei&ipn

u(x,0) = sinkzx) p(x,0) = coskzx),
we can calculate its exact solution:

Uexac(X1)= V2 sinfat — z /4)sinfzx),
Pexac(X,t)= — 2 coskat —n/4)coskrX).
The exact solution is used as artificial observatiaiata in this example. We
perform the minimization of the cost function (8he minimization procedure
used here was developed by Jean Charles Gilbei€Ckndle LemarechalNRIA

[8]. The procedure uses the limited memory quasidda method.
The difference between the models solution anéxiaet one is shown in fig.1.
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Fig. 1. Difference between the models solution thiedexact one: classical
BC—dashed ling gssessanss- ), optinBal — solid line (( =———— ).

We see that optimal discretization of derivativeamthe boundary brings the
solution much closer to the exact solution, but gbe of optimal coefficienta
does not approximate a derivative:

(@j = 1048 1~% (@) _ 3014ps3;, — 2828py;;
1/2 .

8
0x h 0X h ®
: : ou op :
Neither expression fo%—, nor fora— has any reasonable order of approxi-
X X

mation. The first one is of «0» order, the secoraf is1» order. Moreover, while
u o L

we get always the same formula f%r—, approximation of the derivative gf
X

varies in different assimilation experiments. Adkions performed with
different assimilation windows, for example, resuldifferent coefficients for

?. In fact, any combinatiowy ,a”in (5) may be found as the result of assimi-
X

lation under condition

aP =-1104af - 0107. )

This linear relationship has been obtained exparially performing assimila-
tions with all assimilation windows in range frordto 2400 time steps (with
the time step equal to 1/120 of the time unit).

164



To explain this strange result, we analyze the migalesolution of the equa-
tion. It is well known, the principal numerical errof the scheme is a wrong
wave velocity. The wave speed, that must be equal is replaced by

hsin(kr)

P = arsinkni2)

which depends on the time ste@nd the grid step. For the given parameters
(k= 3,h = 1/30 and =120), error in the wave velocity is equal to 3;090°.

The data assimilation and control of the boundamvdtives can not modify
numerical wave velocity. The only way for this cahtto get a better solution
consists in modifying the length of the interval.nimerical wave with wrong
velocity will propagate on the interval with wrotgngth. But the length of the
interval is adapted by data assimilation in ordeemisure the wave with numeri-
cal velocity propagates the modified interval in shene time that the exact wave
propagates the exact interval. So far, the comaal not correct the error in the
wave velocity, it commits another error in lengthorder to compensate the first
one as itis illustrated in fig. 2.
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Fig. 2. Modification of the intervals length.

Non uniqueness of optimat” and af can be explained if we take into ac-

count thap has also a form of cosine ob8 Hence, at any timey,= A(t)cos(3:h/2)
and ps;= A(t)cos(%h/2) with someA depending on time. Their linear combina-

tion a’py, +af ps» can vanish if
aP =— ag
1
4cos (krh/2) -3

(10)

Consequently, all couples”, af belonging to the line that passes by the
p

0
4cos(krh/2) -3
duce the same derivative. This line coincides wghaccuracy of computation
with the set (9) obtained numerically. Any pointtbrs line gives coeffcients ,

point af = — 1,023,a," =1,023 with tangent- = — 1,108 pro-

that theoretically provide the same value of thevdéve and the same value of
the cost function.
Of course, in this simple example we can avoidatmbiguity in the solution:

it is sufficient to control only one coefficiemt P rather than two. But, in more
complex problems, it may be difficult to locate anaid the presence of kernels.
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Consequently we can say that the data assimilatiows to place the boundary
in the optimal position resulting in a solutions#o to the exact one. Boundary con-
trol allows to compensate numerical errors comuhittethe interior of the domain,
but it may be difficult to understand the physiceaning of optimal coefficients
and non-null kernels may exist leading to non umigsult.

