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The Schrödinger equation is solved for the wave function of an electron moving in a superposition of external 
constant and uniform electric and magnetic fields at an arbitrary angle between the field directions. The changing of 
the potential barrier under influence of the magnetic field parallel to the metal surface is shown.  
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INTRODUCTION 
 

The researchers and designers of accelerating struc-
tures for the compact linear accelerator under the CLIC 
project were faced with high vacuum RF breakdowns 
accompanying the electromagnetic power input that 
produces the accelerating field gradients as high as 
100 MV/m.  

Toward this end, CERN workers have built a DC-
spark facility [1] for use in experiments to elucidate 
how the frequency of a high-vacuum breakdown occur-
ring in the gap between the electrodes is related to vari-
ous factors, e.g. material of the electrodes in the accel-
erating gap, electrode surface conditioning procedures, 
influence of other circumstances (e.g. external magnetic 
field in the gap between the electrodes, etc.). 

The influence of the external magnetic field on the 
field emission current density was first studied theoreti-
cally by F.J. Blatt [2] and later on in experiments [3 - 9]. 
The motivation for these works was a goal to determine 
the ways of increasing the field emission current, so 
they confined themselves to the examination of a con-
figuration of the collinear electric and magnetic fields. 

However, the central issue, viz, the determination of 
the electron barrier-penetration coefficient at the metal-
vacuum interface was dealt with by the author [2], as he 
himself admitted, under the assumption that this coeffi-
cient was independent of the magnetic field in the con-
figuration of the collinear electric and magnetic fields of 
interest. Moreover, he advanced neither theoretical 
arguments nor experimental evidence to support his 
assumption. The present paper is an attempt to make a 
first step towards the elucidation of this point, namely, 
to describe the quantum-mechanical motion of an elec-
tron in external constant and uniform electric and mag-
netic fields, with the angle between the field directions 
being arbitrary. 

It is worthy of note that a study of the magnetic field 
effect on the field emission is important to perform not 
only with the aim to prevent high vacuum breakdowns 
occurring in modern colliders, but also to probe a wide 
area extending from astrophysics observations of the 
electron field emission from magnetized neutron stars 
[10 - 12] to investigations into the field emission in 
carbon nanotubes [13 - 14]. 

 

1. PROBLEM FORMULATION  
AND SOLUTION 

 

In our treatment, to describe the electron quantum-
mechanical motion we choose a Cartesian system de-

picted in Fig. 1, with the electric field strength vector 

0E


 and the magnetic field induction vector 0B


 directed 
as indicated in the figure. 

 
Fig. 1. Configuration of the electric and magnetic fields 

 

As is seen, the components of the electric field 
strength 0E



, of the magnetic induction 0B


, the form of 
the electric potential ( )rϕ  , the electron potential ener-
gy and the expression for the vector potential can be 
written as 

( )0 0 0sin  , cos , 0 ,E E Eα α− −


 

( )0 00, ,0 ,B B


 

( ) ( )0, ,x y E xsin ycosϕ α α= +   (1) 

 ( ) ( ) ( )0, , sin cos ,U x y e x y eE x yϕ α α= − = − +  

( )00,0, .A B x= −


 
The input equation for the description of the electron 

motion in the fields mentioned above is the Schrödinger 
equation for the electron wave function ( ),r tψ  : 

( ) ( )ˆ,
, ,

r t
i H r t

t
ψ

ψ
∂

=
∂





                  (2) 

where the Hamilton operator is 

( )

22 2
2 2

02 2

0

1
2

ˆ

,

H i eB x
m zx y

eE xsin ycosα α

 ∂ ∂ ∂ = − − + − −  ∂∂ ∂    
− +

  

         (3) 

and m  is the electron mass, -e is the electron charge. 
As follows from the explicit form of the Hamiltoni-

an operator Ĥ  (3), it does not explicitly depend on time 
and does not include the z – coordinate in the explicit 
form, so it is commutative with the operator of the z-th 
component of the momentum we can get the equation 
for the wave function component ( ),x yψ that describes 

the electron motion in the ( )  ,x y  plane 
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( )

( )

2 2
22 2

02 2

0

1
2

sin cos

zp eB x
m x y
eE x y

ψ εψ
α α

  ∂ ∂
− − + −  ∂ ∂ × =  

 − + 



 



.   (4) 

The differential operator in Eq. (4) is an algebraic 
sum of two operators, each depending on only one vari-
able either x or y 

( ) ( ) ( )ˆ, , ˆ ˆ
x yH x y H x H y= +                  (5) 

( ) ( )
2

22
0 02

1 sˆ in ,
2x zH x p eB x eE x

m x
α

 ∂
= − + − − ∂ 

 (6) 

( )
2 2

02
ˆ cos ,

2yH y eE y
m y

α∂
= − −

∂
                 (7) 

( ) ( ){ } ( ), ,ˆ ˆ
x yH x H y x yψ εψ+ =             (8) 

x yε ε ε+ = ,                            (9) 
with the constants xε  and yε  determine the possible 
spectrum of the electron energy related to its movement 
along either x- or y-axis. 

