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Nonlinear regimes of one-dimensional parametric instabilities of long-wave plasma waves are considered for the
cases when the average field energy density is less (Zakharov’s model) or greater (Silin’s model) than the plasma
thermal energy. The process of generation of short-wave plasma waves and perturbations of ion density is found to
be similar in both cases. It is shown that the ion energy after the instability is saturated proves to be of the order of
the ratio of linear growth rate to the frequency in the case when the initial field energy exceeds the plasma thermal
energy. In the opposite case of hot plasma, the ions acquire a part of initial field energy equal to the ratio of initial
field energy to the plasma thermal energy. The trajectory crossing of ions in the vicinity of density cavities is a rea-

son of instability quenching in both cases.
PACS: 52.35.Mw

INTRODUCTION

The interest in parametric instability of intense
Langmuir waves, which can be easily excited in the
plasma by various sources[1 - 9], was stipulated, in par-
ticular, by the new possibilities in heating of electrons
and ions in plasma. The correct methods for description
of parametric instability of long-waveplasma waves was
developed in the pioneering works of V.P. Silin [10]
and V.E. Zakharov [11]. In early one-dimensional nu-
merical experiments on parametric decay of plasma
oscillations [12], the theoretical concepts were con-
firmed [10] (see also [13, 14] and review [15]). How-
ever, the greatest interest has been expressed by ex-
perimenters in the mechanism of dissipation of wave
energy discovered by V.E. Zakharov. The analytical
studies, laboratory-based experiments and numerical
simulations performed at an early stage of studying
these phenomena have confirmed [16-18] the fact that in
some cases a significant part of the pump field energy
transfers during the instability development into the
energy of short-wave Langmuir oscillations attended
with bursts of fast particles [16 - 27].

In this paper, we attempt to compare the models of
Silin and Zakharov by the example of one-dimensional
description. The choice of one-dimensional approach, as
was noted by J. Dawson [28], often keeps the main fea-
tures of the processes, but simplify their description and
leads to a fuller understanding of what the important
phenomena are. The ion heating is of particular interest,
so we use the kinetic description of ions in this work
because of account of inertial effects can be significant
at the nonlinear stage of the process [29].

1. GENERALIZED SILIN’S EQUATIONS

When the intensity of external long-wave field is
much greater than the temperature of electrons in plas-

ma W = E, | /Ax >> n,T, , it is reasonable to explore the

e

approach presented by V.P. Silin [30]
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Let set the wavelength of the external electric field
infinite
E, =~i(| E, | exp iyt +ig} -
—| E, | exp{—iow,t —id})/ 2. @
The particles oscillates under the action of this field
with velocity u,, =—(e, |E, |/m, -@,)cosD.
Substituting into Eq.(1) the electric field obtained
from Eq.(3) E, = —4xie(n,, —n,,)/ kyn, we find
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Let use the following variables

V(ZH = e(l : n(l" : exp {_iaan : Sin ®} b (6)
6, =v,,  expi{-ia,, -sin®}, @)
a, =nek,E,/m, - o, (®)

where @ = o)t + ¢ . After this, Eqs.(1)-(2) take the form
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It is clear thata, —a, ~n(ek,E,/m,-o})=a,,

= \/47zezn0 /m, , Q= J47rezn0 /M,

m, =M and k, =nk, defines a set of wave numbers.

where, @,

Equations (9)-(10) for electrons becomes
ov

a;h _epn ‘ik()n'eno = _ikO 'n'zven*m .0"'” (11)
agten - k4ﬂ-el (Ven + Vin 1 €XP {ia” ' Slnq)}) -
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Then, we use
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and well known expansion
= z J,,(a)-exp{im®d},
whereJ (x) is  the
']0 (x) = JO(_x) s

Ji(x) ==Jy(=x) = J_(=x) , J,(x) = T, (x) = J,(=x) [31].
Below, we find the non-resonance terms for perturba-
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Bessel  function, and

tion of density u'”,u”,u’® and velocity
v\ v 2 in the oscillating reference frame [32 - 34]:
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The obtained equations should be supplemented by
equations for resonant values
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where A = (), —,’)/2w,. Authors of [32 - 34] have

used the
() _ (1)
u, =xkmn-eny,’ /w,

following representation
=ikyn-E"" / 4z . In this case,
gathering in the r.h.s. of Eq.(20) the terms responsible
for electronic non-linearity we rewrite this equation for
short-wave perturbations as follows
ou'tV wngJr a, .t
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Obviously, that the electronic non-linearity (r.h.s. of
Eq. (21)) is equal to zero as well as in [35]. Than the
Eq. (21) can be rewritten [32 - 34] as

