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The ion cyclotron instabilities of magnetic-field-aligned multi-species plasma flow with the flow velocity shear
are investigated. It is assumed that plasma consist of two ion species, H' and O", the most often occurring in the
Earth's ionosphere. The effect of the hydrogen ions on the ion kinetic as well as hydrodynamic shear-flow-driven
ion cyclotron instabilities with the frequency approximately equal to the cyclotron frequency of the O" ions is con-

sidered.
PACS: 94.05.Lk, 94.20.wf

INTRODUCTION

The investigations of the auroral region of the
Earth’s ionosphere have discovered the inhomogeneous
structures of electrostatic potentials which are correlated
with regions of the formation and acceleration of the
magnetic field-aligned upward ion beams [1]. One of
the main features of these beams is the gradient of the
flow velocity across the magnetic field (flow velocity
shear) V5; which can reach specifically for O" ions the

values of 6a,; [2]. The upflowing ion beams are mainly

composed of H" and O" ions the composition of which
varies significantly from beam to beam [3]. These auro-
ral ion beams are often correlated with electrostatic ion
cyclotron (EIC) oscillations having the cyclotron fre-
quencies of hydrogen and oxygen ions [4, 5]. It was
shown that the flow velocity shear along with the other
mechanisms may be responsible for the excitation of
EIC waves in the auroral ionosphere due to develop-
ment of the shear-flow-driven EIC instability [6, 7]. The
ion-parallel velocity shear-flow-driven ion cyclotron
instability results from three mechanisms depending on
the ratio of the phase velocity and the thermal velocity
of the particles. These mechanisms dominate separately
in distinct ranges of the normalized parallel-wave vector
component [7]. In the short-wavelength diapason the
instability is excited due to cyclotron interaction ions
with the ion cyclotron waves (ion kinetic mode). The
hydrodynamic effects of the instability excitation take
place in more long-wavelength range when the ion
cyclotron damping is negligible (hydrodynamic mode).
When the wavelength along the magnetic field exceeds
the critical value, the hydrodynamic mode does not exist
and the ion cyclotron instability is excited by the inverse
electron Landau damping (electron kinetic mode).

The shear-flow-driven EIC instabilities was studied
in plasma with single ion species [6, 7]. However, the
application of these results in ionosphere investigations
requires taking into account the presence of several ion
components, the relative concentrations of which are
changed significantly with the altitude in ionospheric
plasma. We have carried out the study of the shear-
flow-driven ion-kinetic as well as hydrodynamic EIC
instabilities in the sheared magnetic field-aligned
plasma flow with two, A" and O", ion species. The fre-
quency of oscillations is assumed approximately equals
to the O" cyclotron frequency and effect of hydrogen
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ions on the hydrodynamic mode of this instability is
considered. We have analyzed the dispersion equation
assuming that the waves are propagate nearly perpen-
dicularly to the magnetic field but under the assumption
that electrons are adiabatic. The thresholds and growth
rates of these instabilities versus the relative concentra-
tion of oxygen ions for the main n=1 and high nl 1
cyclotron harmonics are obtained.

1. THE INSTABILITIES OF THE FIRST
CYCLOTRON HARMONIC

The dispersion relation for homogeneous multi-ion
component plasma with a flow velocity shear is given

by [8]
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wh’elzre the indices A, [ refer to the heavy, O, and light,
H', ions respectively, A, is the Debye length,
A, (b) =exp(~b)1,(b), I,(b) is the modified Bessel
function, b, = (k. pr, )2, Pra =Vra | is the
thermal Larmor radius, S, =g, (X)/a,, is the normal-

ized flow velocity shear,
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We study the heavy-ion cyclotron mode having the
frequency (k) =nay, +k.Vy, +6o(k), where
|ow(K)|D @, Assume, that both ion species have the
equal thermal Vi, =Vy; and flow Vy, =V;,; velocities
as well as equal magnitudes of velocity shear Vy;, =V, .

