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The point and interval distribution parameter estimators are obtained by direct numerical approximation of the
definition integral with the use of upper and lower bounds of distributed random variable. Like in Bayesian estima-
tion, the distribution parameters are treated as random variables, and their uncertainty is described as a distribution.
The Monte Carlo procedure is involved to get the posteriori parameter distributions and the correspondent confi-

dence interval limits.
PACS: 02.50.Ng

INTRODUCTION

Sample methods are widely used for the investiga-
tions of population properties from which the samples
are drawn in order to get, partially, knowledge about the
distribution parameters. Different parametric and non-
parametric approaches are used for these purposes de-
pending on pertinent information and the size of the
sample that is available. Most parametric statistical
methods assume an underlying distribution in the deri-
vation of their results. The consequences of specifying
the wrong distribution may prove very costly. If such
distribution does not hold, then the confidence levels of
the confidence intervals (or of hypotheses tests) may be
completely off. Non-parametric or distribution-free
methods do not assume an underlying distribution. One
of them, the bootstrap was introduced by Efron [1] on
the base of sampling generation of statistics by taking
repeated replication with replacement from the sample
available.

Though bootstrap spread widely in statistical scienc-
es within a couple of decades due to its high practical
efficiency [2], from the very beginning Rubin [3], intro-
ducing the operationally and inferentially similar Bayes-
ian bootstrap, pointed out one significant drawback of
this approach. Strictly speaking, the probability of ap-
pearance of any value of continuously distributed ran-
dom variable is equal to zero, so that there is no reason-
able argument to attach the finite probability of appear-
ance to any figure of the sample available. It may be
done if these figures represent definite intervals from
the set of the random variable distribution. From this
standpoint the question, how to relate the sample values
with intervals of random variable distribution and corre-
spondent probabilities, deserves special attention.

In any case it seems to be unreasonable to neglect
any reliable quantitative information about population
density if it exists. In this respect one can say that the
main property of real population is that any measurable
property x is always confined having the upper and
lower bounds. Then, it can be supposed that introducing
bounds, if they are known, to statistical enhances would
significantly change the properties of distribution pa-
rameter assessments. It enables to consider another sta-
tistical approach to the distribution parameter estimation
that uses Monte Carlo procedure like bootstrap but has
different theoretical background.
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1. PROBLEM FORMULATION

We consider the random value x having unknown
continuously differentiable probability density function
(pdf) p(x) defined on the local set of real line, so that

Xpin < X< X » Where x . and x_ - are known lower

min

and upper set bounds respectively. Then, let X,X,,...,X.

be the simple random sample from the continuous popu-
lation.

It is required to estimate the distribution parameter
U , that can be defined as definite integral

U= j "™ U(X) p(X)dX (1)

Xmin

where u(x) is continuously differentiable generator for
the parameter U .

2. PROBLEM ANALYSIS

We introduce the cumulative distribution function
(cdf) into consideration in a usual way

f(x)= j p(X)dX .
so that integral (1) can be presented as following
U = [ulx(f)]df . 2)

where x(f) is inverse cdf.

We consider the random sample to be ordered from
the bottom to the top so that the correspondent value of
both generator and cdf can be matched to every sample
element:

Xo = Xogin S X X S X S Xy = X s Ui =U(X) 5
fi=1(x); |:01 SN+1;
f,=0<f <f,<.<f <f, = 3)

Then integral (2) can be approximated according to
the trapezoidal rule:

_ n+l _ i n+1ﬂ 3 ’ 4
U =3>""a (u)af, 0(12 Zi:ldf:l(mi) J @

where a,(u) = (u;, +u;)/2 and Af, = f, - f,,.

