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The results of fractal analysis of the fractal ultra-wideband (FUWB) signals were proposed. With usage of the
continuous wavelet transform the time-frequency structure of that signals was investigated. Calculating the box and
the regularization dimensions for each model signal with various its parameters values, three different estimators
were applied. The optimal estimations of the fractal dimension value for each FUWB signal model were defined.
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INTRODUCTION

Resent time there is a significant interest to the non-
traditional signal type applications, in particular, to us-
age of the ultra-wideband (UWB) signals, which should
be considered as one of such signal types [1 - 4]. One of
modern UWB signal classes proposed by authors in 2004
is the fractal ultra-wideband (FUWB) signals [5, 6].

But the new signal type usage needs to apply the
modern signal analysis methods. The wavelet analysis
was appeared to be such good and forward-looking one
[7 - 9]. Nevertheless, the fractal signals, in particular the
FUWB signals, require to apply a specific investigation
method, developed specially for such signals. The frac-
tal analysis can be considered as the such one. This idea
seems to be modern, useful and actual.

1. FUWB SIGNAL MODELS
1.1. FUWB SIGNAL DEFINITION

By the B. Mandelbrot’s definition [10], fractal is a
set, whose topological dimension is greater then
Hausdorf’s one. The fractal function is supposed to be a
function with fractal properties [11, 12].

The fractal UWB signal is defined as a UWB signal
with self-affine property and fractal dimension [5 - 9].
In this paper only self-similar FUWB signals are dis-
cussed.

1.2. FUWB SIGNAL MODELS USED

Many simple numerical and analytical FUWB signal
models in time-domain were proposed [7, 8].

All investigations described in this paper were per-
formed for a lot of these models, as analytical, as nu-
merical. But being strongly limited by the paper volume
requirements, we show only the results obtained for
some analytical FUWB signal models.

Analytical FUWB signals are based on the well-
known fractal functions (see, for example, [10]), which
have been some modified. They are given by:
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where ~ > 0,5, ¢ is the time variable; «, § and ~

are the numerical parameters of the signal, b is the time
scale parameter, s is the frequency scale parameter, D

is the fractal dimension of the signal, 1 < D <2, v,

is the phase distributed randomly at the interval 0,2,

M is the harmonics number (if M — oo, we obtain a
mathematical fractal). These analytical models are
based on the Weierstrass, Riman and Riman-
Weierstrass functions.

2. FRACTAL DIMENSIONS

It is well known that a fractal theory was built for
the mathematical fractals, but in practice we investigate
the physical fractals [10 - 12]. Therefore, the fractal
numerical characteristics describing the fractal proper-
ties of the investigated signals should be adapted for
such case.

One of the basic characteristics of a fractal (more
precisely, of coarse, of a mono-fractal) is the Hausdorf’s
dimension. But for physical fractals represented in digi-
tal form, the Minkovsky’s dimension D,, can be con-

sidered as a good approximation for the Hausdorf’s di-
mension.

It should be pointed, at the present time, there many
different fractal dimensions, which are supposed to be
an estimation of the Hausdorf’s dimension [13, 14].
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Fig. 1. The frequency and the time-frequency characteristics of the investigated model signals:
a — non-fractal model UWB(t) with N = 2 in time domain; b — its ODFT SDF module; ¢ — its CWT SDF;

d — its CWT SDF skeleton; e — model FUWB, (t) with a = 0,5 and b = 2 in time domain; f - its ODFT SDF

module; g — its CWT SDF; h — its CWT SDF skeleton; i — model FUWB,(t) with D = 0,5 in time domain;,

j —its ODFT SDF module; k — its CWT SDF; I — its CWT SDF skeleton.
CWT SDF calculations were performed with usage of the Morlet wavelet

Moreover, a practical calculation of such dimensions is
appeared to be not so simple, as it seems [13].

Just because two different fractal dimensions, name-
ly the box dimension and the regularization dimension,
are considered as the good approximations of the

Minkovsky’s dimension D,,, and they were chosen for

the investigations, described below.

Three different estimators based on the box counting
method, the variation method and the regularization
method [13] allow to obtain two estimations of the box

dimension (D, and D, correspondently) and one es-

timation of the regularization dimension D, for the

investigated signal. The usage of three estimators is
needed, since each of them has the best accuracy on the
limited interval of a fractal dimension, as it had been
shown in the paper [13].
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3. CALCULATION RESULTS

3.1. FREQUENCY AND TIME-FREQUENCY
STRUCTURE

As the time structure of a FUWB signal is fractal, its
frequency and time-frequency structures are waited to
be fractal too. A signal frequency structure is represent-
ed by the spectral density function (SDF) module of the
one-dimensional Fourier transform (ODFT), as it is usu-
ally performed. A signal time-frequency structure is
described by the continuous wavelet transform (CWT)
SDF and its skeleton. As it is known, a skeleton is a
picture describing the ridges of a two-dimensional real
function. A ridge is a line at plane, which connects the
points of the function minima or maxima.