We first analyze the instability of the fundamental,
n =1, cyclotron harmonic. We assume that z,, , which

is the argument of the W — function, in the sum over
cyclotron harmonics has an arbitrary value for the fun-
damental harmonic, while |z;,|>1in the remaining
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sum. That is valid when the inequality &, pp, <1 is

satisfied. Using the asymptotic form for W -function for
large argument values

W(z,)~ exp( ) (z/\/_ m)(1+1/2zm)

we carry out in Eq. (1) the summation over the cyclo-
tron harmonics for n#1:
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In the sum over cyclotron harmonics of light ions in
Eq. (1) we retain only null term because of significant
difference in the masses of heavy and light ions. Then
the dielectric permittivity of light ions becomes

b, 51y (by)
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DI z 4201
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Then the dispersion relation (1) reduces to the form:
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where o 1is the relative concentration of heavy ions,
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g =t/a+d(1-a)/a, t=T,/T,. We use in what
follows the normalized wavelength along the magnetic
field A =1/k,py; instead of variable k,. Considering
zy, as the normalized complex frequency, we find the
solution z, (/1) of the Eq. (4) for EIC instability in the
short wavelength limit, when instability is developed
due to the inverse of ion cyclotron damping, and in long
wavelength limit, at which ion cyclotron damping is
negligible and EIC instability is developed due to hy-
drodynamic effects.

We find first the short wavelength threshold of the
instability. The threshold values for variables A and
zy) we obtain by equating to zero the real and imagi-
nary parts of Eq. (4)

AN+ 2 = ke, prySyzi =0,
1+g1 —(1—140 (bh ))/bh _ﬂkypThShAl (bh ) =0

This system of equations has a solution when ine-
quality k), pr;,S), >0 is met. For this case we obtain the

)

short-wavelength threshold value A, for the excitation
of the instability, as well as the threshold value of the
normalized complex frequency z;; which is the real at

that threshold
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where Gy = 4 (bh)+(1—A0(bh))/bh and index s

means the short-wavelength instability threshold of the
first cyclotron harmonic. Under the condition =1, i. e.
when in plasma flow only one ion species occurs, the
value g; is equal to zand Egs. (6), (7) reduces to

known expressions [7]. The presence in plasma flow
another ion species causes decrease in relative
concentration of heave ions that leads to the shift of the
boundary wavelength of instability toward larger values
because in (6) g <1/« . The dispersive part, dw , of

the ion cyclotron wave frequency and the growth rate at
the vicinity of the instability threshold can be obtained
from Eq. (6) as [7]
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EIC waves, which wavelength exceeds the boundary
value (6) are unstable. The phase velocity of EIC waves
along the magnetic field at the vicinity of instability
threshold is of the order or less than the ion thermal
velocity. The EIC instability occurs due to ion kinetic
effect of inverse ion cyclotron damping which caused
by flow velocity shear and is the ion-kinetic shear-flow-
driven EIC instability [7]. Fig. 1 shows the dispersion
and the growth rate of the ion kinetic shear flow driven
EIC instability versus the normalized wavelength for
Sp=3, k,pr,=1 and 7=1 which were calculated

A
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y 1 b,

where oy

at the instability boundary wavelength, A =/4;.

numerically from dispersion relation (1).
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Fig. 1. The dispersion (a) and growth rate (b) of ion-
kinetic instability versus the normalized wavelength
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The numerical solution confirms the increase in
boundary wavelength of instability (see Fig. 1,b). The
value owy; decreases also with the decreasing « . This

leads to a decrease in the dispersion (8), as well as in the
growth rate (9) as can be seen from Fig. 1.