More details of this study can be found in [9]

2.2. Shallow Water Model
In this paper we consider a shallow-water modettevriin a conservative form:

ohu 0
—— = fhu-—| hu® + gh(h-H
n a( ghth—H) - zh %Y )
9 huv- ,dn ohu+ 1,7,
ay 0%x >
dhv 0 Ju
— =—fhu——| huv—th— |- 11
ot 6( ’max) (11)

0 ov
——| WV + gh(h-H) — th— |- ohv+ 1,7, |
ay( Hah( ) ”hayj olx
oh _ ohu ohv

wherehu(x,y,t) andhv(x,y,t) are two flux components that represent the product
of the velocity by the ocean deptifx,y,1), that corresponds to the distance from
the sea surface to the bottom of the ocean. The sseface elevation is
represented by the differenbéx,y,t) — H(x,y), whereH(x,y) is the bottom to-
pography. The model is driven by the surface witréss with components
7(X,y,) andz/(x,y,t) normalized byr, and subjected to the bottom drag that is
parameterized by linear termshu and chv. Horizontal eddy diffusion is
represented by harmonic operatdig( ¢hJu) anddiv( ¢hCu). Coriolis para-

meter is represented by the variafflg that is equal tdy+fy assumings-plane
approximation. Parametgris the reduced gravity. The system is defined inesom
domainQ with characteristic sizé requiring that bothhu andhv vanish on the
whole boundary of2. No boundary conditions is prescribed Forinitial condi-
tions are defined for all variabldsy, hvandh.

As usual, initial conditions are considered as ¢batrol parameter of the
model in this paper. We study the sensitivity & thodel to its initial point and
assimilate data to find its optimal value. Howeveraddition to initial condi-
tions, all other parameters of the model, and nanted discretization of opera-
tors near the boundary, its bottom topograptty, ), scalar coefficientgt, o, g
andr,, are also considered as control variables. Athem are allowed to vary in
the data assimilation procedure in order to brivegt to their optimal values.

We discretize all variables of this equation on ithgular Arakawa’sC-grid

[10] with constant grid stegix = ﬁ in bothx andy directions. Discretizing the
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system (11), we replace the derivatives by theitefidifference representations
D, andDy and introduce two interpolations xmandy coordinatess, andsS,. Inter-
polations are necessary on the staggered gridi¢alate the variable's values in
nodes where other variables are defined. The disedesystem (11) writes

ohu (thu)
——15,S,hu+D +gh(h-H Dy, —
ot x=ynu x{ h gh( (xy))—th th
hu S hu
Dy M—N(styh)Dyﬁ :—0hu+1'01'x :
SXSyh S.h
ohu (Schu Syhu) hv
—+ S, S, hu+D,| ————— (S, S,h)D, — |+ 12
1SS, { sen HSSNDy (12)

((SX W’ +gh(h—H (x y)) - £hD, hJ ~ohu+7o7, ;
y

on_ —-Dyhu-Dyhv .

Discretized operatorB,, D, andS,, S are defined in a classical way at all internal
points oft he domain. For example, the second aidewative and the interpola-
tion operator of the variableu defined at corresponding points write

hy ;12 —hu_1j-1/2
dx

hy j_12 —hu_1j-1/2
(ShW)i—1/j-1/0 =—2 > ;

Discretization of operators in the directly adjacenthe boundary nodes are
different from (13) and represent the control Valea in this study. In order to
obtain their optimal values assimilating externatag we suppose nothing about
derivatives and interpolations near the boundadyvarite them in a general form

(thu)i_llzyj_]_/z: fori :2, N—l,
(13)

fori=2,...N-1.

DQ”h DQ”h
_ pw 017" NUgj1p =057 NUy g0
(Dihu) /2172 =0 ¢ +

dx (14)

s _ oSt
w07 % hug . hu,;_
(S(hu)llz,j—llzzaosx g 0,j-1/2 . 2 1j-1/2

This formula represents a linear combination ofugal ofhu at two points
adjacent to the boundary with coefficients The constantr, maybe added in

some cases to simulate non-uniform boundary camditike hu(0,y) =a, # O.

We distinguisha for different variables and féierent operators allowing
different controls of derivatives because of tHéedent nature of these variables
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and diferent boundary conditions prescribed for themns tibvious, for example,
that the approximation of the derivatildg in the first equation may fder from

the approximation oDy in the third one. Although both operators représede-
rivative, boundary conditions fdnu and h are diferent, these derivatives are
defined at different points, atffBrent distance from the boundary. Consequently,
it is reasonable to let them be controlled sephrated to assume that their op-

hu h
timal approximation may be different with distimztefficientsa ™ and a®x.

Time stepping of this model is performed by theplag scheme. The first
time step is splitted into two Runge-Kutta stage®ider to ensure the second
order approximation.

As well as before, the approximation of the defxatntroduced by (13) and
(14) depends on variables. These variables are added to the set of con&ol v
riables enumerated above. Operators are allowetidoge their properties near
boundaries in order to find the best fit with reguieats of the model and data.
To assign all control variables we shall perforntadassimilation procedure and
find their optimal values. Variational data assitiola is usually performed by
minimization of the specially introduced cost fuoot The minimization is
achieved using the gradient of the cost functiat ik usually determined by the
run of the adjoint to the tangent linear model.

