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ION CYCLOTRON INSTABILITIES IN MULTICOMPONENT 
MAGNETIC FIELD-ALIGNED PLASMA FLOW WITH SHEAR 
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The ion cyclotron instabilities of magnetic-field-aligned multi-species plasma flow with the flow velocity shear 
are investigated. It is assumed that plasma consist of two ion species, H+ and O+, the most often occurring in the 
Earth's ionosphere. The effect of the hydrogen ions on the ion kinetic as well as hydrodynamic shear-flow-driven 
ion cyclotron instabilities with the frequency approximately equal to the cyclotron frequency of the O+ ions is con-
sidered.   
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INTRODUCTION 
The investigations of the auroral region of the 

Earth’s ionosphere have discovered the inhomogeneous 
structures of electrostatic potentials which are correlated 
with regions of the formation and acceleration of the 
magnetic field-aligned upward ion beams [1]. One of 
the main features of these beams is the gradient of the 
flow velocity across the magnetic field (flow velocity 
shear) 0iV ′  which can reach specifically for O+ ions the 
values of 6 ciω  [2]. The upflowing ion beams are mainly 
composed of H+ and O+ ions the composition of which 
varies significantly from beam to beam [3]. These auro-
ral ion beams are often correlated with electrostatic ion 
cyclotron (EIC) oscillations having the cyclotron fre-
quencies of hydrogen and oxygen ions [4, 5]. It was 
shown that the flow velocity shear along with the other 
mechanisms may be responsible for the excitation of 
EIC waves in the auroral ionosphere due to develop-
ment of the shear-flow-driven EIC instability [6, 7]. The 
ion-parallel velocity shear-flow-driven ion cyclotron 
instability results from three mechanisms depending on 
the ratio of the phase velocity and the thermal velocity 
of the particles. These mechanisms dominate separately 
in distinct ranges of the normalized parallel-wave vector 
component [7]. In the short-wavelength diapason the 
instability is excited due to cyclotron interaction ions 
with the ion cyclotron waves (ion kinetic mode). The 
hydrodynamic effects of the instability excitation take 
place in more long-wavelength range when the ion 
cyclotron damping is negligible (hydrodynamic mode). 
When the wavelength along the magnetic field exceeds 
the critical value, the hydrodynamic mode does not exist 
and the ion cyclotron instability is excited by the inverse 
electron Landau damping (electron kinetic mode).   

The shear-flow-driven EIC instabilities was studied 
in plasma with single ion species [6, 7]. However, the 
application of these results in ionosphere investigations 
requires taking into account the presence of several ion 
components, the relative concentrations of which are 
changed significantly with the altitude in ionospheric 
plasma. We have carried out the study of the shear-
flow-driven ion-kinetic as well as hydrodynamic EIC 
instabilities in the sheared magnetic field-aligned 
plasma flow with two, H+ and O+, ion species. The fre-
quency of oscillations is assumed approximately equals 
to the O+ cyclotron frequency and effect of hydrogen 

ions on the hydrodynamic mode of this instability is 
considered. We have analyzed the dispersion equation 
assuming that the waves are propagate nearly perpen-
dicularly to the magnetic field but under the assumption 
that electrons are adiabatic. The thresholds and growth 
rates of these instabilities versus the relative concentra-
tion of oxygen ions for the main 1n =  and high 1n  
cyclotron harmonics are obtained. 

1. THE INSTABILITIES OF THE FIRST 
CYCLOTRON HARMONIC 

The dispersion relation for homogeneous multi-ion 
component plasma with a flow velocity shear is given 
by [8] 
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where the indices ,h l  refer to the heavy, O+, and light, 
H+, ions respectively, Dαλ  is the Debye length, 

( )( ) exp ( )n nA b b I b= − , ( )nI b  is the modified Bessel 

function, ( )2Tb kα αρ⊥= , T T cVα α αρ ω=  is the 

thermal Larmor radius, ( )0 cS V Xα α αω′=  is the normal-
ized flow velocity shear, 

( )0 2n c z z Tz n k V k Vα α α αω ω= − − , 
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z
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∫ . 

