
ISSN 1562-6016. ВАНТ. 2015. №4(98) 232 

SINGULAR SOLUTIONS AND DYNAMIC CHAOS 
V.А. Buts 

National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine 
E-mail: vbuts@kipt.kharkov.ua 

It is shown that singular solutions of ordinary differential equations may cause new dynamic chaos conditions 
and new dynamic chaos modes. In particular, these solutions may lead to the dynamic chaos modes in a completely 
integrable system. An example of a physical system with dynamics significantly affected by the presence of singular 
solutions is analyzed. This example is the movement of particles in the central fields. 
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INTRODUCTION 
Singular solutions of differential equations are well 

known in mathematics. It is sufficient to point to the 
fact that the term “singular solutions” has been intro-
duced by Joseph Louis Lagrange (1736-1813). In this 
paper, by the term “singular solutions” we assume the 
solutions of the system of ordinary differential equa-
tions (ODE) which have points of phase trajectories 
where the conditions of uniqueness are violated (non-
Lipshitz condition). However, the analysis of mathemat-
ical models that describe physical processes, it seems, 
always imposes either explicit or implicit condition of 
uniqueness (author have not found cases which contra-
dicts this). This condition excludes the singular solu-
tions. As the example, we can provide the definition of 
the basic properties of the phase space, in which regular 
and stochastic dynamics of physical systems is investi-
gated [1]: "Trajectories in phase space do not intersect 
at any particular moment of time…". This restriction 
immediately eliminates all singular solutions. Such 
attitude to the singular solutions appears, apparently, 
due to the fact that they do not correspond to our con-
cept of specific solutions of physical problems. We also 
note that, according to the literature, quite detailed 
analyses of singular solutions were given by V.A. 
Steklov [2]. However, this book is very difficult to find. 
In [3] was a point out that the singular solutions can 
generate chaotic dynamics in systems with known ana-
lytical solutions for all the phase trajectories (for fully 
integrated systems). Thus, the presence of the analytical 
solutions for the phase trajectories does not define the 
regular dynamics of a system under investigation. It 
may be assumed that the models considered in [3] to-
gether with the numerous models with singular solu-
tions in mathematics are interesting only from the math-
ematical point of view. Below, we show that such solu-
tions may be also important for solving physical prob-
lems. In the second section of this publication some 
basic mathematical models with the dynamics deter-
mined by singular solutions are analyzed.  It is shown 
that their dynamics is chaotic. It is important that such 
systems have only one degree of freedom and are fully 
integrable. Thus, the one of the main paradigms of the 
dynamic chaos theory, namely that the chaos can appear 
only in a system with more than one degree of freedom, 
breaks down. The third section contains the physical 
example, which shows the influence of singular solu-
tions on the dynamics of the system. Such example is a 
dynamics of the particles (bodies) in the central field. It 
is shown that the singular solution of this problem sig-

nificantly affects the dynamics in this field at some 
values of parameters. The fourth and final chapter 
summarizes the main results and highlights the features 
of chaotic modes that emerged as the result of account-
ing for singular solutions. 

1. SPECIAL SOLUTIONS AND CHAOTIC 
DYNAMICS, GENERATED BY THEM 

Here is the simplest example of a mathematical 
model that has singular solution: 

                        

dy y
dx

= .                                     (1) 

It is nonlinear first order ordinary differential equa-
tion. Its general solution has the following simple form: 

          ( )21( , , ) 0
4

F x y C y x C= − + = .                  (2) 

 
Fig. 1. Quadratic parabola of the solution of (1) 

We obtain the set of particular solutions of this equa-
tion by changing the value of constant C . Each of these 
particular solutions is the quadratic parabola (Fig. 1). 
However, all these particular solutions do not contain 
the solution 0y = . However, as it is easy to see from 
the equation, this expression also satisfies the equation 
(1), i.e. it is the solution of the equation. This is the 
singular solution of equation (1). This feature of singu-
lar solutions that they cannot be obtained from the gen-
eral solution by changing the arbitrary constants was 
one of the first definitions of these solutions. Later it 
became clear that these solutions have more important 
feature. Namely, the uniqueness theorem is violates at 
the points of these solutions. It is easy to see, from 
equation (1), that in the points of singular solutions 
( 0y = ) Lipshitz conditions are not fulfilled. In addition, 
the figure shows that all partial solutions pass through 
the points of singular solutions ( 0y = ). There is a gen-
eral question: How to find singular solutions of differen-
tial equations? For ordinary differential equations of the 
first order to do this is quite easily. There are several 
ways to find such solutions. We consider only one of 
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them. By its nature, singular solutions are the trajectory 
or the surface (of different dimensions), which envelope 
the general solution of differential equations. Therefore, 
finding such solutions can be associated with finding 
envelopes of the overall solution. Let us demonstrate 
this statement on the system of equation (1). To find the 
envelope, as it is known, we need to differentiate the 
general solution (2) by an arbitrary constant C and 
equate the derivative to zero: 