With increasing of wavelength of the ion cyclotron
waves the phase velocity of these waves along the
magnetic field increases and may greatly exceeds the
thermal velocity of the heavy ions. In this case the effect
of ion cyclotron damping is negligible both for light and
heavy ions and instability is excited due to
hydrodynamic effects. In Eq. (4) inequality |z[-1| >1

holds and the asymptotic form of W — function for large
argument can be used. The dielectric permittivity of
heavy ions can be written as

1 Dy
56'}1 z—(l-Fgl—Gh] ——CA] bh

k
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Using the expressions (3) and (10) the dispersion
equation (1) can be reduced to the form

5w* (K)—péao(K)+q=0, (11)

where

-1
p =Sy, [1 + g1~ Gy + kA%, (k,a;(k))] ,
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g=02 |:1+g1 — Gy + kAR5 (k,a)(k))}_
2

5&)1;[ :wchAl (bh), a)chkypThShAl (bh)//’i . The
solution of Eq. (11) has the form

= (S, £Q1)/2B1 » (12)
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where th :(50)12h—40';%ﬂ1h) , ﬂlh :1+g_Glh'
The solution (12) gives the hydrodynamic shear-flow-

of =

driven EIC instability if inequality 40',21 B >5a)12h is
met. For the wave numbers such as &, pp, [/ 1 and re-

spectively k.pr U 1 this condition can be written as
A< 2y, where 2y 0 ky pry Sy, /4 (by) is the long-

wavelength threshold of instability for » =1 harmonic.

Now we investigate the effect of  and S; on the
growth rate of the hydrodynamic shear-flow-driven EIC
instability. The growth rate of instability obtained from
Eq. (11) is approximately

70[(2/2)-1]" 2. (13)
With a decrease of o the growth rate away from the
long-wavelength threshold decreases approximately as
Ja , however, the magnitude of threshold wavelength
increases as « , so that the longer waves become unsta-
ble. The dependence of the growth rate on the normal-
ized shear S) is expressed by the similar relation, i.e.

Sh and //i,llOCSh.

concentration of oxygen ions on the growth rate and
long-wavelength threshold is identical with the flow
velocity shear.

Thus the effects of relative
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We also have solved numerically the dispersion
equation (1) for the different values of relative concen-
tration of oxygen ions and have obtained the depend-
ence of the dispersion as well as growth rate versus the
normalized wavelength along the magnetic field. The
results of calculations for §;, =3, k,pp;, =1 and 7 =1

are shown in Fig. 2.
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Fig. 2. The dispersion (a) and growth rate (b)
of instability versus the normalized wavelength

The maximum of the growth rate occurs at |zl h| 01

that is a boundary of ion-hydrodynamic mode which is
located to the right of the point of maximum. The
Fig. 2,b shows a decrease of the growth rate as well as
an increase of the long-wavelength threshold with the
decrease of « that is in a good agreement with analyti-
cal results.

2. THE INSTABILITIES OF THE HIGH
CYCLOTRON HARMONICS

Now we investigate the ion kinetic and hydrody-
namic EIC instabilities of multicomponent plasma flow
excited due to shear velocity flow for high cyclotron

harmonics, (k)= na,, +k. Vo), +w(k) with |n|>2
and Sw(k)U o,
cyclotron harmonics in Eq. (1) has an arbitrary value for
the n=n' term, while in remaining sum |Zhn| >1, for

;. Assume that z;, in the sum over

which the asymptotic form of W - function for large
argument values may be used. The summation over cy-
clotron harmonics for heavy ions at k,pp, [l 1 gives

[7]
o-kJV k,
E W o __Yg ~
Zhn n )[ |k |VTa kz hZhn]

k,
z‘//(Zi)_l,c_}sh (1-4, (b))

z

(14)
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where z, =(n'ay, +5a))/\/§kyVTh ~n'[\2k,pp, and

7
w(z) =-22) exp(—zi) | exp(t2 )dt . In the sum over
0
cyclotron harmonics of light ions in Eq. (1) as in the
previous section we retain only null term so that the
dielectric permittivity of light ions becomes

ky S;4y(by)
Se0 ~ 1= 4y (b)) +-2 20 (15
In klef),[ AO( l) kz 212(),,’ (15)

where zjo,y =n'@,, / xﬁszn . Then the dispersion rela-

tion (1) has the form
k
2 2by e (K.0) =1+ gy +y/(20) =2 Sy () + W

z

na.; k
W (2 ) Ay (bh)(ﬁk—;;ﬂhn' _k_ySiZhn'JZO: (16)
zVTh z

where g, =7/a+6¢, (1-a)/a. Further we use

index n instead of index n'.