Considering the additive nature of the Hamiltonian 
operator with respect to the dependence on the x, y co-
ordinates, we search for the electron wave function, 

( )  ,x yψ in the form of a product of two functions, each 
being dependent on only one variable 

( ) ( ) ( ),x y X x Y yψ = .                     (10) 
To define the X(x) function the quantum oscillator 

differential equation is derived 
( )

( ) ( )
2

2
2 0,x

d X
X

d
ξ

ε ξ ξ
ξ

+ − =           (11) 

where we introduce a dimensionless coordinate ξ in 
accordance with the expressions 

0
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, z
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eEpx x x x
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α
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= +′− = , 
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mω

 
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,    (12) 

0
B

eB
m

ω =  is the cyclotron frequency of the electron 

rotation in Larmor orbit in the classical case and the 
constant xε  is represented by the expression 



2
0

22
0 sin s1 in2

2x x z
B B B

e E eE
p

m m
α α

ε ε
ω ω ω

 
= + + 

 

.   (13)  

Equation (11) is intended for Hermitian functions 
[15] and has a finite solution only for a discrete series of 


xε  values: 
 ( )2 1 , where  0,1,2,x n nε = + = …      (14) 

The expressions (13) and (14) determine a possible 
range of energy xε  which is related to the electron mo-
tion in the plane normal to the magnetic induction vec-
tor and can be represented as 

2

0 02
,1

2
d

x B
mv

n eE xε ω = + + − 
 

         (15) 

where 0

0

sind
E

v
B

α=  is a drift velocity of the electron 

Larmor orbit center in crossed electric and magnetic 
fields in the classical description. 

The part of the electron wave function that describes 
the electron motion in the plane normal to the magnetic 
field, can be represented in the explicit form as 

( ) ( )
21, ,

22 !
z

nn

ip zx z exp H exp
n

ξψ ξ
π

   = −   
   

    (16) 

where ( )nH ξ  is the Hermitian polynomial of n-th or-
der. 

Eq. (7) that defines the electron motion along the 
magnetic field can be reduced to 

2

2 0, d Y Y
d

η
η

− =    (17) 

where the dimensionless η coordinate is linked to the y 
coordinate by the following relation 

1
3

0

0

cos
co

2
.

s
yEmeE

y
eE

α
η

α
  = −  

   

 (18) 

The solution of (17) can be reduced to the solution 
of the equation for the Bessel function of order 1/3 [15]: 

( ) ( ) ( ) ( ) ( )1 2
1 1
3 3

,Y AH BHη η η= +          (19) 

where ( ) ( )1
1
3

H η and ( ) ( )2
1
3

H η  are the Hankel functions of 

the 1st- and 2d-order, respectively [15]. The range of 
electron energies yε  is the characteristic of the electron 
motion along the magnetic field; it assumes a continu-
ous series of values. 
 

2. BARRIER-PENETRATION 
COEFFICIENT IN METAL IN THE 

PRESENCE OF COLLINEAR MAGNETIC 
AND ELECTRIC FIELDS 

 

We turn here to the problem of the dependence or 
independence of the barrier-penetration coefficient of a 
metal electron under electron field emission in the case 
of parallel electric and magnetic fields 0 0( || )E B

 

. 
Choosing, as before, the form of the magnetic field 
vector potential to be ( )00,0,A eB x= −



 we can write the 
explicit form of the Hamiltonian operator of an electron 
penetrating the potential barrier in metal due to the 
external electric field as follows 

( ) ( )
( )

22 2
2 2

02 2

2

0
0

1
2

sin cos (20)
16 sin cos

sin cos

ˆ

_

,

H i eB x
m zx y

eC eE x y
x y

x y

α α
πε α α

σ α α

 ∂ ∂ ∂ = − − + − −  ∂∂ ∂    
 

+ − + −   
+  

× +

  

where ( )
0        0  
1        0  

α
σ α

α
<

=  ≥
. 

