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The point and interval distribution parameter estimators are obtained by direct numerical approximation of the 

definition integral with the use of upper and lower bounds of distributed random variable. Like in Bayesian estima-
tion, the distribution parameters are treated as random variables, and their uncertainty is described as a distribution. 
The Monte Carlo procedure is involved to get the posteriori parameter distributions and the correspondent confi-
dence interval limits. 
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INTRODUCTION 
Sample methods are widely used for the investiga-

tions of population properties from which the samples 
are drawn in order to get, partially, knowledge about the 
distribution parameters. Different parametric and non-
parametric approaches are used for these purposes de-
pending on pertinent information and the size of the 
sample that is available. Most parametric statistical 
methods assume an underlying distribution in the deri-
vation of their results. The consequences of specifying 
the wrong distribution may prove very costly. If such 
distribution does not hold, then the confidence levels of 
the confidence intervals (or of hypotheses tests) may be 
completely off. Non-parametric or distribution-free 
methods do not assume an underlying distribution. One 
of them, the bootstrap was introduced by Efron [1] on 
the base of sampling generation of statistics by taking 
repeated replication with replacement from the sample 
available. 

Though bootstrap spread widely in statistical scienc-
es within a couple of decades due to its high practical 
efficiency [2], from the very beginning Rubin [3], intro-
ducing the operationally and inferentially similar Bayes-
ian bootstrap, pointed out one significant drawback of 
this approach. Strictly speaking, the probability of ap-
pearance of any value of continuously distributed ran-
dom variable is equal to zero, so that there is no reason-
able argument to attach the finite probability of appear-
ance to any figure of the sample available. It may be 
done if these figures represent definite intervals from 
the set of the random variable distribution. From this 
standpoint the question, how to relate the sample values 
with intervals of random variable distribution and corre-
spondent probabilities, deserves special attention. 

In any case it seems to be unreasonable to neglect 
any reliable quantitative information about population 
density if it exists. In this respect one can say that the 
main property of real population is that any measurable 
property x  is always confined having the upper and 
lower bounds. Then, it can be supposed that introducing 
bounds, if they are known, to statistical enhances would 
significantly change the properties of distribution pa-
rameter assessments. It enables to consider another sta-
tistical approach to the distribution parameter estimation 
that uses Monte Carlo procedure like bootstrap but has 
different theoretical background. 

 

1. PROBLEM FORMULATION 
We consider the random value x  having unknown 

continuously differentiable probability density function 
(pdf) )(xρ  defined on the local set of real line, so that 

maxmin xxx ≤≤ , where minx  and maxx  are known lower 
and upper set bounds respectively. Then, let nxxx ~,...,~,~

21  
be the simple random sample from the continuous popu-
lation. 

It is required to estimate the distribution parameter 
U , that can be defined as definite integral 

∫=
max

min

)()(
x

x
dxxxuU ρ ,                     (1) 

where )(xu  is continuously differentiable generator for 
the parameter U . 

2. PROBLEM ANALYSIS 
We introduce the cumulative distribution function 

(cdf) into consideration in a usual way 

∫=
x

x
dxxxf

min

)()( ρ , 

so that integral (1) can be presented as following 

∫=
1

0
)]([ dffxuU ,                          (2) 

where )( fx  is inverse cdf. 
We consider the random sample to be ordered from 

the bottom to the top so that the correspondent value of 
both generator and cdf can be matched to every sample 
element: 

max121min0 ... xxxxxxx nn =≤≤≤≤≤= + ; )( ii xuu = ; 

)( ii xff = ; 1...,,1,0 += ni ; 

1...0 1210 =≤≤≤≤≤= +nn fffff .           (3) 
Then integral (2) can be approximated according to 

the trapezoidal rule: 
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where 2)()( 1 iii uuua += −  and 1−−=∆ iii fff . 
Equation (4) contains set (3) of cdf unknown values. 