               
( )1 0

2
F x C
C
∂

= + =
∂

.                        (3) 

From this expression, we must determine the con-
stant C and substitute it in the expression for the general 
solution (2). As a result, we find a singular solution. 
This solution in this simple example, of course, coin-
cides with the above solution. Unfortunately, such a 
simple procedure for finding singular solutions is char-
acteristic only of the first order ODE. To illustrate the 
difficulty of finding specific solutions for the ODE of 
higher order, consider one of the possible algorithms for 
their finding. To do this, write the ODE system in the 
canonical form: 

 
                          

( ), xk
k

dx f t
dt

=
 .                          (4) 

Suppose that we have found general solution to this 
system of equations. Let this solution has the form:  

                  ( , )k kx t Cϕ=


.                           (5) 
It is seen that even at this first step in most real sit-

uations, we encounter difficulties. Now, by analogy 
with the general principle of finding envelopes, we need 
to find a vector of arbitrary constants C



. The easiest 
way to do it is to use such way. We assume that these 
constants are functions of time. Then the complete time 
derivative of the general solution of (5) will have the 
form: 

 
                    1

n
kk i

i

k

i

dC
C dt

dx x
dt t

ϕ
=

∂
∂

∂
= +

∂ ∑ . 

From this expression we can see that if the second 
term on the right vanishes:

   

     1
0,

n
k i

i i

dC
C dt
ϕ

=

∂
=

∂∑     { }1,2,.......k n= ,         (6) 

then the general solution (5) is left as the solution of the 
original equation (4) in spite of the dependence of the 
constants on the time ( )C C t=

 

. The system of equa-
tions (6) will be the main for the determination of the 
vector C



. First of all, note that the system (6) has a 
nontrivial solution for derivatives /idC dt  only when its 
determinant will become zero: 

 

                

1

1

......

det ..... .... ..... 0

.....

k k

n

n n

n

C C

C C

ϕ ϕ

ϕ ϕ

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

.                 (7) 

This will be the second relation for finding the vec-
tor of constants C



. Suppose that we by using (7), found 
one of the constants expressed through other constants: 

               1 2 1( , , ,..... )n nC F t C C C −= .                      (8) 
Then their derivation will have such form:  

               

1

1

n
n

n i
i i

dC F FC C
dt t C

−

=

∂ ∂′ ′= = +
∂ ∂∑ .                   (9) 

Substitute expressions (8) и (9) into first (n-1) equa-
tions (6): 

1 1

1 0

1

1
0,

n n
k i k k i

n
i ii n i

n
k i

in i

dC dC
C

C dt C C dt

dCF F
C t C dt

ϕ ϕ ϕ

ϕ

− −

= =

−

=

∂ ∂ ∂′+ = +
∂ ∂ ∂

 ∂ ∂ ∂
+ + = ∂ ∂ ∂ 

∑ ∑

∑
 

{ }1,2,....... 1k n= − .                          (10) 
The system (10) is linear ODE for finding deriva-

tives /idC dt . We find after solving (10): 

 1 2 1( , , ... )i
i n

dC F t A A A
dt −=     { }1,2,....... 1 ,i n= −     (11) 

where A


 is vector of new independent constants. 
The formulas (8) and (11) allow potentially find all 

the components of the vector C


. Substituting them in 
the expression for the general solution of (5), we will 
find set of singular solutions.  

As we can see, the implementation of the considered 
algorithm for finding singular solutions is generally a 
separate challenge. Only in rare cases it can be imple-
mented analytically. 