For the determine of the short-wavelength boundary
for ion-kinetic mode of the shear-flow-driven EIC in-
stability we as in the previous section consider the sys-
tem of equations which we obtain by equating to zero
the real and imaginary parts of Eq. (16),

{ﬁv/\/EJr Zpn = Ak P13 SpZpn = 0,

1+g, +v (21 )=k, prySyAy (by) = 0.
This system has a solution when the inequality

kypraSy >0 is met. For this case we obtain the short-

wavelength threshold value 4, for the excitation of the

(17)

instability, at which normalized complex frequency z,,
becomes real

:(1+gn+://(zl)) -
" Sk oAy ()
1 -G, +A4 (b
2, n( +8, n T n( h)) ’ (19)

N2k, pr S (14 24 = G,
where G, = 4, (b,)-w(z, ) and index ns means the
short-wavelength threshold of instability for »-th cy-
clotron harmonic. Value A,, as well as for main
cyclotron harmonic increases when « decrease. The
0w = 6wy, at the instability threshold is
Sy, =nag 4, (by)/(1+g,-G,). The growth rate for

ion cyclotron instability at the vicinity of stability
threshold can be obtained by use the same approach as
for the first cyclotron harmonic

V28, ‘kJ"pTh Re W2(Z"S ) (1—@} (20)
\/;n|W(ZnS )|

A
The growth rate (20) is affected by threshold value

value

V= 5(00,1

Zyg R n/\/EkLpThSh , because y ocRe W(zns) = exp(—z,%s ) .

The growth rate of instability is exponentially small
when the flow velocity shear and the transverse wave
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number are such that /2 |ky| priS; <n, whereas, at op-
posite inequality the growth rate is not exponentially

small. The magnitude of the growth rate is also affected
by the factor k,pr;4, (bh). The function 4, (b,) at

kyprp U nl 1 has asymptotic form

4, (by) 00 (l/\/2izkypTh)exp(—n2/ 2k§p%h), @1)
which implies that long waves with k,pp, <n have

exponentially small growth rate. Thus, waves with lon-
gitudinal wavelength A> 4, and transverse wave

numbers such as k&, pry, %on and \/Eky PSSy >n are

unstable. We note also that the threshold wavelength
A (18) as well as z,,; (19) with these transverse wave
numbers is approximately equal to the corresponding
magnitudes for the first cyclotron harmonic (6), (7) with
transverse wave numbers &y, oy, %ol .

It follows from Egs. (20), that the dependence of the
growth rate on the relative concentration of the heavy
ions is identical to that for the main cyclotron harmonic.

Now we consider the excitation of the hydrodynamic
EIC instability. Using the same assumptions as for the
first harmonic we sum over cyclotron harmonics in
Eq.(1) at k,pp, Unl 1 and obtain approximately the

dielectric permittivity of heavy ions as
1 naw.p
]{2—2(1_Ghn - 5(0 An (bh)
21,2
+ k_y kz VTh
kz 5602

In the dielectric permittivity of light ions (15) we
take into account that inequality &, pr, U 1 holds, so

56‘/,, =
(22)

Spdy, (by) |-

that k,pr; >1 and then Jg; ~ l/kzllz)l . In this case the

dispersion equation (1) takes the similar form as for the
first harmonic (11). Its solution is

ow = (a’nh * th )/2,3,,;, >

where 6w,;, =nwy, A, (b)), Q= (&o,fh —4c}i 3, )1/2,

(23)

B 1-G, +7/ay, +a; [y, . The solution (23) gives
the shear-flow-driven EIC instability if inequality

40;% B > 50)3;! is met. This condition can be also writ-
2 .
ten as A < 4, , where A, [J kypThSh,Bnh/n 4, (by) is

the long-wavelength threshold of instability for n[J 1
harmonics. Because 4, (b, ) at k,pp, [ nll 1 has the

asymptotic form (21) and for k,pp, =n we have
4,(b,)~02/n that gives A, ~4;. Thus the long-

wavelength threshold is the same as for the first and
high cyclotron harmonics.
Evaluating the effect of the relative concentration on

the condition |Zhn| >1, we conclude that for &k, pp, =n

the condition on the o coincides with that of the main
harmonic. Now we estimate the effect of o and S) on
the growth rate of high cyclotron harmonic of the shear-
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flow-driven EIC instability. The growth rate of instabil-
ity obtained from Eq. (23) approximately equals

12
7012117 28, (4
Since Aj; = 4,; we obtain that the dependence of

growth rate on the concentration and the shear is the
same as for the main cyclotron harmonic.

