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The boundary-value problem for a circular dielectric waveguide with an anisotropic impedance boundary is re-
duced to two independent problems. Thus the hybrid waves of different types are shown to be uncoupled in such
waveguide. Analytical expression is obtained for the parameter defining relative contributions of TE- and TM-
polarizations to the field of a hybrid wave. Its analysis shows that hybrid waves of the one type are nearly always
TE-like waves. By this criterion, they are classified as HE-waves. In contrast, waves of another type are shown to
have TM-like polarization and represent EH-waves. Dispersion equation and some of its properties are presented for

hybrid waves of each type.
PACS: 52.35.Hr, 52.40.Fd

INTRODUCTION

Waveguide with impedance surface is a widespread
approximation effectively used to describe a broad class
of waveguides. Among them are the waveguides with
imperfectly conducting walls [1], the waveguides with
artificial hard and soft electromagnetic boundaries [2],
the waveguides with the walls made of artificial mag-
netic conductor [3], dielectric-coated metallic wave-
guides [4], helical waveguides [5], the waveguides with
tensor surface impedance [6], and others. In the general
case the waves in such waveguides are the hybrid waves
of two types. Traditionally, they are called HE and EH
waves.

Classification of hybrid waves, as a rule, is based on
their behavior in one or more limiting cases. Often it
uses the fact that hybrid waves of the first type (e.g. HE
waves) in some limit transform to TE waves, while
waves of the second type (e.g. EH waves) become TM
waves. However, firstly, such limits not always exist
and, secondly, behavior of HE and EH waves could be
diametrically opposite [4] in different limiting cases.

Therefore, up to now there has been no strict classi-
fication of hybrid waves in waveguides with impedance
walls. The main objective of the study is to identify a
criterion for such classification in a circular dielectric
waveguide with an anisotropic impedance boundary

1. DIFFERENT APPROACHES TO
CLASSIFICATION OF HYBRID WAVES
IN A WAVEGUIDE WITH IMPEDANCE

SURFACE

In this section we consider waves in a waveguide of
arbitrary cross-section for generality. The waveguide is
assumed to be uniform along z -axis and filled com-
pletely with isotropic medium characterized by permit-
tivity ¢ (dielectric, metamaterial, plasma in zero mag-
netic field, etc.). Its wall impedance is anisotropic.

The  waveguide  fields are  taken  as
A(r,t) = A(r, ) exp(—iot + ik,z) . Then Maxwell's equa-
tions yield the wave equations

(A, +k?)B; =0,

(A, +K?)E; =0

(1a)
(1b)
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for the longitudinal components of magnetic B, and
electric E, fields coupled together through the bounda-

ry conditions on the contour C of the waveguide cross-
section [7]

aBZ+aBZ’+i k,_OE, =0, (2a)
on Jek s |C

aEZ+CEZ’+i K, %, =0, (2b)
n Jek s |C

where E; =iE,, B, = BZ/\/E; A is the transverse part
of Laplace operator; o is the wave frequency; k, and

k, =gk’ —k? are the longitudinal and the transverse

wavenumbers; k is the wave vector in free space;
a=cnyn,e=-ik’n,k™; n, and n, are the wall imped-
ances in z and s directions, respectively, vector s is
directed along the contour C, vector n is the outward
normal to C (i.e. directed deep into the walls), vectors
n, s and z forma right-hand triple.

From (2) it follows that the waves under study are
hybrid (E, #0 and B, = 0) in the general case. In prin-
ciple, pure TE (E,=0,B,#0) and TM
(B,=0,E, #0) waves are also possible if their fields
are independent of variable s (see (2)).