We study the heavy-ion cyclotron mode having the 
frequency ( ) ( )0ch z hk n k V kω ω δω= + + , where 

( ) chKδω ω . Assume, that both ion species have the 

equal thermal Th TlV V=  and flow 0 0h lV V=  velocities 
as well as equal magnitudes of velocity shear 0 0h lV V′ ′= . 

We first analyze the instability of the fundamental, 
1n = , cyclotron harmonic. We assume that hnz , which 

is the argument of the W − function, in the sum over 
cyclotron harmonics has an arbitrary value for the fun-
damental harmonic, while 1hnz > in the remaining 
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sum. That is valid when the inequality 1z Thk ρ <  is 
satisfied. Using the asymptotic form for W -function for 
large argument values 

( ) ( ) ( )( )2 2exp 1 1 2in in in inW z z i z zπ≈ − + + , 

we carry out in Eq. (1) the summation over the cyclo-
tron harmonics for 1n ≠ : 
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In the sum over cyclotron harmonics of light ions in 
Eq. (1) we retain only null term because of significant 
difference in the masses of heavy and light ions. Then 
the dielectric permittivity of light ions becomes 
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where 01 2l ch z Tlz k Vω= , l hS S μ=  and h lm mμ = .  
Then the dispersion relation (1) reduces to the form: 
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where α  is the relative concentration of heavy ions, 
( )1 1/ 1 /lg τ α δε α α= + − , /h eT Tτ = . We use in what 

follows the normalized wavelength along the magnetic 
field 1 z Tikλ ρ=  instead of variable zk . Considering 

1hz  as the normalized complex frequency, we find the 
solution ( )1hz λ  of the Eq. (4) for EIC instability in the 
short wavelength limit, when instability is developed 
due to the inverse of ion cyclotron damping, and in long 
wavelength limit, at which ion cyclotron damping is 
negligible and EIC instability is developed due to hy-
drodynamic effects.  

We find first the short wavelength threshold of the 
instability. The threshold values for variables λ  and 

1hz  we obtain by equating to zero the real and imagi-
nary parts of Eq. (4) 
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This system of equations has a solution when ine-
quality 0y Th hk Sρ >  is met. For this case we obtain the 

short-wavelength threshold value λ1s for the excitation 
of the instability, as well as the threshold value of the 
normalized complex frequency 1sz  which is the real at 
that threshold  
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where ( ) ( )( )1 1 01h h h hG A b A b b= + −  and index 1s  
means the short-wavelength instability threshold of the 
first cyclotron harmonic. Under the condition =1α , i. e. 
when in plasma flow only one ion species occurs, the 
value 1g  is equal to τ and Eqs. (6), (7) reduces to 
known expressions [7]. The presence in plasma flow 
another ion species causes decrease in relative 
concentration of heave ions that leads to the shift of the 
boundary wavelength of instability toward larger values 
because in (6) 1 1/g α∝ . The dispersive part, δω , of 
the ion cyclotron wave frequency and the growth rate at 
the vicinity of the instability threshold can be obtained 
from Eq. (6) as [7] 

( )
( )
( )

( )

11
01 01 2

1

1 1

1 1

2 Im

1 ,
1

y Th h ss

s

h s

k S W z

W z

A b
g G

ρλ
δω δω δω

λ π

λ
λ

⎛
⎜+ −
⎜⎜
⎝

⎞⎛ ⎞− −⎟⎜ ⎟⎟+ − ⎝ ⎠⎠

(8) 

( )
( )

1 1
01 2

1

Re 2
1s y Th h s

s

W z k S

W z

ρ λ
γ δω

λπ

⎛ ⎞
−⎜ ⎟

⎝ ⎠
,        (9) 

where ( ) ( )01 1 1 11ch hA b g Gδω ω= + −  and 01δω δω=  
at the instability boundary wavelength, 1sλ λ= . The 
EIC waves, which wavelength exceeds the boundary 
value (6) are unstable. The phase velocity of EIC waves 
along the magnetic field at the vicinity of instability 
threshold is of the order or less than the ion thermal 
velocity. The EIC instability occurs due to ion kinetic 
effect of inverse ion cyclotron damping which caused 
by flow velocity shear and is the ion-kinetic shear-flow-
driven EIC instability [7]. Fig. 1 shows the dispersion 
and the growth rate of the ion kinetic shear flow driven 
EIC instability versus the normalized wavelength for 

3hS = , 1y Thk ρ =  and 1τ =  which were calculated 
numerically from dispersion relation (1). 

