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The results of fractal analysis of the fractal ultra-wideband (FUWB) signals were proposed. With usage of the 

continuous wavelet transform the time-frequency structure of that signals was investigated. Calculating the box and 
the regularization dimensions for each model signal with various its parameters values, three different estimators 
were applied. The optimal estimations of the fractal dimension value for each FUWB signal model were defined.  
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INTRODUCTION  
Resent time there is a significant interest to the non-

traditional signal type applications, in particular, to us-
age of the ultra-wideband (UWB) signals, which should 
be considered as one of such signal types [1 - 4]. One of 
modern UWB signal classes proposed by authors in 2004 
is the fractal ultra-wideband (FUWB) signals [5, 6].  

But the new signal type usage needs to apply the 
modern signal analysis methods. The wavelet analysis 
was appeared to be such good and forward-looking one 
[7 - 9]. Nevertheless, the fractal signals, in particular the 
FUWB signals, require to apply a specific investigation 
method, developed specially for such signals. The frac-
tal analysis can be considered as the such one. This idea 
seems to be modern, useful and actual.  

1. FUWB SIGNAL MODELS 
1.1. FUWB SIGNAL DEFINITION  

By the B. Mandelbrot’s definition [10], fractal is a 
set, whose topological dimension is greater then 
Hausdorf’s one. The fractal function is supposed to be a 
function with fractal properties [11, 12].  

The fractal UWB signal is defined as a UWB signal 
with self-affine property and fractal dimension [5 - 9]. 
In this paper only self-similar FUWB signals are dis-
cussed.  

1.2. FUWB SIGNAL MODELS USED 
Many simple numerical and analytical FUWB signal 

models in time-domain were proposed [7, 8].  
All investigations described in this paper were per-

formed for a lot of these models, as analytical, as nu-
merical. But being strongly limited by the paper volume 
requirements, we show only the results obtained for 
some analytical FUWB signal models.  

Analytical FUWB signals are based on the well-
known fractal functions (see, for example, [10]), which 
have been some modified. They are given by: 
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where 0,5  , t  is the time variable;  ,   and   
are the numerical parameters of the signal, b  is the time 
scale parameter, s  is the frequency scale parameter, D  
is the fractal dimension of the signal, 1 2D  , n  

is the phase distributed randomly at the interval 0,2   , 
M  is the harmonics number (if M   , we obtain a 
mathematical fractal). These analytical models are 
based on the Weierstrass, Riman and Riman-
Weierstrass functions.  

2. FRACTAL DIMENSIONS 
It is well known that a fractal theory was built for 

the mathematical fractals, but in practice we investigate 
the physical fractals [10 - 12]. Therefore, the fractal 
numerical characteristics describing the fractal proper-
ties of the investigated signals should be adapted for 
such case. 

One of the basic characteristics of a fractal (more 
precisely, of coarse, of a mono-fractal) is the Hausdorf’s 
dimension. But for physical fractals represented in digi-
tal form, the Minkovsky’s dimension MD  can be con-
sidered as a good approximation for the Hausdorf’s di-
mension.  

It should be pointed, at the present time, there many 
different fractal dimensions, which are supposed to be 
an estimation of the Hausdorf’s dimension [13, 14]. 
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Moreover, a practical calculation of such dimensions is 
appeared to be not so simple, as it seems [13]. 

Just because two different fractal dimensions, name-
ly the box dimension and the regularization dimension, 
are considered as the good approximations of the 
Minkovsky’s dimension MD , and they were chosen for 
the investigations, described below. 

Three different estimators based on the box counting 
method, the variation method and the regularization 
method [13] allow to obtain two estimations of the box 
dimension ( BD  and VD  correspondently) and one es-

timation of the regularization dimension RD  for the 
investigated signal. The usage of three estimators is 
needed, since each of them has the best accuracy on the 
limited interval of a fractal dimension, as it had been 
shown in the paper [13]. 

3. CALCULATION RESULTS 
3.1. FREQUENCY AND TIME-FREQUENCY 

STRUCTURE 

As the time structure of a FUWB signal is fractal, its 
frequency and time-frequency structures are waited to 
be fractal too. A signal frequency structure is represent-
ed by the spectral density function (SDF) module of the 
one-dimensional Fourier transform (ODFT), as it is usu-
ally performed. A signal time-frequency structure is 
described by the continuous wavelet transform (CWT) 
SDF and its skeleton. As it is known, a skeleton is a 
picture describing the ridges of a two-dimensional real 
function. A ridge is a line at plane, which connects the 
points of the function minima or maxima. 