To define the cost function we introduce dimensismkgtate vectog that is

composed of three variables of the moqbei{vwwhu,Wh\,hv,whh}t weighted by
coeffcientsw. These weights are used to normalize values ofidkecomponents
by W, =W, = (Hoy/gHo) ™ and the Sea surface elevation Wy = (Hy) ™. The

distance between the model solution and obsenaidefined as the Euclidean
norm of the difference

E=E@p) =D (A -d™)?= J15
k

=wB, > (huj ~ )+, S (hy | - + w2 S (h; ~hP”. (16)
t,] t,] t,j

In this expression, we emphasize implicit dependeari on time and on the set
of the control parameters p that is composed of:

— the set of initial conditions of the modg) ={hu};-, hv}-g, hl= ; }

— the set of the cdficientsa that controls the discretizations of operators
near the boundary;

— the bottom topograph(x, y);

— four scalar parametessy, g, 7o.

Taking into account the results obtained in [1H,define the cost function as
T

L (p) = [t&*(@p.)dt
0

17)
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that gives higher importance to théfeience&? at the end of assimilation interval.

It should be noted here, that this cost functiom @aly be used in the case of
assimilation of a perfect artificially generated adaivhen we assimilate some
kind of real data that contains errors of measurgsnand is defined on a
different grid, we should add some regularization terrthe cost function (like
the distance from the initial guess) and use some rappropriate norm instead
of the Euclidean one (see, for example [12] foaiist

The n-th component of the gradient of the cost functian be calculated as
the Gateaux derivative of an implicit function:

(OL), = jt (afszt—J {zag am‘jdt—

ap, — 0¢ 0p,
(18)

T
0%
=2t - P9 | dt
[ (;m &™) apnj
0
9?2 . g2 bs
because the derlvatlvg— can easily be calculated from (15)— = 2(¢, —&"°) .
% %

The second term in (18)% , represents the matrix of the tangent linear model

op,
that relates the perturbation of the parampteand the perturbation ¢th com-
ponent of the model state vectgy. This relationship, of course, is assumed in
the linear approach, that means it is only validififinitesimal perturbations.

In the classical case, when initial conditions esasidered as the only con-
opt) _ ot) .

op 0%
scribes the temporal evolution of a small errothia initial model state. The ma-
trix is a square matrix that is widely studied imrerous sensitivity analyses. Its
singular values at infinite time limit are relatedvtell known Lyapunov expo-
nents that determine the model behavior (chaotregular) and the dimension of
it's attractor.

trol variable, the derivative—~ is the classical tangent model that de-

dat)

In our case, the matrixa— is rectangular. It describes the evolution of an
®

infinitesimal error in any parameter (including ialitstate). However, we can
study it's properties in the similar way as we dithwthe classical tangent linear
model. Its structure and composition is describedlil] for the case of using

codficients a as control parameters and in [13] for the case wherbottom to-
pography is used to control the model’s solution.

The produth(qq( —¢fbs)g—¢k in (18) represents an unusual vector-matrix
K Pn
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product. To calculate this product directly we wbbhve to evaluate all the ele-
ments of the matrix. This would require as manygéart model runs as the size of
the state vector is. So, instead of the tangenteled shall use the adjoint one
that allows us to get the result by one run ofrtiealel. Backward in time adjoint

model integration that starts from;o(—qa"bs) provides immediately the product

[3—@ (- ¢°) which is exactly equal t¢p— Wbs)g_(: in (18).

Using these notations, we write

. .
oL =2 J.t [wJ (t) - g™°5(1)) dt (19)
0 ap

where the expression in the integral is the resfulie adjoint model run fromto
0 starting from the vectorgt) — ¢°° t ())

Tangent and adjoint models have been automatigelierated by the Tape-
nade software [14, 15] developed by TFRROPICSteam inINRIA. This software
analyzes the source code of the nonlinear modepesdlices codes of it's deriv-

ativea—qaand of the adjoin 99 .
op op

This gradient is used in the minimization procedina is implemented in
order to find the minimum of the cost function:

L (p) =minL (p) (20)

Codficientsp are considered as dfieients achieving an optimal parameters
for the model. As it has been already noted, thefiparameters p is composed
of the set of initial conditions of the modg , the set of the cdficients a that
controls the discretization of operators near thenolary, the bottom topography
H(x, y) and four scalar parametersy, g, 7o. We shall minimize the cost function
controlling either the total set of available paetens p or any possible subset,
comparing the féiciency of the minimization.