At the same time the posteriori pdf of these values is 
known to be independent on )(xρ  and can be presented 
as:  

∏ +

= −−=
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1 121 )(!),...,,( n

i iin ffHnfffρ ,         (5) 
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where )(⋅H  is Heaviside function. It means that every 
random set of n  figures, satisfying condition (3), is 
equally probable and can be considered to be likely true 
set. Distribution (5) enables to define different mathe-
matical expectations, for instance: 
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where m  is positive integer. 
Naturally, we introduce the point estimator U  of 

distribution parameter U  as the expected value (4) on 
distribution (5) that gives 

∑ ∑+

=

+

=
−








+++

−
+

=
1

1

1

1 2
1

2

)3)(2)(1(2
1)(

1
1 n

i

n

i
i

i df
ud

nnn
Oua

n
U .(7) 

From this point and further the errors of numerical 
approximation (4) and (7) will be ignored, being smaller 
on order of magnitude. In particular, for the point esti-
mator of distribution mean we have got simple equation 
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It means that if there is no sample available )0( =n  
then the half-sum of the random value bounds can be 
taken as distribution mean estimation. If random sample 
is available then half-sum should be added to the sample 
as independent value. Point estimator (8) is asymptoti-
cally unbiased, but if )(xρ  is symmetrical relatively to 
the centre 2)( maxmin xx + , then it is simply unbiased.  
Obviously, point estimator (8) is consistent because if 

∞→n  the sum (8) converges to definition integral (2) 
where xxu =)( . The same conclusions are justified for 
the general point estimator (4). 

It should be emphasized that according to (4) and (5) 
we treat the distribution parameters as random variables 
(like in Bayesian estimation), and their uncertainty is 
described as a posteriori distribution. The Monte Carlo 
method [4, 5] is applied to obtain this distribution. In 
accordance to the Monte Carlo procedure K  set of uni-
formly distributed on the interval [0,1] random figures: 

)()(
2
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~,...,~,~ k
n

kk fff ; Kk ,...,2,1= , should be generated 
and ordered from the bottom to the top. On the each 
ordered set the correspondent likely value of distribu-
tion parameter (random estimates) can be calculated as 
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and also be ordered as KUUU ≤≤≤ ...21 . 
At last, if the degree of confidence P  is chosen, the 

lower LB  and upper HB  limits of correspondent confi-
dence interval are defined accordingly to their places 
taken up in the ordered set 

2)1( PKL UB −= , 2)1( PKH UB += , 
and, if the sample size K  is sufficiently large, then the 
point estimation can be calculated in a simple way as 
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Besides, different graphic presentations of simulated 
data, like histogram or pdf diagram, can be also applied. 

3. DISCRETE DISTRIBUTION 
Here we consider the discrete ordered population of 

size N : 
Nxxx ,...,, 21 ,                           (11) 

having bounds min0 xx = , max1 xxN =+ , and let 

)()2()1( ,...,, nrrr xxx  be the ordered simple random sam-
ple of size n  drown from the population (11) without 
replacement; the set Nnrrr ≤<<<≤ )(...)2()1(1  being 
the order numbers of the sample elements in the ordered 
population. 

For the purpose of better compatibility with defini-
tion integral (2) we introduce the discrete distribution 
parameter U  as following 
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Expression (12) is directly related with common def-
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providing, on the other hand, for the better convergence 
to the definition integral if ∞→N . 

Then equation (4), after substitution 
)1()( += Nirfi , can be taken as the distribution pa-

rameter estimator 
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where )1()()( −−=∆ iririr ; 0)0( =r ; 1)1( +=+ Nnr , 
and )(ir  is random positive integer variable distributed 
on the set inNii +−+ ,...,1, . 

The total number of ordered samples of size n  with-

out replacement from the population is 
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binomial coefficients takes place 
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and probability distribution of )(ir  can be defined as 
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The mathematical expectation )(ir  can be calcu-
lated now as 
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If to define the point estimator for the discrete distri-
bution parameter as mathematical expectation of (14) 
then it will be the same as (6):  
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where i  is index of the element in ordered sample. 
The Monte Carlo procedure can be also applied to 

find both posteriori distribution of the parameter and 
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confidence interval limits. For this purposes K  random 
samples of n  positive integers should be drown from 
the set N,...,2,1  without replacement, ordered from the 
bottom to the top to represent )()( ir k , and substituted to 
(14) providing for the finding of K  likely true values of 
the distribution parameter. This set of simulated data is 
the basis for the application of different statistical mod-
els to represent the properties of parameter distribution. 