Eq. (18) implies the same coordinate system as that 
shown in Fig. 1 and includes the following symbols: C 
is the potential barrier height; ( )0 sin cos  eE x yα α− + is 
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the potential energy of an electron present in the exter-
nal electric field of given configuration; 

( )2
0/16 sin cose x yπε α α+  is the electron potential 

energy related to the interaction of the electron with its 
”positive” mirror image. 

Examine the form of the Hamiltonian operator in a 
special case of the electric and the magnetic fields being 
collinear, i.e. at the angle α = 0 (as discussed in [2]). In 
this case the Hamiltonian operator has additive nature, 
that is, it can be represented as a sum of two operators, 
each acting on only one variable, either x or y 

( ) ( ) ( )ˆ ,ˆ,ˆ
x yH x y H x H y= +                     (21) 

( ) ( )
2 2

2
02 ,

2
ˆ

x zH x p eB x
m x

 ∂
= − + − ∂ 

       (22) 

( ) ( )
2 2 2

02
0

.
2 16

ˆ
y

eH y C eE y y
m yy

σ
πε

 ∂
= − + − − ∂  

   (23) 

Here the Schrödinger equation for the electron wave 
function ( ),x yψ can be written as 

( ) ( ){ } ( ), .ˆ ˆ
x yH x H y x yψ εψ+ =           (24) 

Considering the additive nature of the differential 
operator in (21)-(23), the expression for the component 
of the ( ),x yψ  wave function is sought for in the multi-
plicative form 

( ) ( ) ( ), .x y X x Y yψ =                  (25) 
Substitution of (24) into (25) makes it necessary to 

solve two independent differential equations 
( ) ( ) ( ) ( ),  ˆ     , x xH x X x X x x ºε= −∞ +∞ ,         (26) 

( ) ( ) ( ) ( ),       ,ˆ   ,y yH y Y y Y y y ºε= −∞ +∞          (27) 
where the quantities xε  and yε  determine possible 
electron energy ranges along the magnetic field and in 
the perpendicular thereto plane. The relations (26) and 
(27) reveal a possibility of an independent description of 
the electron motion along the x- and y-axis as the elec-
tron penetrates the potential barrier at the metal-vacuum 
interface in the case of the collinear electric and mag-
netic fields. Proceeding from the above considerations, 
we can conclude that the barrier-penetration coefficient 
is independent of the magnetic field for the case of par-
allel electric and magnetic fields as was rightly sup-
posed but not proved in [2]. 
 

3. THE CHANGING OF THE POTENTIAL 
BARRIER UNDER THE MAGNETIC FIELD 

INFLUENCE 
 

To better understand the influence of the external 
constant magnetic field on the field emission process 
let's consider its effect on the form of the potential step 
at the metal-vacuum surface in the case when the mag-
netic field is parallel to the surface. The Schrödinger 
equation for this case takes the following form 

( )
( ) ( )

2
22 2

02

2

0
0

1
2

, 

16

y z
d p p eB x

m dx
x x

eeE x
x

ψ εψ

πε

  
− + + −  

   = 
  + − − −    



 (28) 

where the Hamilton operator is 
22 2

2 2
02 2

2

0
0

ˆ 1
2

.
16

H i eB x
m zx y

eeE x
xπε

 ∂ ∂ ∂ = − − − + − −  ∂∂ ∂    

− −

  

  

As follows from the explicit form of the Hamiltoni-
an operator Ĥ , it does not explicitly depend on time 
and does not include the y- and z-coordinates in the 
explicit form, so it is commutative with the operator of 
the y-th and z-th components of the momentum we can 
get the equation for the wave function component 

( )xψ that describes the electron motion 
2 22 2

02 2
0

2 ' 0, 
2 16

B x md m eeE x
xdx

ωψ ε ψ
πε

 
− − − − = 

 

     (29) 

where 
2 2

2 2
y z

p p
m m

ε ε +′ = + . And the effective potential 

energy ( )V x  of an electron near a metal surface is 
described as following 

( )
2 2 2

0
0

.
2 16

B x m eV x eE x
x

ω
πε

= − −              (30) 

Fig. 2 in different scales shows a comparison of the 
potential barrier near the metal surface in the absence of 
a magnetic field and in the case of an external uniform 
magnetic field parallel to the surface of the metal. 
 

 a 

 b 
Fig. 2. Effective potential energy V(x) of an electron 
near a metal surface, as given by eq. (30) in different 
scales: from 0 to 6·10-8 m (a); from 0 to 1.2·10-3 m (b).  