We use the minimization procedure developed by I&aarles Gilbert and
Claude LemarechalNRIA [8]. The procedure uses the limited memory quasi-
Newton method.

In addition to the data assimilation, we performoathe sensitivity study of
the model solution to parameters enumerated aheeare looking for a pertur-
bation in the model’s parametedp that, for a given small norm, maximizes the

norm of the perturbation of the solution at time

|o@t)]
[ES]

A(t) = max (21)
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We can note that we already have all the necessdiyare to estimatg(t).

Tangent linear modeﬁ%J allows us to calculatedg(t) = [a(p( )j&) Using
op

p
the scalar product that corresponds to the northardefinition of the distancé
(16), we can write=>
< (a?t)j&) (aﬂt)J@) >
A(t) = man < opb).opt) > = max P =
< P, P > < PP >
< (aaﬂt)j (aﬂt)jd) o >
= max P 122
< PP >

This expression is a well known Rayleigh-Ritz ratibich is equal to the largest
eigenvalue of the problem

(%J [@}9 = A(t)9 (23)
ap op

So far, we need just the maximal eigenvalue andrtagix of the problem is a
self-adjoint positive definite matrix, we can sothe problem (23) by the power
method performing successive iterations

LOMELO
e R A
_\dp ap
n+l —
out) | 9AY) g
op ap
In the limit, the denominator of the right-handestgnds to the largest eigenvalue
and 7, — to the corresponding eigenvector of the matrhe Principal advantage
of this method consists in the fact that we do me¢d to calculate the matrix
itself, we just need a matrix-vector product. S fee have both codes for the
tangentand adjoint models, we can successivelyhese models and get the left-
hand side of (23).

We should note here that when the initial cond&iohthe model are used as
the control parameters (i.dp=09¢ ([Q)the sensitivity characteristiét) are all
close to one whent - 0. It is evident because the perturbation has ne tim
betransformed by the model's dynamics and wedg#t) |, . o= dp(0) = op .

When any other model parameter is used as theat@mtd the error growing
time is small, alli(t) are vanishing. This is also clear: the model'aaiyics has

no time to transmit the perturbations from the peeters to the solution. The per-
turbation of the solution remains, consequentlyselto zero as well as the value

of At)l;_o = O.

, Jp=random vector.

171



In order to make the behavior of the sensitivitareltteristics uniform with
different parameters, we shall udét) -~ etery time when the initial model's

state is considered as the control parameter.

3. Configurations

3.1. Model in a square box

We start from the data assimilation in frames &f Wlery well studied «aca-
demic» configuration. Several experiments have Ipegformed with the model
in a square box of side lendth= 2000 km driven by a steady, zonal wind forcing
with a classical sinusoidal profile

I, = rocos—ZH(ylj L/2)

that leads to the formation of a double gyre catioh [16]. The attractor of the

model and the bifurcation diagram in a similar cpmfation has been described
in [17]. Following their results, we intentionalthose the model's parameters to
ensure chaotic behavior. The maximal wind tensiorth@ surface is taken to be

Io=05 dyne’cmz. The coefficient of Eckman dissipation and theial friction

coefficient are chosen as= 5 x 10° (ms)* andp = 200 ni/s respectively.

As it has been already noted, the Coriolis parammsta linear function iry
with fo = 7 x 10° s* andg = 2 x 10*(ms)". The reduced gravity and the depth
are respectively equal tp= 0,02 m/é, Ho = 1000 m.

The resolution of the model in this section is imi@nally chosen to be too
coarse to resolve the Munk layer [18] that is cbidzed by the local equili-

brium between thg-effect and the lateral dissipation. Its characterisfidth is

13
determined by the Munk parametér= 2(%} which is equal to 42 km in the

present case. The model’s grid is composed of 2@sin each direction, that
means the grid-step is equal to 67 km, that is ntoa® the Munk parameter.
Thus, there is only one grid node in the layer #redsolution exhibits spurious
oscillations near the western boundary due to whred boundary layer.

Artificial «observational» data are generated bystme model with all the
same parameters but with 9 times finer resolutigf Km grid step). The fine
resolution model, having 7 nodes in the Munk layesplves explicitly the layer
and must have no spurious oscillations. All nodethe coarse grid belong to the
fine grid, consequently, we do not need to integok@bservational» data to the
coarse grid. We just take values in nodes of tigh hésolution grid that corres-
pond to nodes on the coarse grid.