CONCLUSIONS

In the magnetic-field-aligned plasma flow with the
flow velocity shear which is composed of O" and H"
ions the ion-kinetic and hydrodynamic shear-flow-
driven EIC instabilities with the cyclotron frequency of
O" have been investigated. The effect of presence of the
H' ions in plasma flow and decreasing of the relative
concentration & of O" ions is as follows:

1. The growth rates as well as the dispersion
additions to the ion cyclotron frequency as well as to
their harmonics are decrease proportionally with the
decreasing of « .

2. The regions of unstable wavelengths of these
instabilities is almost independent on the number of the
ion cyclotron harmonic at o =1.

3. The regions of unstable wavelengths of these in-
stabilities for n =1 cyclotron harmonic with decreasing
a are expanding whereas for the high cyclotron har-
monics these regions are slightly narrowed.
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VWOHHBIE IIAKJIOTPOHHBIE HEYCTOMYUBOCTH MMOTOKA MHOFOKQMHOHEHTHOﬁ
IUVTIA3MBI BJOJIb MAI'HUTHOTI'O ITIOJISI CO CABUTI'OM ITIOTOKOBOU CKOPOCTH

J.B. Hubucoes

HccenoBaHbl HOHHBIE UKIOTPOHHBIC HEYCTOHYMBOCTH MHOTOKOMIIOHEHTHOT'O ITOTOKA IIa3MBI BJIOJIb MarHHT-
HOTO TI0JISA CO C/IBUTOM MOTOKOBOH ckopocTH. IIpejinonaraercs, 4To B COCTaB MJ1a3Mbl BXOJAT HOHBI JBYX BHIOB, H
u O, Hanboee pacpocTpaHeHHBIX B HoHOChepe 3emin. PaccMaTpuBaeTcs BIMSHHE HOHOB BOJOPOIA HA BO30YK-
JaeMble IIUPOM MOTOKOBOW CKOPOCTH HOHHYIO KMHETHMYECKYI0 M T'MIPOAMHAMHYECKYI0 HOHHbBIE LHUKIOTPOHHBIE
HEYCTOIYMBOCTH € 4aCTOTAMHU KOJIeOaHHil MPUOITM3UTENLHO PABHBIMH [IUKJIOTPOHHOM YacToTe MOHOB O

IOHHI HUKJOTPOHHI HECTIMKOCTI IIOTOKY BAI‘ATOKOMI'_!OHEHTHOi IJIA3MH B310OBX
MATHITHOI'O 1TOJIA 31 3CYBOM TOTOKOBOI HIBUAKOCTI
.B. Qivicos

JlociimkeHo 10HHI HUKJIOTPOHHI HECTIHKOCTI 0araTOKOMIIOHEHTHOTO MOTOKY IJIa3MHU B3JIOBXK MarHiTHOTO IOJIS
3i 3cyBOM MOTOKOBOT BHKOCTI. [IpHITycKaeThes, O A0 CKiIaly MIa3MH BXOASATH i0HM 1BOX BUAiB, H' i O, Haii-
Ol mommpeHux B ioHoctepi 3emii. PosrnsgaeTsest BIUIMB 10HIB BOJHIO Ha 10HHY KIHETHYHY 1 TiAPOAMHAMIYHY
10HHI IIMKJIOTPOHHI HECTIMKOCTI, 10 30Y/KYIOThCSl IMPOM TIOTOKOBOI IIBUJIKOCTI, 3 YaCTOTaMHU KOJIMBaHb MPUOIH-
3HO PIBHMMM HUKJIOTPOHHIH 4acToTi ionis O,
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