Let us introduce parameter P =E,/B, [8] to define
relative contributions of E; (TM polarization) and B,
(TE polarization) to the total field of a hybrid wave.
Here E, and B, mean their peak values in the case
when P depends on r, . Obviously P=0 and P =0

for pure TE and TM waves, respectively. Therefore,
hybrid waves will be called TE-like (TM-like) waves, if

their fields satisfy inequality |P|<1 (|P|>1). In the
borderline case |P|=1 (|EZ/BZ|=]/‘\/E‘) polarization

of a hybrid wave represent equally-weighted mixture of
TE and TM polarizations. Therefore, such waves will be
called maximally hybrid.

Traditionally, hybrid waves are classified as HE and
EH waves. To identify whether a hybrid wave is HE or
EH wave, it is necessary to know its behavior in some
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limiting cases, when equations (1) and (2) reduce to
separate boundary-value problems. Among such cases
are limits

(a) k, >0,
(b) n, >0,
) ny > .

In these cases, hybrid HE (EH) waves must trans-
form to TE (TM) waves by the prevalent definition [9].

Besides, in the limiting cases

(d)n,—>0,m, >,

(e) k, —>co, when lim Jek/k, =1,

hybrid waves of different types also satisfy independent
boundary-value problems

oY . k o¥
A +kK*)P=0, ——i—=2——| =0, (3a
( * L) on Jek s |C (32)
oo . k, o0
A +k?)o=0, —+i—2"2 =0, (3b
(4 L) on ek &s|C (30)

where ¥ =B, -E,, ®=B, +E,.

Hence it follows that such hybrid waves differ in
fields according to the conditions ® =0 (P =-1) and
Y =0 (P=+1). It is possible to identify these waves
as EH or HE waves depending on the sign of parameter
P . Such mode classification is often used, for example,
in dielectric waveguides [8]. However, in this case a
contradiction between (a)-(c) and (d), (e) appears. As
shown in [4], hybrid waves satisfying conditions
P=-1 (P=+1) in the case (d) (or (e)) can transit to
either TE (TM) or TM (TE) waves in the cases (a)-(c)
depending on the path of such transition. This will be
additionally shown below. Therefore, sign of P in ex-
treme case (d) (or (e)) is inappropriate criterion for
mode classification in a waveguide with impedance
boundary.

The rest of limits (a)-(c) sometimes give no infor-
mation about the type of hybrid waves. Such a situation
will be also demonstrated below. In particular, limiting
process (b) (or (c)) are useless for waves with no analog

in the waveguide under condition n, =0 (or n.;' =0).
Besides, the problem (1) and (2) may not have solutions
at k, =0 or such solutions may be absent for a number
of hybrid waves. This renders the limit (a) unsuitable for
revealing the type of such waves.

Thus, there is no appropriate criterion suitable for
revealing the type of hybrid waves regardless their fre-

guencies w(kz) and waveguide parameters. For a circu-

lar dielectric waveguide with impedance wall such a
criterion will be presented below.

2. FIELDS OF HE- AND EH-WAVES
IN A CIRCULAR WAVEGUIDE WITH AN
ANISOTROPIC IMPEDANCE BOUNDARY

We will show that the problem (1) and (2) reduces to
independent boundary-value problems for HE and EH
waves in the case of a circular waveguide with an aniso-
tropic  impedance  boundary. In  this case
A(r,) = A(r)exp(ilp) and operator 6/ds in (2) could

be eliminated by the change &/ds—il/R, where
90

r = {r,(p} are the polar coordinates, | is the azimuth

wavenumber, R is the waveguide radius.
It is essential that parameter P in a circular wave-
guide is independent of r . Thus, to satisfy both bound-

ary conditions (2) simultaneously, this parameter must
take one of the following values:

P, = oc(l:y:\/1+ a? ) = (A, -a)/b=b/(2,,—c), @
a=(c—a)/(2b), b=-Ik, /(VekR),
A, =(a+c)/2+(a-c)/241+a . It is notable that

equality PP, =—1 holds for the fixed values of a, b
and c.