Equation (4) contains set (3) of cdf unknown values.
At the same time the posteriori pdf of these values is
known to be independent on p(x) and can be presented

as:

( ) nIHn+1H(f (5)
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where H(-) is Heaviside function. It means that every

random set of n figures, satisfying condition (3), is
equally probable and can be considered to be likely true
set. Distribution (5) enables to define different mathe-
matical expectations, for instance:

((af)")= nljdfjdf j df, (Af, )" =

where m is positive integer.
Naturally, we introduce the point estimator <U> of

nim! . (6)
(n+m)!

distribution parameter U as the expected value (4) on
distribution (5) that gives

1 n+l 1 nind U
<U>=MZ1ai(“)‘o[z(n+1)(n+2)<n+3)Z‘1df ](7)

From this point and further the errors of numerical
approximation (4) and (7) will be ignored, being smaller
on order of magnitude. In particular, for the point esti-
mator of distribution mean we have got simple equation

1 N+l 1 (X +X,
<X>:ﬁ i:lai(x) n+ 1( +Z|1 'j ®)

It means that if there is no sample available (n=0)

then the half-sum of the random value bounds can be
taken as distribution mean estimation. If random sample
is available then half-sum should be added to the sample
as independent value. Point estimator (8) is asymptoti-
cally unbiased, but if p(x) is symmetrical relatively to

the centre (X .. + X.,.)/2, then it is simply unbiased.

Obviously, point estimator (8) is consistent because if
n— o the sum (8) converges to definition integral (2)
where u(x) = x. The same conclusions are justified for

the general point estimator (4).

It should be emphasized that according to (4) and (5)
we treat the distribution parameters as random variables
(like in Bayesian estimation), and their uncertainty is
described as a posteriori distribution. The Monte Carlo
method [4, 5] is applied to obtain this distribution. In
accordance to the Monte Carlo procedure K set of uni-
formly distributed on the interval [0,1] random figures:
£, 50, %, k=12,..,K, should be generated

and ordered from the bottom to the top. On the each
ordered set the correspondent likely value of distribu-
tion parameter (random estimates) can be calculated as

G, =Y e af®, ©)

and also be ordered as U, <U, <..<U,
At last, if the degree of confidence P is chosen, the
lower B, and upper B, limits of correspondent confi-

dence interval are defined accordingly to their places
taken up in the ordered set

BL =U K(1-P)/2 BH =U K(1+P)/2?

and, if the sample size K is sufficiently large, then the
point estimation can be calculated in a simple way as

U)=U= e T (10)

Besides, different graphic presentations of simulated
data, like histogram or pdf diagram, can be also applied.
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3. DISCRETE DISTRIBUTION

Here we consider the discrete ordered population of
size N :
(11)

and let

X, Xy yeeey Xy

having bounds  x,=x Xns = X

be the ordered simple random sam-

min ’ max ’
Xy Xr(2y 1+ Xe(n)
ple of size n drown from the population (11) without
replacement; the set 1<r(1) <r(2) <...<r(n)<N being
the order numbers of the sample elements in the ordered
population.

For the purpose of better compatibility with defini-
tion integral (2) we introduce the discrete distribution
parameter U as following

1 N
N1 )

Expression (12) is directly related with common def-

IO

N U+ Ug + Uy ,
N+1 © 2
providing, on the other hand, for the better convergence
to the definition integral if N — o0.

Then equation (4), after substitution

f.=r(i)/(N +1), can be taken as the distribution pa-
rameter estimator

(12)

inition U, =

U= (13)

Us " 3", Ar().

N+1
where Ar(i)=r(i)—r(@i-1); r(0)=0; r(n+1)=N+1,
and r(i) is random positive integer variable distributed
ontheset i,i+1,....,N—n+i.

The total number of ordered samples of size n with-

(14)

out replacement from the population is (’F}‘) and num-

ber of samples

(r('i)llj(Nn_ r_(i))’ so that following identity for the
i— —i
binomial coefficients takes place
N N-nsi(F(I) =LY N =r(i)
(nj 2o .( i-1 j( n-i )

and probability distribution of r(i) can be defined as

reol-(1) {10 0

The mathematical expectation (r(i)) can be calcu-

with fixed value of r(i) is

(15)

lated now as

(r(@)=>" . Plr@]rG)

If to define the point estimator for the discrete distri-
bution parameter as mathematical expectation of (14)
then it will be the same as (6):

<U> 1 n+lUI+1 +U; (17)
n+1 2
where i is index of the element in ordered sample.