4. SIMULATIONS 
As a final result we have got the clear and sufficient-

ly simple method for the point and interval estimations 
of distribution parameters on the simple random sam-
ples if the random value bounds are known. For the 
purpose of demonstration of the method potential to 
treat the samples of small size we consider the follow-
ing case example. Table 1 contains twenty figures that 
were generated from an uniform distribution on interval 
[0,1] representing the sample with “unknown” distribu-
tion of random variable having bounds: 0min =x , 

1max =x . 
Table 1 

Random sample from uniform distribution on [0,1] 
0.7475 0.3275 0.9443 0.2467 
0.6789 0.5683 0.7703 0.0315 
0.3239 0.2536 0.748 0.7319 
0.2539 0.1412 0.0205 0.2221 
0.6789 0.067 0.976 0.6882 

 

The following distribution parameters are estimated: 
the distribution mean X  ( 21=X  is the true value), 
variance D  ( 121=D ), the third 3CM  ( 03 =CM ) and 
fourth 4CM  ( 8014 =CM ) central moments. Generator 
for the central moment of order m  is as following 

( )mn

i iim fxaxxu ∑ +
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1

1
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Three sub-samples are chosen from the Table 1: The 
sample 1 contains first three figures ( 3=n ) from the 
first column, the sample 2 contains first ten figures 
( 10=n ) from the first and second columns and the 
sample 3 contains all figures ( 20=n ). According to (8) 
the point estimation of distribution mean is for the sam-
ple 1: 0.563X = ; for the sample 2: 0.413X = ; and 

for the sample 3: 0.472X = . 
The point estimator for the variance D  can be de-

rived from (5) and (18) as 
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The correspondent values of expected variance are 
for the sample 1: 0.755D = ; for the sample 2: 

0.0655D = , and for the sample 3: 0.0955D = . 
There is no urgent necessity to derive analitical for-

mulas for the point estimators of the cenral moments of 
the higher orders. They can be calculated much more 
easier by the use (10) if the Monte Carlo set of simulat-

ed values kU  is available and sufficiently large. In order 

to get the necessary probabilistic entity 610=K  genera-
tions of draws from the distribution (5) were made and 
the resultant point estimations and confidence interval 
limits were obtained. These results are recorded in Ta-
ble 2, demonstrating method efficiency. 

Table 2 
Point estimates and confidence limits for the central 

moments ( 95.0=Р ) 
n  

LX  HX  LD  HD  3CM  
3 0.311 0.722 0.028 0.126 0.008 
10 0.271 0.565 0.036 0.104 0.006 
20 0.342 0.604 0.067 0.129 0.001 
n  

LCM 3  HCM 3  4CM  LCM 4  HCM 4  
3 -0.027 0.015 0.015 0.0038 0.029 
10 -0.0094 0.02 0.01 0.0037 0.02 
20 -0.017 0.021 0.016 0.0087 0.025 

 

The table cells for the 3CM  show small values, 
however its confidence intervals contain zero so that its 
expected values 3CM  can be taken as equal to zero. It 
is evident that true values of evaluated parameters fall 
into the correspondent confidence intervals. Much more 
interesting is the fact that interval estimation precision, 
measured as the confidence interval width and provided 
with the sample of extremely low size )3( =n , is com-
parable to that for the sample of significantly larger size 

)20( =n . 
The large number 610=K  of statistical trials pro-

vides for the smooth shape of two posteriori probability 
density functions presented at the Fig. 1. 

 
Fig. 1. Posteriori PDFs of the variance D  (a) and 

mean X  (b) on the sample of size 3=n  (dotted line), 
10=n  (dashed line), and 20=n  (solid line) drown 

from the continuous population 
To illustrate some properties of the estimator (14) 

we consider the figures at the Table 1 to be the popula-
tion, having bounds 0min =x  and 1max =x ; the first free 
figures from the first column being the random sample 
without replacement. The four common estimates for 
the distribution parameters of the population are: 
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In accordance to (12) the correspondent values of 
above mentioned parameters are: 

0.472X = , 0.312σ = , 0.038γ = , 1.585β = . 
These values are somewhat differ from the common 

estimates but differences will be diminished if the size 
of population rises. 

To get the posteriori distributions of any parameter 
U  we use following approximation of its likely value 

kU~  on every statistical trial Kk ,...,2,1= : 
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where )1()()( )()()( −−=∆ iririr kkk  and 

Nnrrr kkk ≤<<<≤ )(...)2()1(1 )()()( , 
are the ordered set of the positive integers drown from 
the random variable uniformly distributed on the array 

N,...,2,1 . Then the likely values of the mean, stand-
ard deviation, skewness and kurtosis are calculated as 
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After 610=K  statistical trials the confidence 
( 0.95P = ) intervals for the mentioned statistics are: 

0.392 0.602X≤ ≤ ; 0.282 0.443σ≤ ≤ ; 
1.42 0.071γ− ≤ ≤ ; 1.11 3.36β≤ ≤ . 