The coupled conditions (2) for B,, and E, with (4)
reduce to independent boundary conditions

where

0B,
L +,B, =0, 5a
{ ot Z} r=R (5a)

OE,
L +A,E; =0, 5b
{ oa  ? Z} r=R (5b)

and corresponding relations

E,=PB,, (62)
B/ =P,'E,. (6b)

Uncoupled wave equations (1) and boundary condi-
tions (5) represent independent boundary-value prob-
lems for two types of hybrid waves. Waves of the first
and the second type satisfy conditions P=F (A=2,)
and P=P, (A=2X,), respectively, and transform to TE
(P,=0) and TM (P, =) waves at A, =a and
L, =c. Such transformation takes place in the cases
(8)-(c) and dictates the choice of roots for A and P in
(5) and (6), respectively. Therefore, in accordance with
mode classification in [9], waves of the first (second)
type may be called HE (EH) waves. Hereinafter, their
characteristics are specified by the subscript "1" ("2").

It is remarkable that parameter P for a hybrid wave
depends solely on the quantity o . This quantity incorpo-
rates wave characteristics as well as waveguide parame-
ters. Thus it is possible to examine P (Fig. 1) with re-

spect to all possible values of wave frequency m(kz),
azimuth index |, waveguide radius R, permittivity ¢,
wall impedances n, and n, =n,,.

As is seen from Fig. 1, HE waves in a circular
waveguide with impedance boundary are nearly always

TE-like waves (|P| <1). By contrast, EH waves nearly
always have TM-like polarization (|P|>1). The only

exceptions are the extreme cases (see, for example, (d)
and (e)) when o takes imaginary values within the

range [i,i]. In these cases the HE and EH waves be-
come maximally hybrid.
Thus fields always satisfy condition

E./B,

<y
for HE waves and condition |EZ/BZ|2]/‘\/§‘ for EH
waves. Therefore, the field ratio |E,/B,| for a hybrid
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wave in a circular waveguide with impedance boundary
always indicates its type.
: |
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Fig. 1. Contours of |R| and |P2’1| in the plane

(Rea,Ima). Unit values are shown by the white line

3. FREQUENCIES OF HE-
AND EH-HYBRID WAVES

To derive the dispersion equations for HE- and EH-
hybrid waves, we substitute the general solutions of
equations (1)

B, =AJ(k.r), (72)

= A (k) (7b)

with independent amplitudes A and A, into boundary
conditions (5), respectively. This gives

k,J/(kR)+AJ, (kR)=0, (8a)
k,J/(k,R)+X,J,(k,R) =0, (8b)
where J,(x) is the I-th order Bessel function,

J/(x)=dJ,(x)/dx, k, and k, mean the values of the
transverse wavenumber k, for HE- and EH-waves,

respectively.

It should be noted that separate equations (8a) and
(8,b) could be derived directly [4] from the general dis-
persion equation for the hybrid waves of both types. The
last-named equation is well-known and can be found in
the literature [10 - 12], including recent papers [13, 14].

Meanwhile, separate dispersion equations (8a) and
(8b) for HE- and EH- hybrid waves and their analysis
are much easier. From this analysis it follows:

(@*) with the change of surface impedances

n, = (en,)”
coefficients A, = A, in (8), the dispersion curves of
HE- and EH-waves exchange places with one another.
Thus frequencies o(k,) of HE- (EH-) waves at some
n, =n, and n, =n, coincide with frequencies of EH-
(HE-) waves in the same waveguide with modified wall
impedances n,, = (&n, )’1, and n, = (anl)’l. Such a
conclusion can also be drawn directly from (1) and (2).
(b*) in the absence of any losses, the dispersion
equations (8) with real coefficients A, and A, have
only real roots [15, 16]. The exception is the case, when
condition A,R+[l|<0 (or A,R+|l|<0) holds true. In
this case the first (or the second) equation in (8) has a

single purely imaginary root [15] associated with a sur-
face HE- (or EH-) wave.