0 5 10 15 20
0,00

0,05

0,10

0,15

λ=1/kzρTh

δω
/ω

ch

 

α=0.4

α=0.6
α=0.8

α=1

a

 

0 5 10 15 20
0,00

0,05

0,10

0,15

λ=1/kzρTh

α=0.4

α=0.6

α=0.8

α=1

 

 
γ/
ω

ch

b

 
Fig. 1. The dispersion (a) and growth rate (b) of ion-
kinetic instability versus the normalized wavelength  
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The numerical solution confirms the increase in 
boundary wavelength of instability (see Fig. 1,b). The 
value 01δω  decreases also with the decreasing α . This 
leads to a decrease in the dispersion (8), as well as in the 
growth rate (9) as can be seen from Fig. 1. 

With increasing of wavelength of the ion cyclotron 
waves the phase velocity of these waves along the 
magnetic field increases and may greatly exceeds the 
thermal velocity of the heavy ions. In this case the effect 
of ion cyclotron damping is negligible both for light and 
heavy ions and instability is excited due to 
hydrodynamic effects. In Eq. (4) inequality 1 1iz >  
holds and the asymptotic form of W − function for large 
argument can be used. The dielectric permittivity of 
heavy ions can be written as  
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Using the expressions (3) and (10) the dispersion 
equation (1) can be reduced to the form 

( ) ( )2 0K p K qδω δω− + = ,                     (11) 
where  

( )( )
12 2

1 1 11 , ,h h Dh lp g G k k kδω λ δε ω
−

⎡ ⎤= + − +⎣ ⎦
 

( )( )
12 2 2

1 11 , ,h h Dh lq g G k k kσ λ δε ω
−

⎡ ⎤= + − +⎣ ⎦   

( )1 1h ch hA bδω ω= , ( )2 2
1 /h ch y Th h hk S A bσ ω ρ λ= . The 

solution of Eq. (11) has the form 
( )1 1 12h h hδω δω β= ±Ω , (12) 

where ( )1 22 2
1 1 14h h h hδω σ βΩ = − , 1 11h hg Gβ = + − . 

The solution (12) gives the hydrodynamic shear-flow-
driven EIC instability if inequality 2 2

1 14 h h hσ β δω>  is 
met. For the wave numbers such as 1y Thk ρ  and re-

spectively 1z Tlk ρ  this condition can be written as 

1lλ λ< , where ( )1 1 1l y Th h h hk S A bλ ρ β  is the long-
wavelength threshold of instability for 1n =  harmonic. 

Now we investigate the effect of α  and hS  on the 
growth rate of the hydrodynamic shear-flow-driven EIC 
instability. The growth rate of instability obtained from 
Eq. (11) is approximately 

( ) 1 2
1 11 2l hγ λ λ β⎡ ⎤−⎣ ⎦ . (13) 

With a decrease of α  the growth rate away from the 
long-wavelength  threshold decreases approximately as 
α , however, the magnitude of threshold wavelength 

increases as α , so that the longer waves become unsta-
ble. The dependence of the growth rate on the normal-
ized shear hS  is expressed by the similar relation, i.e. 

hSγ ∝  and 1l hSλ ∝ . Thus the effects of relative 
concentration of oxygen ions on the growth rate and 
long-wavelength threshold is identical with the flow 
velocity shear.  

We also have solved numerically the dispersion 
equation (1) for the different values of relative concen-
tration of oxygen ions and have obtained the depend-
ence of the dispersion as well as growth rate versus the 
normalized wavelength along the magnetic field. The 
results of calculations for 3hS = , 1y Thk ρ =  and 1τ =  
are shown in Fig. 2.  
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Fig. 2. The dispersion (a) and growth rate (b) 

of instability versus the normalized wavelength  
The maximum of the growth rate occurs at 1 1hz  

that is a boundary of ion-hydrodynamic mode which is 
located to the right of the point of maximum. The 
Fig. 2,b shows a decrease of the growth rate as well as 
an increase of the long-wavelength threshold with the 
decrease of α  that is in a good agreement with analyti-
cal results. 