The line is the case of E=100 MV/m, B=0. 
By dots shows the case E=100 MV/m, B=1 T 

 
From the figure we can see that near the surface the 

form of potential step remains intact. But at some dis-
tance from the metal surface the potential step becomes 
infinite. As result we expect that the field emission 
process in presence of the external magnetic field paral-
lel to the metal surface will occur only for a limited 
interelectrode distance. 
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4. THE POSSIBLE EXPERIMENTS 
 

The experimental studying of the effect of the mag-
netic field on the field emission current is planned in 
Institute of Applied Physics, National Academy of Sci-
ences of Ukraine. The Fig. 3 shows the experimental 
setup, which is built to study the high vacuum high 
gradient breakdowns, but it can operate for researching 
the field emission current. 
 

 
Fig. 3. Schematic drawing of the experimental setup 

4 

The composition of the experimental setup consists 
of: high-vacuum chamber with the sample-fixing mech-
anism that allows to control motion of the samples dur-
ing the experiment, monopole mass spectrometer for 
control the composition of the atmosphere in a vacuum, 
system of registration the current before breakdown and 
directly the breakdown, the system of heating vacuum 
chamber and computer control system installation. 

This setup allows to set the gap from 10 microns to 
1 mm and apply voltage up to 50 kV. The setup has all 
necessary equipment, that allows to measure the field 
emission current down to 0.1 nA. These parameters 
allows to investigate current in wide regions of gradi-
ents and gaps. 

Theoretically field emission current is well de-
scribed by the Fowler-Nordheim equation which in-
cludes image forces gives the following expression for 
the current density: 

3
3 2 324 2  exp  

8 3
e E m e Ej v

h eE
ϕ

π ϕ ϕ

   =       


,  (31) 

where ϕ  is the work function of electrons, ( )v y  is 
Nordheim function that has been evaluated for repre-
sentative values of y. 

The explicit form of the expression for the field 
emission current-density contains the electric field 
strength and we assume that it is possible to find evalua-
tion of the influence of the magnetic field using Lorentz 
covariance. For case the same electromagnetic invari-
ants in the presence of the magnetic field the electric 
field strength will change as following 

2 2
*

21 B cE E
E

= − .  (32) 

As can be seen from the equation the influence of 
the electric field should be reduced in presence of the 
magnetic field. 

 
Fig. 4. The working chamber of the experimental setup 

 

The working chamber of the experimental setup 
(Fig. 4) allows puts inside the magnet for studying the 
magnetic field influence on the field emission current. It 
is possible to conduct a study the influence of the mag-
netic field magnitude of 1.5 T. According to the prelim-
inary estimates (Eq. (32)) for the field emission current 
order of hundreds nA the influence of  the magnetic 
field will be about 20% of current without magnetic 
field. Studying the possibility of locking the field emis-
sion current by external magnetic field also exists in this 
experimental setup. 

 

5. SUMMARY 
 

The authors propose a solution for the problem of 
electron quantum-mechanical motion in external con-
stant and uniform electric and magnetic fields crossing 
at an arbitrary angle. The electron wave function has 
been derived in the explicit form for an electron moving 
in thus superimposed fields. 

It is shown that in the case of collinear electric and 
magnetic fields the coefficient of the potential barrier 
penetration by the electron does not depend on the mag-
netic field. This fact supports the supposition made by 
F.J. Blatt [2] which, to our knowledge, has so far re-
ceived neither theoretical no experimental confirmation. 

As is apparent from the form of differential equation 
the electron barrier penetration coefficient depends in 
the general case on the magnetic field. 

The form of the potential step at the metal-vacuum 
surface in the case when the magnetic field is parallel to 
the surface is shown. Hence the field emission current 
can be controlled by the external magnetic field.  

The preliminary estimates for the field emission cur-
rent under the influence of the magnetic field were 
done. 

The estimation of the barrier penetration coefficient 
and field emission current in the presence of the mag-
netic field will be a subject of further investigations. 

 

ACKNOWLEDGEMENTS 
 

Publication is based on the research provided by the 
grant support of the State Fund For Fundamental Re-
search (project № Φ58/174-2014) as well as by the 
National Academy of Sciences of Ukraine (NASU) 
under the program of cooperation between NASU, 
CERN and JINR Prospective Research into High-
Energy and Nuclear Physics under Contract № ЦO-5-
1/2014). 

 



ISSN 1562-6016. ВАНТ. 2015. №4(98) 66 

REFERENCES 
 

1. Morten Kidemo. New spark-test device for material 
characterization // Nucl. Instrum. and Methods A. 
2004, v. 530, p. 596-606.  