The Monte Carlo procedure can be also applied to

find both posteriori distribution of the parameter and

N+L o (16)
1
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confidence interval limits. For this purposes K random
samples of n positive integers should be drown from
the set 1,2,..., N without replacement, ordered from the

bottom to the top to represent r)(i), and substituted to

(14) providing for the finding of K likely true values of
the distribution parameter. This set of simulated data is
the basis for the application of different statistical mod-
els to represent the properties of parameter distribution.

4. SIMULATIONS

As a final result we have got the clear and sufficient-
ly simple method for the point and interval estimations
of distribution parameters on the simple random sam-
ples if the random value bounds are known. For the
purpose of demonstration of the method potential to
treat the samples of small size we consider the follow-
ing case example. Table 1 contains twenty figures that
were generated from an uniform distribution on interval
[0,1] representing the sample with “unknown” distribu-

tion of random variable having bounds: x. =0,
Xmax =1.
Table 1
Random sample from uniform distribution on [0,1]
0.7475 | 0.3275 | 0.9443 | 0.2467
0.6789 | 0.5683 | 0.7703 | 0.0315
0.3239 | 0.2536 0.748 0.7319
0.2539 | 0.1412 | 0.0205 | 0.2221
0.6789 0.067 0.976 0.6882

The following distribution parameters are estimated:
the distribution mean X (X =1/2 is the true value),
variance D (D =1/12), the third CM3 (CM3=0) and
fourth CM4 (CM 4 =1/80) central moments. Generator
for the central moment of order m is as following

L=k mat) . as)

Three sub-samples are chosen from the Table 1: The
sample 1 contains first three figures (n=3) from the
first column, the sample 2 contains first ten figures
(n=10) from the first and second columns and the
sample 3 contains all figures (n=20). According to (8)
the point estimation of distribution mean is for the sam-
ple 1: (X)=0.563; for the sample 2: (X)=0.413; and

for the sample 3: (X )=0.472.

The point estimator for the variance D can be de-
rived from (5) and (18) as

_ 2\ z_ii I 2| (19
=)0 S| b S0~ (x) |- a9
2 _L n+l 2 )
<X >_ n+1 i:lai(x )
The correspondent values of expected variance are
for the sample 1: (D)=0.755; for the sample 2:

(D)=0.0655, and for the sample 3: (D) =0.0955.

There is no urgent necessity to derive analitical for-
mulas for the point estimators of the cenral moments of
the higher orders. They can be calculated much more
easier by the use (10) if the Monte Carlo set of simulat-
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ed values U, is available and sufficiently large. In order

to get the necessary probabilistic entity K =10° genera-
tions of draws from the distribution (5) were made and
the resultant point estimations and confidence interval
limits were obtained. These results are recorded in Ta-
ble 2, demonstrating method efficiency.

Table 2

Point estimates and confidence limits for the central
moments ( P =0.95)

nl X, X, D, D, | CM3
3 | 0311 | 0722 | 0.028 | 0.126 | 0.008
10| 0.271 | 0.565 | 0.036 | 0.104 | 0.006
20 | 0.342 | 0.604 | 0.067 | 0.129 | 0.001
n|cms | cm3, | cM4 | cm4, | cma,
3 | -0.027 | 0015 | 0.015 | 0.0038 | 0.029
10 | -0.0094 | 0.02 | 0.01 | 0.0037 | 0.02

20 | -0.017 | 0.021 | 0.016 | 0.0087 | 0.025

The table cells for the CM3 show small values,
however its confidence intervals contain zero so that its
expected values <CM 3> can be taken as equal to zero. It

is evident that true values of evaluated parameters fall
into the correspondent confidence intervals. Much more
interesting is the fact that interval estimation precision,
measured as the confidence interval width and provided
with the sample of extremely low size (n=3), is com-
parable to that for the sample of significantly larger size
(n=20).