(a=c), accompanied by the change of
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Fig. 2. Dispersion curve of the surface HE; (1 =1) wave

at ¢=1,in,=-05, in, =05, R=5cm
74
(a)
61 in. =110 (P, <0)
- -=in_=90 (P >0)
= 54
=
4-
3 .
0,0 0,5 1,0 1,5 2,0
k, em’”
(b) .
S5
54 i =110 (P, <0)
B ~===in_ =90 (P,>0)
=5 vl TP ST
= 53¢ T~
5.2+ T —
: "i.l -
5,1 ;
0,0 0,5 1,0 1.5 2,0

k, em’

Fig. 3. Frequencies w(k,) of HE;, (1 =1, s =2) wave
at e=1, R=5cm, in, =-0.01 and different values of
in, (a), and their respective values of k,R (b). Here
4, o and g o are the s-th zeroes of the functions J, (x)
and J/(x) , respectively

(c*) the surface HE wave exists under condition
in <0 [7]. In the limit k, — oo it transforms to purely

wave with asymptotic frequency

k=k /,/e+ m . Hence it follows that the disper-

sion curve of this wave degenerates into line k=0 or
k=k,/\e (so-called quasi-TEM wave [17]) in the
limiting case n, -0 or n, — o, respectively. As a
consequence surface HE wave has no analog among
TE- and TM-eigenwaves of a circular waveguide with
n, =0 or n, =oo. Besides, this wave lacks cutoff fre-
quency at some values of n_ and n, (Fig. 2). This ex-

emplifies the case when limiting processes (a)-(c) (as
well as (d) and (e)) give no information about the type
of hybrid wave. Similar conclusions can be drawn for a
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surface EH-wave using change n, —>(snz)71 and re-

sults of Item (a*).

(d*) the sign of real (or imaginary) part of P does
not indicate the type of a hybrid wave. This is shown in
Fig. 3, where the dispersion curve of the chosen HE
wave is presented in two cases. In the first case o >0.

This provides negative value of B, which varies from 0
to -1 with increasing k,. The value of kR therewith
tends to the zero of function J,_,(x) . In the second case
o<0 and thus P >0. As a result, increase in k,
changes P, in the range from 0 to +1. Coincidentally
with this change, the value of kR tends to the zero of
function J,,,(x) . It should be noted that the sign of P

also changes with substitution b - -b (e.g. I —-I).
As seen from (1) and (2) such a substitution is equiva-
lent to the change E, — —E,.

(e*) independent dispersion equations (8) can have
joint solutions. This requires the relation A, =2,

(ou=+i) to be valid. Thus the condition P =+i also
holds true. Therefore, intersection points for the disper-
sion curves of HE and EH-waves, once they exist, must
correspond to maximally hybrid waves.

CONCLUSIONS

Two independent boundary-value problems have
been obtained for a circular waveguide with an aniso-
tropic impedance boundary and dielectric filling. This
shows that HE and EH hybrid waves are always uncou-
pled in such waveguide. Such situation is the exception
rather than rule for waveguides supporting hybrid
waves. As an example, the reverse is generally true for
hybrid waves in a circular waveguide with gyroelectric
filling [18, 19] or corrugated wall [20, 21].

An analytical expression has been obtained for pa-

rameter P =ive E, /B, defining relative amounts of the
axial field components. Its value has been studied for all
possible characteristics of hybrid waves and waveguide.
Regardless of these characteristics, HE- and EH-waves
have been demonstrated to be mostly TE-like (|P| <1)

and TM-like (|P|>1) waves, respectively. Hence it

follows that the field ratio |E,/B,| always indicates the

type of hybrid wave and thus can be applied for mode
classification in a dielectric circular waveguide with
impedance boundary. The exceptions are some extreme
cases when both HE- and EH-waves become maximally

hybrid (|P|=1). In the strict sense, such waves are in-

distinguishable without additional information about
their behavior in the vicinities of the exceptional points.