2. F.J. Blatt. Field emission in a magnetic field // Phys. 
Rev. 1963, v. 131, p. 166-169. 

3. R.F. Waites, H.A. Schwetman. Field emission from 
bismuth and tungsten in a magnetic field // Phys. 
Rev. B. 1973, v. 8, p. 2420-2425. 

4. P.J. Kennedy, A.Y. Muir. Modification of field-
emission currents from tungsten by external magnet-
ic fields // Solid State Commun. 1978, v. 27, p. 279-
281. 

5. D.J. Flood. Field emission in high magnetic fields //  
J. Phys. Chem. Solids. 1970, v. 31, p. 1649-1650. 

6. G.A. Gogadze, F.I. Itskovich, I.O. Kulik. Quantum 
oscillations of the cold emission current from metals 
in a magnetic field // Zh. Eksp. Teor. Fiz. 1964, 
v. 46, p. 913-919. 

7. I. Buribaev, B.B. Shishkin. Field emission of a tung-
sten in a magnetic field // Fiz. Tverd. Tela. 1970, 
v. 12, p. 3309-3311 (in Russian). 

8. G.N Fursey, V.E. Ptitsyn, N.V. Egorov. The influ-
ence of the magnetic field on the field emission pro-
cess from W // Pis’ma Zh. Tekh. Fiz. 1979, v. 5, 
p. 1161-1164. 

9. V.E. Ptitsyn, G.N. Fursey, N.V. Egorov. Anomalies 
of the field emission process in a magnetic field // 
Pis’ma Zh. Tekh. Fiz. 1980, v. 31, p. 733-737. 

10. A. Ghosh, S. Chakrabarty. The work function asso-
ciated with ultra-relativistic electron emission from 
strongly magnetized neutron star surface // 
J. Astrophys. Astr. 2011, v. 32, p. 377-390. 

11. A. Ghosh, S. Chakrabarty. Fowler-Nordheim elec-
tron cold emission formalism in presence of strong 
magnetic field // Mon. Not. Astron. Soc. 2012, p. 1-9. 

12. A.K. Harding, D. Lai. Physics of strongly magnet-
ized neutron stars // Rep. Prog. Phys. 2006, v. 69, 
p. 2631-2708. 

13. S.D. Liang, N.Y. Huang, S.Z. Deng, N.S. Xu. Chiral 
and quantum size effects of single-wall carbon nano-
tubes on field emission // Appl. Phys. Lett. 2004, 
v. 85, p. 813. 

14. S.D. Liang, N.Y. Huang, S.Z. Deng, N.S. Xu. Quan-
tum effect in the field emission of carbon nanotubes 
// J. Vac. Sci. Technol. 2006, B 24, p. 2. 

15. G.N. Watson. A treatise on the theory of Bessel 
functions. Cambrige: At the university press, 1922. 

16. L.D. Landau, E.M. Lifshitz. Quantum Mechanics 
(Volume 3 of A Course of Theoretical Physics). Per-
gamon Press, 1965.  

Article received 30.04.2015 
 

 
ВЛИЯНИЕ МАГНИТНОГО ПОЛЯ НА ДВИЖЕНИЕ ЭЛЕКТРОНОВ ДЛЯ ОПИСАНИЯ ПРОЦЕССА 

ПОЛЕВОЙ ЭМИССИИ 
 

С.А. Лебединский, В.И. Мирошниченко, Р.И. Холодов, В.А. Батурин 
 

Решается уравнение Шредингера для волновой функции электрона, движущегося в суперпозиции внеш-
них постоянных и однородных электрическом и магнитном полях под произвольным углом между их 
направлениями. Показано изменение потенциального барьера под влиянием магнитного поля, параллельно-
го поверхности. 

 

ВПЛИВ МАГНІТНОГО ПОЛЯ НА РУХ ЕЛЕКТРОНІВ ДЛЯ ОПИСУ ПРОЦЕСУ ПОЛЬОВОЇ ЕМІСІЇ 
 

С.О. Лебединський, В.І. Мирошніченко, Р.І. Холодов, В.А. Батурін 
 

Розв’язується рівняння Шрьодінгера для хвильової функції електрона, що рухається в суперпозиції зов-
нішніх постійних і однорідних електричному і магнітному полях під довільним кутом між їх напрямками. 
Показано зміну потенційного бар'єру під впливом магнітного поля, що паралельне поверхні. 