The model on the fine grid has been spun up fronrdke state during 3
years. The end of spin up was used as the inttigg $or the further integration of
the model. From the result of this integration vaeédnextracted values of all three
variables at all grid points that belong to therseayrid (as it has been noted, the
grids have been chosen so, that all grid pointes@toarse grid belong to the fine
grid). This set is used as artificial observationthe following experiments.

So far the model is nonlinear with intrinsicly iabte solution, there is no
hope to obtain close solutions in long time modeisr because any difference
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(even infinitesimal) between two models grows exptiafly in time. Conse-
quently, we have to confine our study to the analgéia short time evolution of
the model’s solution simulating the forecastingpamies of the model.

As the initial guess for the initial conditions wse the state vector of the
high resolution model reduced on the coarse grds $tate is also used as the
initial conditions in all other assimilation expments with other control parame-
ters. Noted above values of the model's paraméfitsbottom topography, li-
near iny Coriolis parameter and scalar parametgrs (7o, g) are used as the ini-
tial guess in the experiments that control thegarpater, otherwise we simply
use these parameters in the model.

3.2. Model of the Black Sea

In this section we use the same model, but alpirameters are defined to
describe the upper layers circulation of the Blae&. Configuration of the model
and observational data have been kindly provide@éygnady Korotaev from the
Marine Hydrophysical Institute, National Academy Sdiences of Ukraine, Se-
vastopol, Ukraine. This configuration is describeilio].

The model grid counts 141 x 88 nodes that corredpon the grid box of
dimension 7860 m and 6950 m xnany directions respectively. 15 minutes
time step is used for integration of the model. Twoeiolis parameter is equal to
fo = 10%'andpg = 2 x 10" (ms)". Horizontal viscosity is taken as= 50 nfs™.
Using a typical density difference between upped amderlying layers of
3,1 kg/ni, and unperturbed layer thickness of #1150 m, the Rossby radius of
deformation is estimated at about 22 km and theuaed gravity value
g = 0,031 m/& The grid therefore resolves the mesoscale presesasonably well.

The model has been forced by 8@ MWFwind stress data, available as dai-
ly averages for the years 1988 through 1999. Dyoalnsiea level reconstructed
in [20] was used as observational data in thisiaect hese data have been col-
lected inERS-1and TOPEX/Poseidommissions and preprocessed by MSA
Ocean Altimeter Pathfinder Project, Goddard Spaight-Center. Observational
data are available from the 1st May 1992 until 199%:se data have been linear-
ly interpolated to the model grid.

So far the sea surface elevation is the only olasiemnal variable available in
this experiment, we pui,, =w,, = @ (16). Consequently, theftitrence be-

tween the model’s solution and observations isutaled taking into account the
variableh only.

As it has been already noted, absence of obsamaatiata for the velocity fields
brings us to modify the cost function. We havedd tine background term in the cost
function in order to require the velocity field te buficiently smooth. Otherwise,
lack of information about velocity components irsetvational data would result in a
spuriously irregular fields obtained in assimilatido ensure necessary regularity of
h, andh, we add the distance from the initial guess toctis function (17). In order
to emphasize the requirement of smoothness, thiantdie is measured as an enstro-
phy of the difference between the initial guess emnuent state:
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a(hy ) athy -h))
Lsmooth™ Z ! 1= - > . (24)

] 0x oy
whereh’, hV’ denote flux components of the initial guess of rifirimization-
procedure.

Moreover, using real observational data requireado at least one another
term to the cost function. One can see in theZim [20], spatially averaged sea
surface elevation of the Black Sea exhibits a wdtinguished seasonal cycle.
That means the mass is not constant during a itedecreases in autumn and
increases in spring. Consequently, if we assimititta during a short time (a
season or less), we assimilate also the informatimut the mass flux specific for
this season. This flux can not be corrected latahbymodel because the discreti-
zation of operators near the boundary (that caatie mass evolution) is obtained
once for all seasons. The mass variation of thekBdaa reaches 25 centimeters of
the sea surface elevation. Assimilating data witime season may, consequently,
result in a persisting increasing or decreasintp@feal level of order of 50 cm per
year. To avoid this spurious change of the totaanae must either take the assi-
milation window of at least one year, or prescribe mass conservation to the
model’s scheme. One year assimilation window ispaationally expensive and
is not justified by the model’s physics. On the othand, prescribed mass con-
servation removes just the sinusoidal seasonahti@mi allowing us to keep all
other processes and to choose any assimilationowinee need.

To correct the mass flux of the model, we add theviing term to the cost
function

- 2
L mass= [{Z(h i®O-h; (@)J dt. (25)
o\i.