2. THE INSTABILITIES OF THE HIGH 
CYCLOTRON HARMONICS 

Now we investigate the ion kinetic and hydrody-
namic EIC instabilities of multicomponent plasma flow 
excited due to shear velocity flow for high cyclotron 
harmonics, ( ) ( )0ch z hk n k V kω ω δω= + +  with 2n ≥  

and ( ) cikδω ω . Assume that hnz  in the sum over 
cyclotron harmonics in Eq. (1) has an arbitrary value for 
the n n′=  term, while in remaining sum 1hnz > , for 
which the asymptotic form of W  − function for large 
argument values may be used. The summation over cy-
clotron harmonics for heavy ions at 1y Thk ρ  gives 
[7] 
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where ( ) 2 2ch Th Thz n k V n kω δω ρ⊥ ′ ′= + ≈y y  and 
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cyclotron harmonics of light ions in Eq. (1) as in the 
previous section we retain only null term so that the 
dielectric permittivity of light ions becomes 
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where 0 2l n ch z Tlz n k Vω′ ′= . Then the dispersion rela-
tion (1) has the form 
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where ( )/ 1 /n lng τ α δε α α′ ′= + − . Further we use 
index n  instead of index n′ . 

For the determine of the short-wavelength boundary 
for ion-kinetic mode of the shear-flow-driven EIC in-
stability we as in the previous section consider the sys-
tem of equations which we obtain by equating to zero 
the real and imaginary parts of Eq. (16), 
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This system has a solution when the inequality 
0y Th hk Sρ >  is met. For this case we obtain the short-

wavelength threshold value nsλ  for the excitation of the 
instability, at which normalized complex frequency nsz  
becomes real 
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where ( ) ( )n n hG A b zψ ⊥= −  and index ns  means the 
short-wavelength  threshold of instability for n -th cy-
clotron harmonic. Value nsλ  as well as for main 
cyclotron harmonic increases when α  decrease. The 
value 0nδω δω=  at the instability threshold is 

( ) ( )0 1n ch n h n nn A b g Gδω ω= + − . The growth rate for 
ion cyclotron instability at the vicinity of stability 
threshold can be obtained by use the same approach as 
for the first cyclotron harmonic 
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The growth rate (20) is affected by threshold value 
2ns Th hz n k Sρ⊥≈ , because ( ) ( )2Re expns nsW z zγ ∝ = − . 

The growth rate of instability is exponentially small 
when the flow velocity shear and the transverse wave 

number are such that 2 y Ti ik S nρ < , whereas, at op-

posite inequality the growth rate is not exponentially 
small. The magnitude of the growth rate is also affected 
by the factor ( )y Ti n hk A bρ . The function ( )n hA b  at 

1y Thk nρ  has asymptotic form 

( ) ( ) ( )2 2 21 2 exp 2n h y Th y ThA b k n kπ ρ ρ− ,    (21) 

which implies that long waves with y Thk nρ <  have 
exponentially small growth rate. Thus, waves with lon-
gitudinal wavelength nsλ λ>  and transverse wave 

numbers such as y Thk nρ ‰  and 2 y Th hk S nρ >  are 
unstable. We note also that the threshold wavelength 

nsλ  (18) as well as nsz (19) with these transverse wave 
numbers is approximately equal to the corresponding 
magnitudes for the first cyclotron harmonic (6), (7) with 
transverse wave numbers 1y Thk ρ ‰ .  

It follows from Eqs. (20), that the dependence of the 
growth rate on the relative concentration of the heavy 
ions is identical to that for the main cyclotron harmonic. 