Let us present a simple example of a nonlinear ODE, 
on which can be illustrated the above algorithm to ob-
tain singular solutions, as well as all the difficulties that 
can arise while. It is a model example [4]. So, let there 
be given: 

2 0,xy y z y′ ′ ′+ + − =                       (12) 

                           0.z y y z z′ ′ ′+ − =  
In accordance with the above algorithm, we need to 

have a general solution of the system (12). In this case, 
these solutions are easy to find: 

                       
2

1 1 2y c x c c= + + ,                      (13) 

                               2 1 2 .z c x c c= +  
Let us find determinant (7) for these solutions: 

 ( )
( ) ( ) ( )1

1 1 2
2 1

2 1
2 0

x c
x c x c c

c x c
+

= + + − =
+

. (14) 

From (14) we will find 2c :   

( )( )2 1 12 .c x c x c= + +               (15) 
Let us the expression for 2c substitute in system of 

equations (6). For our example this system has the form: 

( )1 1 22 0x c c c′ ′+ + = , 

2 1 1 2( ) 0c c x c c′ ′+ + = .                  (16) 

As a result of the substitution we get 1 0.5c ′ = −  − 
from the first equation of the system (16). Using this 
relation and the expression (15), we find one of the sets 
of singular solutions: 

2 20.25 3y x Ax A= − ⋅ + + , 
2 2 30.5 2 2z x A x A A= ⋅ + ⋅ ⋅ + .             (17) 

Expressions (17) are a one-parameter set of singular 
solutions in which is a new parameter − arbitrary con-
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stant A . Another set of special solutions can be obtained 
using the second equation (16). A complete solution of 
the model system (12) we shall not write out. Now we 
can see, that use of the above algorithm for finding 
singular solutions for real systems is a complex prob-
lem. We will not use it here. The main result that can be 
get out of this algorithm is that an increase in the num-
ber of degrees of freedom of the system being studied 
follow to the growing set of singular solutions. There-
fore, we can expect that for complex systems with many 
degrees of freedom, they will play a more significant 
role than for simple systems. In this paper we will be 
interested, first of all, those particularly of singular 
solutions that are in uncertainty of those phase trajecto-
ries that come to the points of these solutions. In most 
cases, it is easy to solve problems. It is enough to ana-
lyze the right-hand sides of equations (4) for the imple-
mentation Lipshitz conditions for them. Even easier: 
should look at the derivatives of right-hand sides from 
the dependent variables in, for example, systems (4). If 
these derivatives in some points of the phase space will 
be infinitely large, then these areas will be those areas in 
contact with which there appears uncertainty. When 
taking into account the singular solutions it can be easi-
ly implemented modes of dynamic chaos. For this it is 
necessary that the phase trajectories of the dynamical 
system periodically get to the points of singular solu-
tions. In extreme cases, as we shall see in the following 
section, these trajectories should be approached enough 
close to points of singular solutions. As a typical exam-
ple, let us consider the dynamics of the system, which is 
described by the following equations: 

0 1x x= ;          
2
1

1 0
0

0.5
2
xx x
x

 
= − ⋅ 
 

 .         (18) 

The dynamics of such a system has been studied in 
[3]. Here the most important characteristics of this 
system are represented. First of all, it is easy to show 
that the function ( )2 2 2

0 1 0x R x Rϕ = − + − =  is an inte-
gral of the system (18). Moreover parameter R  (the 
radius of the circles) can take arbitrary values. The 
system (18) is a model of an oscillator with nonlinear 
friction. The phase portrait of the system (18) is shown 
in Fig. 2. Integral curves in this case are the circles. The 
center of these circles are located on the axis 1 0x = . 
The radii of circles are equal to the distance of center to 
the zero point ( 0 10; 0x x= = ). This point is common 
point to all circles. In addition, this point is a singular 
solution of (18). Looking at the integral equation (18), it 
is difficult to imagine that the dynamics of the system 
(18) may be irregular. However, numerical calculations 
show that it is irregular. Indeed, Fig. 3 shows the de-
pendence variable 0x on the time. It is seen that the 
phase trajectory after passing the point of singular solu-
tion ( 0 1 0x x= = ) can jump from one circle to another 
circle. And these jumps occur randomly. Practically any 
change accuracy of calculation change the time dynam-
ics of this system. In addition, spectral analysis of the 
system (18) shows that her spectrum is broad and the 
correlation function decays quite quickly (Fig. 4). 

 
Fig. 2. Phase portrait of the system (18) 

 
Fig. 3. Time dependence of the variable 0x . 