The histograms of the correspondent posteriori dis-
tributions for these parameters are presented at the 
Figs. 2, 3. 

 
Fig. 2. Histograms of standard deviation σ  (a) and 

mean X  (b) posteriori distributions on the sample of 
size 3=n  drown from the discrete population 

 
Fig. 3. Histograms of skewness γ  (a) and kurtosis β  
(b) posteriori distributions on the sample of size 3=n  

drown from the discrete population 

The small size of discrete population is also the rea-
son that histograms of skewness and kurtosis show dis-
tributions having several modes. 

5. DISCUSSION 
There are two approaches to statistical assessment of 

pdf parameters. In classical estimation these parameters 
are considered "fixed but unknown" whereas the values 
of the sample are random. In particular, that means that 
any element ix~  of the simple random sample is random 
value having determinate statistical weight n1  (proba-
bility of appearance). The bootstrap method is the ex-
ample of efficient interval estimator having that back-
ground. 

For the Bayesian approach [6] it is assumed that af-
ter the sample extraction from the population any sam-
ple element ix~  is the determinate value and posteriori 
conditional pdf of the estimated parameter 

)( nxxxX ~,...,~,~
21ρ  can be defined if the likelihood 

)( Xxxx n
~,...,~,~

21ρ  and priori pdf )(Xρ  are known. In 

this paper we also consider any sample element ix~  to be 
the determinate value. But there is no necessity to attract 
any working hypothesis about distribution of ix~ . In-
stead, the upper and lower bounds of random variable 
should be known to be included into the biased point 
estimator (7) or (17). Actually, there is also possibility, 
for instance, to introduce the unbiased point estimator 
for X  instead (7) if to replace the generator xxu =)(  
by 





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1
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n
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but undesirable consequence of such substitution will be 
the confidence interval widening, which can be percep-
tible especially for the samples of extremely small size. 

The formal numerical approximation of the defini-
tion integral (2) or finite sum (12) enables to realize the 
Monte Carlo procedure and to get the correct inclusion 
of the random variable bounds to the every statistical 
trial (8) or (14) providing for the possibility to find the 
confidence interval limits for different distribution pa-
rameters.  Prescribed bounds of the random variable 
ensure the width of the confidence interval to be as nar-
row as possible under conditions given. Simulation 
studies show the remarkable efficiency of the consid-
ered method even for sample size as small as 3. 

The practical attractiveness of the described ap-
proach is stipulated for the circumstance that some 
measurable properties of the physical, biological and 
social populations have known bounds. For instance, if 
the population proportion is estimated then there are 
obvious bounds 0 and 1 of the random indications. 
Sometimes the available resources don’t allow to carry 
out the large-scale sample observations so that only 
small-size samples can be obtained. Furthermore, the 
special options could be envisaged in the frames of the 
sampling plan in order to find appropriate population 
elements and to estimate the measured random variable 
bounds. These are just the cases, when the described 
approximation method could be applied. 
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ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ ПО ВЫБОРКЕ С ИЗВЕСТНЫМИ ВЕРХНЕЙ  
И НИЖНЕЙ ГРАНИЦАМИ ИЗМЕНЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ 

В.А. Баранник 

Предлагается способ точечной и интервальной оценки параметров распределения случайной величины с 
известными границами области ее изменения посредством численной аппроксимации определяющего инте-
грала. Аналогично методу Байеса параметры распределения интерпретируются как случайные переменные, 
и их неопределенность выражается в терминах распределений. Для нахождения апостериорного распреде-
ления параметра или границ доверительного интервала используется метод Монте-Карло. 

ОЦІНКА ПАРАМЕТРІВ РОЗПОДІЛУ ЗА ВИБІРКОЮ З ВІДОМИМИ ВЕРХНЬОЮ  
ТА НИЖНЬОЮ ГРАНИЦЯМИ ЗМІНЮВАННЯ ВИПАДКОВОЇ ВЕЛИЧИНИ 

В.О. Бараннік 

Пропонується спосіб точкової та інтервальної оцінки параметрів розподілу випадкової величини з відо-
мими границями її змінювання з використанням числової апроксимації визначаючого інтеграла. Аналогічно 
до методу Байєса параметри розподілу розглядаються як випадкові величини, а їх невизначеність виража-
ється в термінах розподілу. Для отримання апостеріорного розподілу параметра або границь довірчого інте-
рвалу застосовується метод Монте-Карло. 
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