(+1) 2 +ig
u . w J,(a) e
FiAu® Fgy plE el T (22)
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If the electric field will be presented in the form [35]
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Going to the representation of pumping wave E,

corresponding to fixed wvelocity of oscillations
=—(e E,/m, -@,)-cos®, we find E, > —iE, and

E, —iE, . The equation for E, can be written as [32 -

34]
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or expressing the perturbations of density through the
components of electric field
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The slowly varying in time electric field [30]
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that permits description of ions by particle-in-cell me-
thod. Their equations of motion can be written as fol-
lows

d’x, e = .
dt2 = M; En : CXp {lk()nxs} > (29)
and the ion density can be defined as
wlky
nin = nO .2_0 J‘ exp[_inko : xs (‘XO’ t)] ' dst' (30)
—lky

Note that the use of particle-in-cell method for de-
scription of ion dynamics allows, what is more, to im-
prove the computational stability [29].

The use of Egs. (9) - (10), where the right-hand sides
can be neglected in view of their smallness, permits the
hydro dynamical description of ions. The equation for
ion density at this takes the form [32 - 34]:

2
862 Qv [1- J(a)+ J 2 (a)]+
HuJ (a,) e +ul™" -J,](a,,ye'ﬂ’]—
i, (“")z u,, " 31)
en (n m)m
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One can verify that the complex conjugate of
Eq.(3.24) with the lower sign becomes (the dummy in-
dex in sums can be inverted m — —m )

OB g M0V (@)
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At the same time this equation for positive indexes
can be written as

5E(])n . 47[60 evin i

o T (@) (34)
_i a)o Z ln m [E ( ]) J (an m )621¢ +
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a) It is clear that forE " =(E")* and

v, ., =,,)* Egs. (3.31) and (3.32) are identical. Just
as, it is easy to verify that E" =(E")* and
Vi n = (V'

sess the symmetry n,_, =(n,,)*.

,)*, 1.e. the perturbations of ion charges pos-
At this, for correct
description of the instability it is sufficiently to use the
high-frequency components E£\”, E" and E{", as well
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as perturbations of ion charge v, for positive values of

index »n. Other variables can be expressed through
them. So, we can stop using the superscript. In this case
we can rewrite Egs. (3.23), (3.28)
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In addition, when the particle-in-cell method is used,
one can use the motion equation (30) and expression for
ion density (31)with slowly varying electric field

—(—@> ,n[1—J§<an>+§J:<an>]+

+EJ1(an)[En e —E e’]- (37
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These equations should be supplemented by the equ-
ation for pumping field £,

aEU a)() Zl¢
Lo % E -,
o = e 2V B Jaa)e (38)

+E, -J,(a,)]

Note that the values corresponding to subscripts with
different signs are independent that results in spatial
distortion of integral perturbations not only owing to
variation of amplitudes but also because of spatial dis-
placement of different components of the wave packet.

b) In the case n_, =n, =(n,)*, i.e. when the pertur-

bations of ion density don’t change their location, the
high-frequency electric field also remains spatially sym-
metrical E\" =E" =(E"")*=(E"")*. Then, the vari-

ables E" and n,, are sufficient for description of the

process, that is stlpulated by strong relation between val-
ues with different signs. The structure of the field and
density in this case, such as in the case of Zakharov’s
model (that will be presented later), represents the mo-
tionless spatial formation which amplitude increases and
half-width decreases, at least in some region.

¢) Growing in time perturbations of ion density of
the type n,_, = —(n,,)* are not realized.

,—n

ISSN 1562-6016. BAHT. 2013. Ne4(86)



2. ZAKHAROYV'S EQUATIONS

and J,(a,)=a,/2, Jya,)=1,
J,(a,)~a’ /8, the equations (35) - (38) are identical to

When a, <<1

equations derived in [35] under condition [37]
W =|E, [ /Ar << n,T, within the detuning
(), —0,) | 20, > (@), —®," +k*;n*v*;) | 20,  and
replacement E, — —iE, and E, — iE, .
OE, .a)lzw —w, + kv, £
T a 39
0
. @,
—i—{n E,+>n _E 1=0
2’10 { in™~0 WEO in—m m}
o’n, kon’® . . . (40)
R _16()% {E,E,+EE., + ) E,_E,}.