The calculation results performed for the non-fractal 
UWB signal model ( )UWB t  and for the FUWB models 

1( )FUWB t  and 4( )FUWB t  are shown at the Fig. 1. 
The fractal frequency and time-frequency structures of 

 
Fig. 1. The frequency and the time-frequency characteristics of the investigated model signals:  

a – non-fractal model ( )UWB t  with 2N   in time domain; b – its ODFT SDF module; c – its CWT SDF;  

d – its CWT SDF skeleton; e – model 1( )FUWB t  with 0,5a   and 2b   in time domain; f – its ODFT SDF 

module; g – its CWT SDF; h – its CWT SDF skeleton; i – model 4( )FUWB t  with 0,5D   in time domain;  
j – its ODFT SDF module; k – its CWT SDF; l – its CWT SDF skeleton.  

CWT SDF calculations were performed with usage of the Morlet wavelet 
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the FUWB signals are clearly visible (Figs. 1, f-h; j-l), 
comparing with the corresponding characteristics of the 
non-fractal UWB signal (Figs. 1, b-d). All the CWT 
characteristics were obtained with usage of the Morlet 
wavelet, which has a fractal nature too. It was found, 
that if instead of a fractal wavelet any non-fractal one is 
used, the more smoothed picture will be obtained. 

3.2. FRACTAL DIMENSION ESTIMATIONS 

It is very interesting to estimate a fractal dimension 
for each FUWB signal model and to investigate a de-
pendence of this dimension from the signal parameters. 
Suddenly, but in the most cases there are not any analyt-
ical forms of such dependence. 

Three approximations of the Minkovsky’s dimen-
sion MD  described above were calculated for all 
FUWB signal models. An example of these results are 
presented in the Table. 

Calculating these dimensions for the model 

4( )FUWB t , when the true value of the fractal dimen-

sion is known previously, it was found, that the BD  
estimator is appeared to be the best for 1 1.3D  , 
the VD  estimator – for 1.3 1.6D  , and the RD  

estimator – for 1.6 2D  . These results are well 
agreed with the results described in the paper [13].  

 
Fractal dimensions estimations of the signal model 

1( )FUWB t  with   and   

    RD  BD  VD  
0.2 

6 

1.29 1.31 1.21 

0.3 1.41 1.37 1.34 

0.4 1.52 1.44 1.45 

0.5 1.60 1.48 1.54 

0.6 1.67 1.54 1.61 

0.7 1.73 1.62 1.66 

0.8 1.77 1.58 1.69 

0.9 1.82 1.55 1.71 
 

The fractal dimensions estimations were performed 
with usage of the FracLab2.1 toolbox for MATLAB. 

 
Fig. 2. The estimating of fractal dimensions of the investigated model signals: a – non-fractal model ( )UWB t  
with 2N   in time domain; b – a sample of plot for its box dimension calculation with box method usage; 
c – a sample of plot for its regularization dimension calculation; d – model 1( )FUWB t  with 0,5a   and 

2b   in time domain; e – a sample of plot for its box dimension calculation with box method usage; f – a sam-
ple of plot for its regularization dimension calculation; g – model 4( )FUWB t  with 0,5D   in time domain; 

h – a sample of plot for its box dimension calculation with box method usage; 
i – a sample of plot for its regularization dimension calculation 
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CONCLUSIONS 
• The frequency and the time-frequency structures of 

the model FUWB signals were shown to be fractal. 
• The fractal dimensions of the model FUWB signals 

were estimated, and their dependences from signal 
parameters were found. 

• The bounds of the best efficiency of the each fractal 
dimension estimator were defined. 
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ФРАКТАЛЬНЫЙ АНАЛИЗ ФРАКТАЛЬНЫХ СВЕРХШИРОКОПОЛОСНЫХ СИГНАЛОВ 
Л.Ф. Черногор, О.В. Лазоренко, А.А. Онищенко 

Предложены результаты фрактального анализа фрактальных сверхширокополосных (ФСШП) сигналов. 
С использованием непрерывного вейвлет-преобразования исследована время-частотная структура таких 
сигналов. Для вычисления клеточной и регуляризационной размерностей каждого модельного сигнала при 
различных значениях его параметров использовано три различных метода оценивания. Получены оптималь-
ные оценки величины фрактальной размерности для каждого модельного ФСШП-сигнала. 

ФРАКТАЛЬНИЙ АНАЛІЗ ФРАКТАЛЬНИХ НАДШИРОКОСМУГОВИХ СИГНАЛІВ 
Л.Ф. Чорногор, О.В. Лазоренко, А.А. Онищенко 

Запропоновано результати фрактального аналізу фрактальних надширокосмугових (ФНШС) сигналів. З 
використанням безперервного вейвлет-перетворення досліджено часо-частотну структуру таких сигналів. 
Для обчислення кліткової та регуляризаційної розмірностей кожного модельного сигналу за різних значень 
його параметрів використано три різні методи оцінювання. Отримано оптимальні оцінки величини фракта-
льної розмірності для кожного модельного ФНШС-сигналу. 
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