Now we consider the excitation of the hydrodynamic 
EIC instability. Using the same assumptions as for the 
first harmonic we sum over cyclotron harmonics in 
Eq. (1) at 1y Thk nρ  and obtain approximately the 
dielectric permittivity of heavy ions as 
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In the dielectric permittivity of light ions (15) we 
take into account that inequality 1y Thk ρ  holds, so 

that 1y Tlk ρ >  and then 2 21l Dlkδε λ≈ . In this case the 
dispersion equation (1) takes the similar form as for the 
first harmonic (11). Its solution is 

( ) 2nh nh nhδω ω β= ±Ω ,             (23) 

where ( )nh ch n hn A bδω ω= , ( )1 22 24nh nh h nhδω σ βΩ = − , 

1nh nh h l hGβ τ α α α≈ − + + . The solution (23) gives 
the shear-flow-driven EIC instability if inequality 

2 24 h nh nhσ β δω>  is met. This condition can be also writ-

ten as lnλ λ< , where ( )2
nl y Th h nh n hk S n A bλ ρ β  is 

the long-wavelength  threshold of instability for 1n  
harmonics.  Because ( )n hA b  at 1y Thk nρ  has the 

asymptotic form (21) and for y Thk nρ =  we have 

( ) 0.2n hA b n≈  that gives 1nl lλ λ≈ . Thus the long-
wavelength threshold is the same as for the first and 
high cyclotron harmonics.  

Evaluating the effect of the relative concentration on 
the condition 1hnz > , we conclude that for y Thk nρ =  
the condition on the α  coincides with that of the main 
harmonic. Now we estimate the effect of α  and hS  on 
the growth rate of high cyclotron harmonic of the shear-
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flow-driven EIC instability. The growth rate of instabil-
ity obtained from Eq. (23) approximately equals 

( ) 1 21 2nl nhγ λ λ β⎡ ⎤−⎣ ⎦ . (24) 

Since 1l nlλ λ≈  we obtain that the dependence of 
growth rate on the concentration and the shear is the 
same as for the main cyclotron harmonic.  

CONCLUSIONS 

In the magnetic-field-aligned plasma flow with the 
flow velocity shear which is composed of O+ and H+ 
ions the ion-kinetic and hydrodynamic shear-flow-
driven EIC instabilities with the cyclotron frequency of 
O+ have been investigated. The effect of presence of the 
H+ ions in plasma flow and decreasing of the relative 
concentration α  of O+ ions is as follows: 

1. The growth rates as well as the dispersion 
additions to the ion cyclotron frequency as well as to 
their harmonics are decrease proportionally with the 
decreasing of α . 

2. The regions of unstable wavelengths of these 
instabilities is almost independent on the number of the 
ion cyclotron harmonic at 1α = . 

3. The regions of unstable wavelengths of these in-
stabilities for 1n =  cyclotron harmonic with decreasing 
α  are expanding whereas for the high cyclotron har-
monics these regions are slightly narrowed. 
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ИОННЫЕ ЦИКЛОТРОННЫЕ НЕУСТОЙЧИВОСТИ ПОТОКА МНОГОКОМПОНЕНТНОЙ 
ПЛАЗМЫ ВДОЛЬ МАГНИТНОГО ПОЛЯ СО СДВИГОМ ПОТОКОВОЙ СКОРОСТИ  

Д.В. Чибисов 

Исследованы ионные циклотронные неустойчивости многокомпонентного потока плазмы вдоль магнит-
ного поля со сдвигом потоковой скорости. Предполагается, что в состав плазмы входят ионы двух видов, H+ 
и O+, наиболее распространенных в ионосфере Земли. Рассматривается влияние ионов водорода на возбуж-
даемые широм потоковой скорости ионную кинетическую и гидродинамическую ионные циклотронные 
неустойчивости с частотами колебаний приблизительно равными циклотронной частоте ионов O+.    

ІОННІ ЦИКЛОТРОННІ НЕСТІЙКОСТІ ПОТОКУ БАГАТОКОМПОНЕНТНОЇ ПЛАЗМИ ВЗДОВЖ 
МАГНІТНОГО ПОЛЯ ЗІ ЗСУВОМ ПОТОКОВОЇ ШВИДКОСТІ 

Д.В. Чібісов 
Досліджено іонні циклотронні нестійкості багатокомпонентного потоку плазми вздовж магнітного поля 

зі зсувом потокової швидкості. Припускається, що до складу плазми входять іони двох видів, H+ і O+, най-
більш поширених в іоносфері Землі. Розглядається вплив іонів водню на іонну кінетичну і гідродинамічну 
іонні циклотронні нестійкості, що збуджуються широм потокової швидкості, з частотами коливань прибли-
зно рівними циклотронній частоті іонів O+.  