m#0,n

We also give the expression for slowly varying
electric field with account of the pump wave
- .k * *
E, =——YC (E,E +EE, +
dmao,

+> E_E.),

m#0,n
that makes possible the description of ions with the use
of particle-in-cell method and Eqgs. (28) and (29). The
amplitude of the pump wave E, can be found from

(41)

equation
OE, . o,

——i—>n_E =0.
ot 27’10 Z i,—m~m (42)

m

3. LINEAR THEORY

We restrict our consideration to the most interesting
case of the long-wave pumping. The dispersion equation
for the high-temperature case in supersonic limit

o’n, I'n,0t" >>kjcin® follows from linear approxima-
tion of Zakharov’s equations (2.32) and (2.33) with the
use of representation £~'0F / 0t = iQ.:
—QMO* — A+ A-A4=0. (43)
In Zakharov’s model, the normalized to the Lang-
muir frequency correction 6=Q/w®,,, in general,

should be written in the form

2 4
52=A7i,/%+BA2,

where
_Lm |EF
2 M 4xn,T,

Since the value (A* +4BA*)"* — A’ increases mono-

(44)

(45)

tonically with A, having no a distinct maximum, the
instability increment for small A’ << B, §° ~ —-AVB
and | 5° |< B is equal

2 2.2 2 2 4
mQ = Q kynv,, 1 |E, [T m, o . (46)
20, 2 4zn,T, M v

For the case of large A*>>B, O ~—B, it has the
form
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2 1/2
mQ = Q~ [lﬂ i ) ,. (A7)

2 4rxn,T, M
This means that the increment increases with the
wave-number of perturbations, reaching the maximum
(47).
In Silin's model, the growth rate normalized to the
plasma frequency reaches the value

. . 1/3
i i (m
S=4t . g LM} o3,

wt el e
for the detuning value A’ = 4/2 or which the same for
A=(m,[2M)" 1 (a, )

(43)

The perturbations with wave-number k,, = k,n, for
which a, =1.84, the Bessel function has a maximum

and the growth rate reaches the maximal value

NG
o =10.44i ( - j .
M

max (49)

With the development of the instability, the pump
wave amplitude decreases and the increment maximum
moves to shorter wavelengths.

It is significant that the values of the maximal
growth rate of parametric instability increase with de-
creasing of perturbation amplitudes. Moreover, Zak-
harov’s model shows that decrease in the amplitude of
the pump field results in decrease in the growth rates
within the entire unstable region, while Silin’s model
demonstrates that similar process shifts the maximum
growth rate in the short-wave band, without reducing its
value (49). Thus, the process of energy transfer to the
short-wave part of the spectrum in the two models is
largely determined by the linear mechanism of perturba-
tion growth.

4. SIMULATION RESULTS

Consider the case when ion density perturbations are
spatially symmetric and ®, = 0. In addition, there is no

spatial shift between perturbations of different scales
during instability development. It can be shown that the
energy transfer from long-wave plasma wave to elec-
trons and ions will be most effective in this case. For
low initial amplitude values (low noise level), the main
energy of the growing instability spectrum have been
concentrated in short-wave region at the close of the
linear stage of the process. The perturbations in this
spectrum region have a maximum growth rate and have
significantly kept ahead the neighbor modes during the
linear stage of the instability development. The range of
instability is found to berelativelynarrow. Therefore,
severallong-livedsmall-scaledensity perturbations may
arise on the length of the pumping wave. These cavities
arise during all linear stage of the process due to phase
synchronization of high-frequency modes. The phe-
nomenon of phase synchronization of growing modes at
the linear stage of the process was mentioned in earlier
works [33]. For large initial mode amplitude RF spec-
trum(i.e. at high levels of Langmuir noise), the number
of density cavities arising on the length of the pumping
wave decreases to only one or two [29]. Herewith, the
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spectra of the high-frequency field perturbations and ion
density perturbations broaden.

We used the following parameters for simulation.
The  number of  simulated ion  particles
0<s<8=2.500..5000, -N<n<N,N=50..100,

a,(0) = ek, E, (0)/ m,@*, = 0.06, & =kyx, /27,
T=5t’ dfs/de,:O:VS |r:0:0’
ek, |nle (0)/m,o’, =0.0001...0.0025, A=1,

e pe
m,/ M =107 and W /n,T, = 0.1 for Zakharov’s model.