Dispersion equations have been found separately for
HE and EH waves. Some of their dispersion properties
have been studied in details.
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HE- 1 EH-TUBPU/IHBIE BOJIHBI B KPYT'JIOM JUDQJEKTPUYECKOM BOJIHOBOJE
C AHU30TPOINHOM UMIIEJAHCHOM ITOBEPXHOCTHIO

B.U. Hlepounun, I H. 3azunaiinos, B.U. Tkauenxo

Kpaesas 3amava 151 Kpyriioro AM3JIeKTPUYECKOTO BOJHOBOIA C AHU30TPOIIHOM MMIIEJTaHCHOW I'paHULEN CBeIeHa
K JBYM HE3aBHCHMBIM 3a/ladaM. TeM caMbIM IOKa3aHO, YTO B PACCMATPHBAEMOM BOJHOBOJE THOPHIHBIC BOJHEI
Pa3JIMYHbBIX TUIOB SIBJSIOTCS HECBSI3aHHBIMU. [10Iy4eHO aHAJIMTUYECKOE BBIPAKEHUE NJISl apaMeTpa, ONpelelisio-
miero oTHOCUTENbHEIH BKiIa TE- n TM-nonsipu3amuii B ojie rTUOpuIHON BONHEL W3 ero aHanm3a ciemyer, 9To -
OpuIHBIE BOJHBI OJTHOTO THIIA MPAKTUIECKU BCETJa SBISIOTCS MpenMyliecTBeHHO TE-Bomnamu. [1o nanHOMY mpu-
3HaKy OHHM OTHOCHTCS K HE-BonmHBL. B mpoTHBOMOMOKHOCTH 3TOMY, BOJHBI JPYroro THMa 00JaJaloT IMpeuMylie-
ctBeHHO TM-monsipuzanueii U npenctaBisitoT coboit EH-BonHbl. J[MciepcHOHHOE ypaBHEHHE W HEKOTOPBIE €ro
CBOMCTBA MpeACTaBIEHBI JUISI THOPUIHBIX BOJTH KaXKIOTO THIIA.

HE- TA EH-T'TGPUJIHI XBWJII B KPYTJIOMY JAEJEKTPUYHOMY XBUJIIEBOAI
3 AHI3OTPOITIHOIO IMIIEJAHCHOIO ITIOBEPXHEIO

B.I ll]epobinin, I'.1. 3azunaiinos, B.1. Tkauenko

KpaiioBy 3amaqy Amist KpyTiaoro AieJIeKTPUIHOTO XBHIICBOY 3 aHI30TPOITHOKO IMIIEJAHCHOKO TPAHUIICIO OYyII0 3BeE-
JICHO JIO TBOX HE3aJIC)KHUX 3a/a4. TuM camMuM OyJo MOKa3aHo, MO B PO3IIIAIYBAHOMY XBUJICBOMI TiOpPHIHI XBHIIL
PI3HUX THIIB € HE3B'13aHUMH. ByJlo OTpUMaHO aHATITHIHHUN BUpa3 JUIA apaMeTpa, 0 BU3HAYAE BITHOCHUI BHECOK
TE- ta TM-nosisipu3anii B ot TiOpuaHOT XBUIIi. 3 HOTO aHai3y BUXOIWTS, IO TIOPUIHI XBIIII OJJHOTO THITY TIpakK-
THYHO 3aBXJH € nepeBaxxHo TE-xBuisimu. 3a 11i€r0 03HaKOIO BOHHU Hajlexath 10 HE-xBunb. Ha mpotuBary msomy,
XBWJII 1HIIOTO THITY MaloTh TiepeBakHo TM-Tonsipu3altito Ta SBisioTh coboto EH-xBumi. Jlucnepciitae piBHIHHS Ta
JIesTKi HOTO BJIACTUBOCTI HAaBEJIeHI JJIs TIOPUIHUX XBHJIb KOXKHOTO THITY.
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