Similarly to (24), this term also ensures the ragty of the solution. It can
be noted here that other terms may be added tootfunction in order to make
a numerical scheme energy and/or enstrophy comggrvut we do not use them
in this paper.

The total cost function in this section is composédhree parts: (17), (24)
and (25)

I-total =L+ ylL smooth+ VZL maas (26)

Coefficientsy are introduced to weight the information that cerfrem observa-
tional data (withL) and an a priori knowledge about mass conservatighregu-
larity of the solution.

This modification of the cost function results, olucse, in additional terms
in the gradient:

OL ot = 0L +2y1(D’;Dy(hu—hLb)+ DiD(hv—hvo))+2yZZ(m, -, O) @D
ij

The model is spun up from the beginning of 1988y 1992 using the
wind tension data on the surface. The state casreipg to the 1st of May 1992
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12hGMT is used as the initial guess in the data assiimilgdrocedure controlling
initial conditions of the model. The assimilatioontrols the initial conditions
@ only with the assimilation window = 1 day and the regularization parameter
v1 = 0,04. Such a short window was chosen in ordegyetoalmost instantaneous
state of the model to be used in further experirasrdn initial state.

The behavior of the model solution is not chaatithis configuration. Varia-
bility of the model is generated directly by theighility of the wind stress on the
surface. Consequently, we can compare particudgctories of the model on any
time interval because their evolution is stablehait exponential divergence.
Thus, we can hope that assimilating data in aivelgtshort window allows us to
bring the model’s solution closer to observationddong integration period.

The minimization of the cost function has been agmanied by the mass
preserving correction (25) wit = 0,01.

4. Sensitivity analysis

The flexibility of the model is illustrated in fig. 8Ve perform the data assi-
milation experiment in two configurations using paeters described above as
initial guess. Due to higE&PU time of the data assimilation, we limit the number
of iterations of the minimization procedure by Z0us, we have similar and rea-
sonable computational cost in each experiment.

Square box aBk Sea
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Fig. 3:Distance between the model solution and obsenafimnthe model in th
square boxd) and the model of the upper layer of Black S8a1 — No Assimila-
tion; 2 — Optimal Init Cond.; 3 — Optimal Bounda#y:- All Optimal.

In both configurations we examine the evolution lué tistance «model-
observationsx(t) during assimilation and after the end of assitigita Assimila-
tion window has been chosen as 5 days in the sduaxeconfiguration and
T = 30 days for the Black Sea model. The distanexdsnined over longer inter-
vals: 20 days in the first case and 1 year in therstone.
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Analyzing the difference between the model solutiamd observations
shown in fig. 3, we see that in the assimilationdein the model is almost equal-
ly flexible with respect to both initial and boungaonditions. Data assimilation
allows us to reduce the distance between the nsmletion and observations at
the end of the window approximately twice in botmfigurations. The only dif-
ference that can be seen in the assimilation wingothat non-optimal initial
point leads to the spurious oscillations of thaigoh. These oscillations occur in
both configurations and show us the necessity ttifgiehe optimal initial point.

However, the influence of parameters is significadifferent beyond the
window. While the solution with optimal initial pui tends towards the solution
obtained without any data assimilation, optimal @eboundary conditions en-
sures a new solution that is much closer to obsena data. That means the
control of boundary conditions allows us to imprawdong-range forecasting
quality of the model.

The third way of the sensitivity analysis consistsolving of the eigenvalue
problem (23) and analyzini(t) on different scales of error growing time from
about 10 minutes (I0day) to approximately one year. As it has beesaaly
noted,A(t)-1 is plotted in the case when initial conditicare considered as the
parameter.

Analyzing the figure (see fig. 4), we can see thatethime scales can be
clearlydistinguished for the sensitivity charadtcs of the model in both
configurations. The first, short time scales, appnaxely from O up to 2-3 hours
is characterized by the linear growthi@). Indeed, the model behaves as a linear
model on this scales, the model’s solution can bk approximated by just one
step of the numerical time scheme.

The second time scale that can be distinguishéigeifigure (see fig. 4) cor-
responds to error growing times from 2-3 hoursQaldys. On these time scales
we see slower growth of the sensitivity charactiessi(t) and, sometimes, no
growth at all. These time scales are charactelizethe modification of the sta-
ble-instable subspaces of the model. Instable spachort time scale is not the
same as for long time evolution. Short time inditds are usually localized in
space, while long time eigenvectors of (23) posseagylobal structure.