The ions acquire kinetic energy in the potential wells
of the secaverns. At the nonlinear stage of the instabil-
ity, the trajectories of ions cross each other, the ion den-
sity perturbations are smoothed out and their amplitude
increases. Relationship between ionic perturbations an-
dhigh-frequency field is weakened and the instability
saturates. The amplitude of the pumping wave is stabi-
lized after some oscillation at a rather low level (Fig. 1).

dp do
0.06+ 0.06
0.03+ 0.03—+
0 t } 0 t }
10 20 T 10 20 T
a b

Fig. 1. Evolution of amplitude of the pumping wave
(a — Zakharov's model; b — Silin's model)

y(dg/dt)? ¥ (dg/dr)
0.006+ 0.009+
0.003+ 0.0045+
0 ' " 0 ? .
10 20 T 10 20 T
a b

Fig. 2. Evolution of the value Zs(dfj\, / dty?
(a — Zakharov's model; b — Silin's model)

The main energy is now contained in the short-wave
Langmuir spectrum. Some small part of the initial en-
ergy is converted into kinetic energy of the ions (Fig. 2).

The kinetic energy of ions positioned on a length of
the pumping wave can be expressed through the esti-
mated value of the sum of the squared dimensionless

velocity 7 =" (d¢, /dr)" and the number of simulated

particles S
2 262
4 Mi
2”-1710 ( dxl\, y=1. 7152 n, 27r’ (50)
k0 2 dt Zko S k0
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where ((dx, /dt)*) is the ensemble average. The ratio of

the ion kinetic energy to the initial energy of intense
long-wavelength Langmuir waves can be written as

2 dx. : 2r
_[noM( J WANE, [ 147m)-—=} =
k, dt o

E (51)
— kin :472_2 LZMSZ’
W, a,”S m

where E, is the density of the ion kinetic energy,

W, =|E, | /4zx is the initial energy density of long-
wavelength Langmuir waves. When the ion density per-
turbations are spatially symmetric and ®, =0, the si-

mulation shows that the maximum possible value
1,012:107 for $=5000 and /7 04,5107 for
§'=2.500 are reached during the instability develop-
ment for Silin’s and Zakharov’s models correspond-
ingly. The ratio of time scales for these two models is
equal to 1.6(m, / M)"°(W /n,T,)"> =0.16 . Taking this

into account, it is easy to see the energy of ions are of
the same order in both models.

The ratio of ion kinetic energy to the initial energy
of long-wave oscillations occurs equal to

E,, /W,[03.6-10°(M/m,)"” for Silin’s model and
E,, /W, 01.2:107W, /n,T, for Zakharov’s model. This

means that in Silin’s model the ions derive a portion of
field energy of the order of o, . This effect was pre-

dicted in [19] and confirmed in [29]. A portion of trans-
ferred energy in Zakharov’s model is of the order of
Wy /n,T, .

0.0006 0.0009—+
0.0003 1+ 0.00045—+
!
0 ; ; 0 : 1
10 20 T 10 20 T
a b

Fig. 3. Evolution of speed distribution function
half-width for simulated particles
(a — Zakharov's model; b — Silin's model)

In Zakharov’s model only a fraction of a percent of
the initial energy can be transferred to the ions during
development of the long-wave parametric instability of
plasma waves. Nevertheless, the stabilization of the
instability and its saturation are mostly determined by
the trapping of ions to the potential wells of caverns in
both models. During the trapping, the mixing of ions
and the destruction of cavities occur that evidenced by
the sharp increase in the ion density.

If the speed distribution of ions was Maxwellian, the
half-width of such distribution (Fig. 3) would have been
associated with the thermal velocity by the relation
v =1,18v,.
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3000 3000+

1500 4 1500+

2 2

t o=\ } ==V
0.000005  0.00001 0.000015 0.00003
a b

Fig. 4. Distribution function of the value (d&, / dt)’
(a — Zakharov's model; b — Silin's model)

However, the simulation shows that the half-width
reaches at the nonlinear stage of the process the value of
v =0,005 for Zakharov’s model and 7 =0,006 for Si-

0

lin’s model. In addition, if the speed distribution of ions
was Maxwellian, the value of 7, =S-v} ~0.725-v°,
will be of the order of 0,22 for Zaharov’s model and

0,73-107 for Silin’s model, while the simulation gives
the value two times greater in Zakharov’s model and an
order greater in Silin’s model. In the hot plasma the
speed distribution of ions is close to the normal and one
can say about the ion temperature. In Silin’s model the
difference in more than 15 times is caused by the exis-
tence of a large group of fast ions (Fig. 4) that was ob-
served in the experiments [36].