One can see transitions image point from one circle  
to another 

 
Fig. 4. Autocorrelation function of the variable 0x  

The system (18) is not unique. In [3] has been sta-
died the dynamics of other system: 

0
0 1 1 1

dx x x x F
dt

γ= ⋅ + ⋅ ≡ ; 2 41
1 0 0 2

dx x x x F
dt

γ= − − ⋅ ≡ .  (19) 

It has been shown that in the vicinity of zero this 
system has an area in which the uniqueness theorem is 
break down. In addition, the phase trajectories are peri-
odically fall into this region. The dynamics of this sys-
tem is irregular. In [3] also shows how you can con-
struct set of systems that have the desired properties. 

2. KEPLER PROBLEM 
The above examples do not contain a clear physical 

meaning. In this section we show that taking into ac-
count singular solutions can be substantial and for well-
known physical models. The first physical example of a 
system with one degree of freedom is the problem of the 
motion of the particle in a central field. This problem 
due to the existence of the integral, which expresses the 
law of conservation of angular momentum, is reduced to 
the task having only one degree of freedom. Moreover, 
take into consideration integral of the energy, this prob-
lem is fully integrated. Below we show, despite its 
integrability in its dynamics can be observed modes that 
resemble modes with dynamic chaos. Such dynamics 
occur when the phase trajectories pass near the points of 
singular solutions. The dynamics of particles in the 
central field can be described by the following system 
of equations: 

r v=  
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( )2

2 3 2

cos tMv
m r mr rγ

β ωα ⋅ ⋅
= − − ,          (20) 

2/ ,M mrϕ =  
here 2M mr constϕ≡ =  angular moment of the impulse. 

For definiteness in (20) we introduced Coulomb (for 
the motion of charged particles) or gravity (Kepler 
problem) potential. In addition, we took into account a 
small external perturbation 1β << . In particular, if 

4,γ =  0ω =  it can mean that the shape of the attracting 
center differs from a strictly spherical shape. If 

4, 0γ ω= ≠  it may be an ion that is in an external 
periodic electric field.  

It should be noted, that the third equation in (20) 
does not affect the dynamics of the first two equations. 
The dynamics of the angular variable is uniquely deter-
mined by the radial dynamics. The system (20) has one 
degree of freedom in this case.  

If we take into account the energy integral, the prob-
lem of the dynamics in the central field is fully integrat-
ed. Such solutions can be found in many of the courses 
of mechanics (see, e.g., [5]). 

Our task is to show that, despite the complete inte-
grability, the dynamics of such system can be very 
complicated and, in some sense, chaotic. This case is 
similar to that which was discussed in the previous 
section. The difference lies mainly in the fact that it is a 
well-studied physical problem. The second difference is 
that the phase trajectories of the system are not strictly 
go through a singular solution. 

These trajectories are going close to the area of vio-
lations of the uniqueness theorem, not getting into it 
directly. The value of proximity which necessary for 
realization of chaotic regimes is determined by parame-
ters of the system, the accuracy of numerical calcula-
tions and the value of small external perturbations. Let 
us illustrate these features. First, consider the dynamics 
of the system (20) in the absence of disturbance 0β = . 
Select the next parameter: (0) 10r = ; (0) 0.1r = ; 

(0) 0ϕ = ; 0.3a = ; 2;b = There / ; /a M m b mα≡ ≡ . 
Typical results of numerical calculations of a Kep-

lerian dynamics of the system (20) are shown in Fig. 5. 

 
Fig. 5. The typical time dependence of the distance  

of the particle from the center of attraction 
To further illustrate the regular dynamics of a parti-

cle in Fig. 6 shows the result of the influence of asym-
metric form the center of attraction. It is known that the 
deviation of the attractive potential of a spherically 
symmetric shape the perihelion rotates at an angle dif-
ferent from 2π . In addition, the same feature perihelion 
motion observed if we take into account the effects of 
relativism. There arises, so-called rosette trajectory of 
Somerfield (Fig. 6). From these figures it is clear that 

the dynamics is regular. And it can be shown that the 
smaller the value of the angular momentum (option), the 
closer the trajectory of light particles will approach the 
attracting center. The coordinates of the center of attrac-
tion is a singular solution. 