The calculation results performed for the non-fractal
UWB signal model UWB(t) and for the FUWB models

FUWB,(t) and FUWB,(t) are shown at the Fig. 1.
The fractal frequency and time-frequency structures of
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Fig. 2. The estimating of fractal dimensions of the investigated model signals: a — non-fractal model UWB(¢)
with N = 2 in time domain; b — a sample of plot for its box dimension calculation with box method usage;
¢ —a sample of plot for its regularization dimension calculation; d — model FUWB,(t) with a = 0,5 and
b = 2 in time domain; e — a sample of plot for its box dimension calculation with box method usage; f — a sam-
ple of plot for its regularization dimension calculation; g —model FUWB,(t) with D = 0,5 in time domain;

h — a sample of plot for its box dimension calculation with box method usage;
i —a sample of plot for its regularization dimension calculation

the FUWB signals are clearly visible (Figs. 1, f-h; j-I),
comparing with the corresponding characteristics of the
non-fractal UWB signal (Figs. 1, b-d). All the CWT
characteristics were obtained with usage of the Morlet
wavelet, which has a fractal nature too. It was found,
that if instead of a fractal wavelet any non-fractal one is
used, the more smoothed picture will be obtained.

3.2. FRACTAL DIMENSION ESTIMATIONS

It is very interesting to estimate a fractal dimension
for each FUWB signal model and to investigate a de-
pendence of this dimension from the signal parameters.
Suddenly, but in the most cases there are not any analyt-
ical forms of such dependence.

Three approximations of the Minkovsky’s dimen-

sion D,, described above were calculated for all

FUWB signal models. An example of these results are
presented in the Table.
Calculating these dimensions for the model

FUWB,(t), when the true value of the fractal dimen-

sion is known previously, it was found, that the D,
estimator is appeared to be the best for 1 < D < 1.3,
the D, estimator — for 1.3 < D < 1.6, and the D,
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estimator — for 1.6 < D < 2. These results are well

agreed with the results described in the paper [13].

Fractal dimensions estimations of the signal model
FUWB,(t) with o and 3

o B Dy Dy Dy
0.2 1.29 131 121
0.3 141 1.37 1.34
04 1.52 144 1.45
0.5 1.60 1.48 1.54
0.6 ° 1.67 1.54 1.61
0.7 1.73 1.62 1.66
0.8 1.77 1.58 1.69
0.9 1.82 1.55 1.71

The fractal dimensions estimations were performed

with usage of the FracLab2.1 toolbox for MATLAB.
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®PAKTAJIbHBIA AHAJIN3 ®PAKTAJIbHBIX CBEPXIIIUPOKOIIOJIOCHBIX CUTHAJIOB
JI.®D. Uepnozop, O.B. Jlazopenxo, A.A. Onuwenko

[pennoxensl pe3yabpTaThl (ppakTansHOro aHanusa QpakranbHbIX cBepXimpokomnoiocHex (PCILIT) curnanos.
C ucnoip30BaHMEM HETIPEPBHIBHOTO BEHBIICT-IPEOOpa30BaHMsl HCCIIEI0BaHA BPEMS-4acTOTHAs CTPYKTYpa TaKHUX
curHayioB. JIJil BBIYMCICHUS KIETOYHON M PETyJIIpU3allMOHHON pa3MepHOCTEH KaKJJOro MOJEIbHOIO CUIHaja MpU
Ppa3IMYHBIX 3HAYEHUAX €TO NMapaMeTpOB UCIIOJIb30BAaHO TPU PA3IUUHBIX METOJa olleHNBaHUA. IlodydeHsl onTUMans-
HBIE OLICHKU BEIMIHMHBI ()PAKTAIBHOM pa3MepHOCTH I Kaxaoro moaensHoro GCIIII-curaamna.

®PAKTAJBHUI AHAJI3 ®PAKTAJIBHUX HAIIIAPOKOCMYT'OBUX CUTHAJIIB
JL.®. Yopnozop, O.B. Jlazopenko, A.A. Onuuienko

3anponoHOBaHO Pe3yNbTaTH (PPaKTANBHOTO aHANi3y (pakramsHuUX HammmpokocmyroBux (OHIIC) curmamis. 3
BUKOPHCTaHHAM Oe3IepepBHOrO BEHBIIET-IIEPETBOPEHHS JOCIHIKEHO YacO-4aCTOTHY CTPYKTYPY TaKHX CHTHAJIB.
Jnst 00unCIeHHs KIITKOBOT Ta perysipH3aliifHol po3MipHOCTEl KOXKHOTO MOJIEIIBHOTO CHTHAJY 32 Pi3HUX 3Ha4YCHb
Horo napameTpiB BUKOPUCTAHO TPHU pi3HI MeTO¥ OLiHOBaHHS. OTpUMaHO ONTHMAJIBHI OLIHKHM BEJIMUMHK (paxTa-
JBHOT pO3MipHOCTI 15t KoskHOTO MonenbHoro @HIIC-curnany.
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