The large number K =10° of statistical trials pro-
vides for the smooth shape of two posteriori probability
density functions presented at the Fig. 1.

o 2 o2 04 X 06 0.8

Fig. 1. Posteriori PDFs of the variance D (a) and
mean X (b) on the sample of size n=3 (dotted line),
n=10 (dashed line), and n=20 (solid line) drown
from the continuous population

To illustrate some properties of the estimator (14)
we consider the figures at the Table 1 to be the popula-
tion, having bounds x_, =0 and x_, =1; the first free
figures from the first column being the random sample
without replacement. The four common estimates for
the distribution parameters of the population are:

N
20~

1l -2, 2
o = /2—0 * (%~ X ) =0304,
o= TR X o2 =00,

B = %ZZ(K - X, )“/ag =1.603.

Xe =
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In accordance to (12) the correspondent values of
above mentioned parameters are:

X =0472, 0=0.312, y=0.038, 5=1.585.

These values are somewhat differ from the common
estimates but differences will be diminished if the size
of population rises.

To get the posteriori distributions of any parameter
U we use following approximation of its likely value
UJ, on every statistical trial k =1,2,..., K :

~ l n+l k) 73
U, :mzizlar(i)(u)Ar OF
where Ar® (i) =r® (i) - r®(i-1) and
1<) <r®@2)<..<r®m)<N,
are the ordered set of the positive integers drown from
the random variable uniformly distributed on the array
1,2,..., N . Then the likely values of the mean, stand-

ard deviation, skewness and kurtosis are calculated as

va 1 n+l (k) (3
Xk = mzi:lar(i) (X)AI‘ (l) ’

1 n+l ~ \2 K) 7=
ep ={N+12i_1ar(i) (X_ xk) ]Ar( )(l)}
- 1 nil G VB lao k) /=3
7. :mziﬂam) (x— Xk) ]Ar( )(I)/O'k .
~ 1 n+l S \4 K) /= ~4
B, :mzi:lar(i)[(x—xk) ]Ar( )(I)/O'k .

After K =10° statistical trials the confidence
(P =0.95) intervals for the mentioned statistics are:
0.392< X <0.602; 0.282<0<0.443;
-1.42<y<0.071; 1.11< f<3.36.

The histograms of the correspondent posteriori dis-
tributions for these parameters are presented at the

V2

Figs. 2, 3.
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Fig. 2. Histograms of standard deviation & (a) and
mean X (b) posteriori distributions on the sample of
size n =3 drown from the discrete population
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Fig. 3. Histograms of skewness y (a) and kurtosis g

(b) posteriori distributions on the sample of size n=3
drown from the discrete population
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The small size of discrete population is also the rea-
son that histograms of skewness and kurtosis show dis-
tributions having several modes.

5. DISCUSSION

There are two approaches to statistical assessment of
pdf parameters. In classical estimation these parameters
are considered "fixed but unknown" whereas the values
of the sample are random. In particular, that means that
any element x. of the simple random sample is random

value having determinate statistical weight 1/n (proba-

bility of appearance). The bootstrap method is the ex-
ample of efficient interval estimator having that back-
ground.

For the Bayesian approach [6] it is assumed that af-
ter the sample extraction from the population any sam-
ple element ¥, is the determinate value and posteriori

conditional pdf of the estimated parameter
p(X‘Xl,XZ,, X) can be defined if the likelihood

p(i(l,i(z,...,szn\x) and priori pdf p(x) are known. In
this paper we also consider any sample element X, to be

the determinate value. But there is no necessity to attract
any working hypothesis about distribution of X.. In-

stead, the upper and lower bounds of random variable
should be known to be included into the biased point
estimator (7) or (17). Actually, there is also possibility,
for instance, to introduce the unbiased point estimator

for <X> instead (7) if to replace the generator u(x) = x
by

1 X o +X
u(x)=——| (n+1)x ——min__"—max |,
09 n+1{( ) 2 }

but undesirable consequence of such substitution will be
the confidence interval widening, which can be percep-
tible especially for the samples of extremely small size.