 
Fig. 6. Rosette trajectory, similar to the Sommerfed 

trajectory. The system parameters (20): 
(0) 10r = ; (0) 0.1r = ; (0) 0ϕ = ; 
0.1β = ; 0, 4ω γ= = ; 1.5; 2a b= =  

At this point, the uniqueness theorem is violated. 
Fig. 6 illustrates the fact that the integral curves in the 
neighborhood of this point are "thicken". Therefore, 
even a small perturbation of the trajectories in this area 
may transfer moving body from one trajectory to anoth-
er trajectory. In this case previously closely spaced 
particles in other regions of the phase space can be 
located far away. The forces that relocate the moving 
body from one trajectory to another can be very small 
and can generally be random. But even in the case when 
they are regular but periodic, and the period of these 
forces does not coincide with a period of body motion 
around the center of attraction, the dynamics of the body 
may be random. Indeed, let us introduce a small regular 
periodic perturbation ( 0.0001β = , 0γ = ). All other 
parameters of the system (20) remain unchanged. The 
dynamics of the moving body in this case is shown in 
Fig. 7. From these figures it is seen that the moving 
body jumps randomly from one trajectory to another 
trajectory. The spectrums of this movement are wide, 
and the correlation function decays rapidly. This result 
we have obtained with high accuracy of calculations. If 
the numerical calculations carried out at a lesser degree 
of precision then a similar picture (the emergence of the 
irregular dynamics) appears in the absence of external 
perturbation. 

 
Fig. 7. The typical time dependence of the distance of 

the particle from the center of attraction 
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CONCLUSIONS 
Here are the most important results obtained in this 

work: 
1. The most significant result is the result that singu-

lar solutions must take into account in the analysis of 
many physical processes. 

2. As shown in Section 2, set of singular solutions 
increases with the number of degrees of freedom of the 
system under study. This means that the role of singular 
solutions is particularly high in the dynamics of com-
plex systems. 

3. Draw attention that in general, the search for spe-
cial solutions is challenging. However, for practical 
purposes, for the estimates, it is sufficient to determine 
the region of phase space, in which is a violation of the 
uniqueness theorem. In this case, if the phase trajectory 
of the studied system in its dynamics often visits this 
area, the dynamics of these systems will be chaotic. 

4. Note that in such tasks as body motion in a cen-
tral field, the appearance of singular solutions is a natu-
ral and objective characterize the dynamics of the sys-
tem under study. 

5. It should be noted that even in the case when the 
phase trajectories do not fall into area with singular 
solutions, but are enough close to it, consideration of 
these singular solutions can also be very significant. As 
we have saw in the example the motion of bodies in a 
central field, in this case, even a very small, but the 
unaccounted external forces can qualitatively change the 
dynamics of the system. 

6. Thus, the account of singular solutions signifi-
cantly expands the range of physical systems in which 
can be realized regimes with chaos. 

7. It should also pay attention to the fact that the 
physical nature of the onset of chaos, which is generated 
by singular solutions, is different from the nature of 
occurrence of the usual dynamic chaos. The most signif-
icant difference is the appearance of chaotic dynamics 
in fully integrated systems. Unpredictable divergence 
phase trajectories occur only in the vicinity of singular 
solutions. 

8. In the present work, we focuses our attention on 
the role of singular solutions in the emergence of re-
gimes with dynamic chaos. Singular solutions can play 
a significant role in many other cases. One thing is clear 
that they must be taken into account in the study of the 
dynamics of physical systems. 
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ОСОБЫЕ РЕШЕНИЯ И ДИНАМИЧЕСКИЙ ХАОС 
В.А. Буц  

Показано, что учет особых решений систем обыкновенных дифференциальных уравнений может приво-
дить к новым условиям появления режимов с динамическим хаосом. В частности, показана возможность 
возникновения режимов с динамическим хаосом в полностью интегрируемых системах. Приведен пример 
физической системы, динамика которой может существенно зависеть от наличия особых решений. Такой 
системой является система, которая описывает движение тел в центральном поле. 

ОСОБЛИВІ РОЗВ’ЯЗКИ ТА ДИНАМІЧНИЙ ХАОС 
В.О. Буц 

Показано, що врахування особливих розв’язків систем звичайних диференціальних рівнянь може приз-
водити до нових умов появи режимів з динамічним хаосом. Зокрема, показана можливість виникнення ре-
жимів з динамічним хаосом у системах, що повністю інтегруються. Наведено приклад фізичної системи, 
динаміка якої може істотно залежати від наявності особливих рішень. Такою системою є система, яка опи-
сує рух тіл у центральному полі. 

 
 