The third time scale corresponds to the error grgwimes more than 100 days.
On these scales the model exhibits either nonrlideaotic behavior with exponen-
tial growth of alli(t) (as it is the case in the square box), or staélevior when
a perturbation of initial state decreases with t{a®it is the case in the Black Sea
model).

In order to zoom these time scales, we plot theesgaa in the Log-Log and
Log-Linear coordinates in fig.4 on the left and ba tight respectively. One can
see the error growth in the square box on this eede is purely exponential
with the same exponenft) = Aexp(0,027). The multiplierA is particular for
each parameter, but the exponent is always the.sEnie confirms the remark
made in [13], [11]: no matter how the perturbatiaas introduced into the model,
it's long-time growth is determined by the modelisiamics.

Square box Black Sea

lar value
lar value
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Comparing the evolution of the sensitivity of thedel to different parame-
ters,we see that on small scales it is the bottwpography that the model is the
most sensitive to (thin solid line in fig. 4). Arr@rin the topography produces 13
times bigger perturbation in the model state thagindlar error in the model's
initial conditions (thick solid line in fig. 4). Hoever,A(t) does not grow at all on
medium scales due to significant changes in thenegors pattern. This leads
to the fact that on long scales, the sensitivityhef model to the bottom topogra-
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phy is about 2 times lower than the sensitivitynidal conditions.

On the other hand, the sensitivity of the modehtodiscretization of operators
near the boundary exhibits the opposite behaviorsi@rt scales, correspondihis
2 times lower thai obtained for perturbations @, but there is no stagnation of the
growth on the middle scales. As a result, we saetie model is 4 times more sensi-
tive to a than tog, for long error growing times. Moreover, small pepiation of
initial conditions decreases in the Black sea cardiipn, while the perturbation of
a results in an increasing perturbation of the gmiut

5. Modification of the boundary conditions

As it has been noted, it is useless to analyzedhef obtained coefficients
to understand the modification of the boundary dionb. Instead of this, we
shall see the difference between velocity fieldhwitassical and with optimal
coefficientsa similarly to [21]. This difference has been avemgn time over
200 days time interval in order to reveal persisteadifications of the flow pro-
duced by the optimal discretization.

This average difference of the velocity togethahwie original velocity are
presented in fig. 5. We zoom the Southern part ®Black sea because it is in
this region the difference shows the biggest vateeshing 5 cm/s while in the
middle of the sea it rarely exceeds 1 cm/s .
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Fig. 5: Original velocity fieldd) and its modificationt) near the boundary.
We can note several principal features of the float have been modified by
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boundary conditions. First, we can see a strongeation the boundary. The slip
condition (vanishing tangential velocity) has beeplaced by a permanent cur-
rent along the boundary. Moreover, impermeabiligndition has also been
modified. The flow is now allowed to leave the domamsuring, however, the
global mass balance. One can see a strong petsisidex centered at 4237
32,8 which southern part crosses the boundary resutingt only tangential
but normal flux also. Similar vortices with lower plitude can also be seen in
places where the boundary changes direction. Optiisaretization allows the
flow to cross the boundary in places where the timechange is not smooth.

Tangential velocity component is amplified in theedt vicinity of the boun-
dary. In these nodes we see a strong eastward flaiwitas forbidden by the
boundary conditions in the classical formulatioritted model. On the other hand,
the eastward velocity is lower at nodes distancgddyeral grid cells from the
boundary. At these nodes we see westward flow idifference of the optimally
discretized and classical models. That means thve fomoved towards the
boundary, allowing more optimal representation diia current on a coarse grid
that brings the model solution towards observations

6. Conclusion

The comparative study presented in this paper shihwesinfluence of
different model parameters on the solution. The staidynfined to the analysis
of a low resolution model with a rather limited gigs. Consequently we must
acknowledge the results may be valid only in thecdbed case. Additional phys-
ical processes (baroclinic dynamics, variable dgndue to heat and salinity
fluxes, etc.) may modify results of this study rdwepother parameters the mod-
el may be sensitive to.

The main conclusion we can made from this comparisohe important role
played by the boundary conditions on rigid bouremriAlmost all experiments
show that the model is the most flexible with respecontrol of cofficientsa ,
this control allows us to bring the model’s solatidoser to the solution of the
high-resolution model or to the observed data.

Optimal a found in the assimilation window remain optimahdptime after
the end of assimilation improving the forecastibgity of the model. We could
see that the fourth order model in the square flows us to divide by two the
forecast error of the 20 days forecast. Optimabbtained in one month assimila-
tion remains optimal even for a one year run ofBleek sea model.