In conclusion, we note that the process of parametric
instability for Silin’s and Zakharov’s models are similar
mostly due to the similarity of the systems of equations
[37].
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JAHAMMKA UOHOB ITPU PA3BUTHUU TAPAMETPUUYECKOM HEYCTOMYUBOCTH
JEHI'MIOPOBCKHUX BOJIH

E.B. beakun, A.B. Kupuuok, B.M. Kyknun, A.B. lIpuiinak, A.I. 3azopoonuii

PaccMOTpeHbl HEJTMHEWHBIE PEXUMBI Pa3BUTUSL OJHOMEPHBIX NApAMETPUUECKUX HEYCTOMUMBOCTEW IIMHHOBOJI-
HOBBIX JICHTMIOPOBCKMX BOJIH B CITy4asix, KOTJIa SHEpTHs MoJIsl MeHbIle (MoJiens 3axapoBa) u oosblie (Mozens Cu-
JIMHA) TEIJIOBOW dHEpruM Iuia3mbl. [Iporecc reHepanyu KOPOTKOBOJHOBOIO CIIEKTpPa IUIa3MEHHBIX BOJH U BO3MY-
IIEHUH MOHHOM ITUIOTHOCTH OKAa3bIBAeTCsl MOJOOHBIM B 00EUX MOJIENSX ONMHCAHMs MMapaMeTpHYeCKuX HEyCTOHUUBO-
cteil. [Toka3aHo, 4TO SHEPIrUs HOHOB MPU HACHIIEHUHN HEYCTOMUMBOCTEN OKa3bIBAETCS MOPSAKA OTHOLICHUS JIMHEH-
HOI0 MHKPEMEHTa K 4acTOTe B CIIy4ae, KOIJa HaudaJlbHasl SHEPrus MOJsl 3aMETHO MPEBBIINIAET TEIUIOBYIO DHEPTHIO
m1a3Mbl. B ycnoBusix ropsiueil miua3Mel HOHaM IEPEAAETCs JOJsl SJHEPTUH, paBHas MOJIOBUHE OTHOLICHHS HA4albHOMI
SHEPTHUH IOJISI K TEIUIOBOI SHepruu mia3Mel. [lepeceuenHne TpaeKTopuil HOHOB BOIN3M KaBEPH ITIOTHOCTH SIBIISIETCS
MIPUYNHON CPHIBA HEYCTOMYHUBOCTH B 000OMX CITydasX.

JIMHAMIKA IOHIB IIPA PO3BUTKY MAPAMETPUYHOI HECTIMKOCTI
JIEHI'MIOPIBCBKUX XBWJIb

€.B. benkin, O.B. Kupuuox, B.M. Kyknin, O.B. Ilpuiimax, O.I. 3azopoonii

Po3risiHyTO HENiHIHI pe)XKUMH PO3BUTKY OJHOBUMIPHHUX MapaMeTPUYHHX HECTIHKOCTEH OBrOXBUIIBOBHX JICH-
TMIOPIBCHKHX XBWJIb y BHITAJIKaX, KOJIM €HEPrisl ol MeHIIa (Mozeib 3axaposa) 1 6inbnia (Monens Cinina) 3a Tem-
noBy eHepriro miasmu. [Iponec reHeparii KOPOTKOXBIJILOBOTO CHEKTPa IJIa3MOBHX XBHIIb 1 30ypeHb 10HHOI TyCTH-
HU BUSBJIIETHCS TIOAIOHNM B 000X MOJIEIISIX OIUCY MapaMeTpHYHuX HecTiiikoctell. [TokazaHo, o eHepris i0HiB Ipu
HACHYCHHI HECTIMKOCTEH BUSIBISETHCSA JOPIBHIOE 3a MOPSIAKOM BiTHOIICHHIO JIHIHHOTO iHKPEMEHTa 0 YacTOTH Y
BUITAJIKy, KOJIM NIOYATKOBA €HEPTis MOJIS IIOMITHO MEPEBUILYE TEIIOBY SHEpPTilo IU1a3MH. B yMoBax rapsol mia3sMu
10HaM TIepeIa€eThCs YacTKa HEePril, 0 JOPiBHIOE MOJIOBUHI BiITHOMICHHS TOYATKOBOI €HEPTil OIS A0 TEIUIOBOI eHe-
prii mna3mu. [lepetnH TpaekTopiit i0HIB MOONIM3Y KaBepH I'YCTUHH € MPUYMHOIO 3pUBY HECTIHKOCTI B 000X BHUIA/-
Kax.
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