The formal numerical approximation of the defini-
tion integral (2) or finite sum (12) enables to realize the
Monte Carlo procedure and to get the correct inclusion
of the random variable bounds to the every statistical
trial (8) or (14) providing for the possibility to find the
confidence interval limits for different distribution pa-
rameters. Prescribed bounds of the random variable
ensure the width of the confidence interval to be as nar-
row as possible under conditions given. Simulation
studies show the remarkable efficiency of the consid-
ered method even for sample size as small as 3.

The practical attractiveness of the described ap-
proach is stipulated for the circumstance that some
measurable properties of the physical, biological and
social populations have known bounds. For instance, if
the population proportion is estimated then there are
obvious bounds 0 and 1 of the random indications.
Sometimes the available resources don’t allow to carry
out the large-scale sample observations so that only
small-size samples can be obtained. Furthermore, the
special options could be envisaged in the frames of the
sampling plan in order to find appropriate population
elements and to estimate the measured random variable
bounds. These are just the cases, when the described
approximation method could be applied.
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OLIEHKA ITAPAMETPOB PACHPEJIEJIEHUSA IO BBIBOPKE C U3BECTHbIMU BEPXHEM
1 HWKHEA TPAHUIIAMM U3MEHEHUS CTYYAMHOMN BEJIUYUHBI

B.A. bapannux

[pennaraercst cioco® TOYEUHON M MHTEPBAJILHOM OIIEHKN ITapaMEeTPOB paclpeieIeHHs CITyYaiHOW BEINYNHBI C
M3BECTHBIMH IPAaHULIAMH O0JIACTH €€ M3MEHEHHS OCPEACTBOM YHCICHHOW alNpOKCUMAIMH ONPEEIISIONIEr0 HHTe-
rpasia. AHanorugHo Metony baiieca mapameTpsl pacnpeiesieHHss HHTEPIPETUPYIOTCS KaK CiIydaiHble IepeMeHHEbIE,
M MX HEONPEAEIEHHOCTh BBIpaXKaeTcsi B TEPMUHAX pachpeneneHuid. [t HaxoXKIeHUs alloCTEpHOPHOTO pacipese-
JICHUsI [TapaMeTpa WM TPaHull JOBEPUTEILHOIO HHTEPBaja UcIoab3yeTcst MeToa Monre-Kapio.

OIIHKA ITAPAMETPIB PO3IIOALTY 3A BUBIPKOIO 3 BIJOMHNMMA BEPXHbBOIO
TA HUKHBOIO TPAHUIISAMHA 3MIHIOBAHHSI BUITA IKOBOI BEJTUUANHA

B.O. Bapannik

ITponoHyeThCs crOCiO TOYKOBOI Ta iHTEPBAJIBHOI OLIHKK MapaMeTpiB pO3MOALTY BHIIaJKOBOi BEJIMYUHU 3 BiJO-
MHUMH TPaHUIAMU 11 3MIHIOBaHHS 3 BUKOPUCTAHHSAM YHCIJIOBOI alipOKCHMAIlii BU3HAYAI04OTro iHTerpaia. AHAJIOTI9HO
Jo Merony baifeca mapamerpu po3moniry po3risaloThes SIK BHITAJAKOBI BEJIMYHMHH, a IX HEBH3HAUCHICTH BHpaxa-
€ThCS B TEPMiHAX po3mojiny. [Jis1 OTpUMaHHS allOCTEPIOPHOTO PO3MOALTY apameTpa abo TpaHUIlb JOBIPUYOTrO iHTE-
pBaity 3acTocoBy€eThcs MeTo]1 MonTe-Kapio.
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