Finally, the long time sensitivity of the modelslgion toa exceeds the sensi-
tivity to almost all other parameters including gensitivity to initial conditions. A
perturbation ofx of a given small norm results in a bigger perttidpeof the model’s
solution than a perturbation of some other paranoéten equal norm.

However, we could see that the influence of boundangditions is only im-
portant on long time scales, i.e. time scales¢laeeds the characteristic time of
the domain. In both experiments presented abovehheacteristic time was ap-
proximately equal to 5 days and in both experimémssensitivity tax becomes
important on scale longer than 5 days. On the dthad, on short scales, it is the
bottom topography that influences the most the n'delution. Both in the Black
sea and in the square box the sensitivity to tagmulyy is approximately 40 times
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more important than the sensitivity .

In addition to that, we should note that usuallgggribed boundary condi-
tions (impermeability and no-slip conditions haweb used here as the initial
guess for the minimization of the cost functiongreenot to be optimal for the
model. As we can see in fig. 3, modifyingve can bring the model much closer
to the high resolution model or to the observatiaata. But, the numerical
scheme is strongly modified in the assimilation psscviolating even impermea-
bility condition.

Taking into account an important influence of thenatical scheme that in-
troduces boundary conditions into the model, iessonable to think about iden-
tification of the optimal scheme by data assimilagiwocess instead of prescrib-
ing classical boundary conditions.

AcknowledgmentsAuthor thanks Gennady Korotaev from Marine Hydrygbal
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AHOTALA Metonuka, 3aCHOBaHa Ha CIIOTyYSHWX PIBHSIHHAX, OyJia 3aCTOCOBaHA 0
MoJeNi «apiOGHOT BOI¥» IS OLIHKK Yy TJIMBOCTI 1T pilleHHs X0 mapameTpiB Mozeni. Po3ris-
JIAJIACS TaKi MapaMeTpH sIK pesibed THa, MOYATKOBI i rpaHUYHI YMOBH, Koe(illieHTH B'sI3KOC-
Ti i HANpyTa TepTs BiTPY Ha MOBEPXHi. IX BIIMB aHANi3yBaNOCs 3 PI3HAX TOUOK 30DY.

3agaya Oyna po3riisHyTa B OBOX KOH(irypauisx: akaaeMidyHW{ BapiaHT Moneli B
KBaJpaTHOMY OaceiiHi i 6ibII peanicTUUHA Bepcid, O MoAemoe Tedii B HopHOMY MOpi.
Byno mokazaHo, 1110 rpaHUYHi YMOBHM Ha TBEPIMX KOPAOHAX MAarOTh HaiOiNbIIMii BIJIMB
Ha pilleHHA B 000X BUMaakax. Lei (akT BKa3ye Ha HEOOXiIHICTh MOIIyKY ONTUMAIbHUX
TPaHUYHUX YMOB TPH PO3POOL MOJETi.

AHHOTAILIHA Metonnka, OCHOBaHHAs Ha COTPSDKEHHBIX yPaBHEHHSX, ObLTa MpHMe-
HEHA K MOJIEJIN «MEJIKOH BOJBI» [UIsl OLIEHKH YYBCTBUTEILHOCTU €€ peLIeHMs K mapaMeT-
pam monenu. PaccMaTrpuBanmch Takuhe mapaMeTphl Kak penbed 1HA, HadalbHBIC W Tpa-
HUYHBIE YCIIOBUS, KO((ULIMEHTHl BA3KOCTH U HANps KEHUE TPEHHs BETpa Ha IOBEPXHO-
cTu. X BNMsAHME aHAIM3UPOBAIOCH C PA3IUUHBIX TOUEK 3PEHHUS.

3anaya OblIa paccMOTpeHa B JBYX KOH(pUTrypalMsxX: akaIeMUuecKuii BapuaHT MoJie-
JIM B KBaJpaTHOM OacceiiHe u OoJyiee peanucTUYHas BepcHsi, MOAEIMpPYIOLIas TeYeHUs B
YepHoMm Mope. Bbl1o Moka3aHo, YTO rpaHUYHbIE YCIOBHUs Ha TBEPAbIX IpPaHULAX OKa3bl-
BAIOT HAUOOJTbIIEE BIUSHIE HA PEIIeHHE B 000MX CIydasx. ITOT (hakT yKa3plBaeT Ha He-
00X0AMMOCTh TIOMCKA ONTAMAITBHBIX TPAHUYHBIX YCIIOBHUiT PH pa3padOTKe MOIEIIH.
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