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The problem of optimization of charged particle beam dynamics in an axially symmetric electric field is consid-
ered. The complex potential is represented as a Cauchy integral of a function defined on the boundary of the region
and considered as the control function. Using a complex representation allows to get the explicit form of the field
strength inside the area dependency on the control function and obtain the necessary optimality conditions for the

entered functional.
PACS: 29.20.-¢; 29.27.Bd

1. PROBLEM STATEMENT

Modern requirements to the accelerator technology
and the parameters of the accelerated beam of charged
particles require new approaches to the calculation of
the accelerating and focusing structures at the design
stage. Many works [1 - 8] are devoted to the problems
of optimization of the dynamics of charged particles in
electromagnetic fields. In particular, in works [9 - 10]
electrostatic injectors for linear accelerator were inves-
tigated. Geometric parameters of systems and the poten-
tial values at the electrodes were considered as optimi-
zation parameters. However, these studies are not given
analytical representations of variations in the optimized
parameters. In this paper, the problem of optimization of
beam dynamics of charged particles in the axial-
symmetric electric field is considered. Analytical repre-
sentation of variation is found and the optimality condi-
tions are formulated.

In a simply connected bounded areaG let us con-
sider dynamics of charged particles described by a sys-
tem of ordinary differential equations:

P=E(r.z0), M

i=E(r,z,p). )

Note that the field intensity in the equations (1) and
(2) is defined by specifying the function ¢ of the

curve L . Here L — boundary of area G, assumed to be
smooth closed curve, and the function ¢ is defined and

continuous on the curve L, and satisfies the Holder
condition [11]:

lo(,) - oln,) < Mln, .| ,v>0,M>0.  (3)
In this case, the complex potential of the field is rep-
resented as a Cauchy integral [11]:

F(é,qo):zim. | %dn- @)

Here £=r+i-zeG, n=x+i-ye L. Here and

further the real plane R’ will be identified with the
complex plane C.

The complex potential is an analytic function de-
fined in a domain G, and its real and imaginary parts are
harmonic functions of real variables 7 andz . Let us
consider the function U =Re F' as defining a potential
electric field in the region G. Then the electric field
intensity is given by

E_iE =—6F(§’¢)=—L.f 40(77)2 in. (5
o5 24y (n-¢)
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Note that the dynamic equation (1), (2) may be con-
verted to the form:

E__ aF(ﬁ?@)
= ( o6 J ©

where cf:f+i~z' u cfzi"+i~é, bar over the right-

hand side denotes the complex conjugate.
For convenience we introduce the vector of phase

. . \T
variables a=(r,r,z,z) .

Equations (1) and (2) we will consider with the ini-
tial conditions

a(0)=a, =(r,v,,2,,v,,) €M, CR*, 7
where M, a compact set such that for any point
a(0)e M, satisfies (r,+i-z,)eG .

Function ¢ will be referred to hereafter as boundary

02

control or simply control. The class of admissible con-
trols D is the set of continuous functions ¢ on a curve

L satisfying the Holder condition (3) and such that
go(n)ed) when 7€ L, where @ is a convex compact

set in the complex plane.

We assume further that the solutions of system (1),
(2) are defined and are unique to some fixed interval
[0, T ] , for all initial conditions (7) and for all admissible

controls.
On the trajectories of the system (1), (2), we intro-
duce the functional of quality of the form

10)=[ [pla Yadi+ [alaYa,. ®

0 My p M7 o
Here p and g are given non-negative, continuously
differentiable functions, a, :a(t,an,(p) is a vector of

phase variables corresponding to the solution of system
(1), (2) at the time ¢ with the selected control function

@ onacurve L and the initial condition (7). Set M,

is a section of the beam of trajectories of the system (1),
(2) coming from the initial set M, at the time¢ with the

given control function ¢ .

Let us consider further the minimization of the func-
tional on the admissible class of controls. Let ¢ is an

admissible control. Variation of the control A¢ is ad-
missible if the control ¢ =@+ Ag is also admissible
control.
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2. VARIATION OF FUNCTIONAL

Variation functional (8) with admissible variation of
the control function 1) such that

||A(p|| = max A(p(nl — 0, can be represented as follows:

SI(Ap)=

-] ]t 3l 2 ot

0 My

This complex function A satisfies the following
complex system defined on the trajectories of the sys-

tem (1), (2)
._[&F(£.0)
0'—( oe Al+6, (10)
A=—c+p,
with terminal conditions
(T):_aQ(ar)_ aQ(ar),
a, Oa, (11
/I(T)_—aq(aT)— aQ(ar)’
Oa, Oa,
where 9:8—p+i~6—p,p:a—p+i~a—p.
a, Oa, Oa, Oa,

3. NECESSARY EXTREMUM CONDITIONS

Let the boundary L has the following parameteriza-
tion:
nz;g(s)zx(s)—i—ﬁy(s), se[O,S]. (12)
Then the integral over the complex circuit in the for-
mula (9) may be replaced by definite integral. The result
is
3l(Ap)=

¢ ¢ s))xls)ds (13)
ReI I i(t,a,){ﬁ!%}daldt.

By changing the order of integration in (13), we ob-
tain:

0 Mg

2(s)-&(t.,))
=Re I Aw()((s))j((s)a)(s)ds.

0

_ Rejlil [ A‘E’(Z(S))jf (s)/l(t’za’)daldt]ds (14)

Here a)(s)zij‘ J. A —da dt .

At,a,)
2, (2s)=la,)

Theorem 1. Let ¢, minimizes the functional (8).

Then for any admissible variation of control function
Ag the functional variation is non-negative

&1(p,.p) = Re [ 8l 5) s ols)is = 0.

Proof. Assume that there is an admissible varia-
tionA¢@ such that o/ ((pO,A(o) < 0. Variation of control

is Ap=¢ —¢,, where @ is admissible control. Since

@ the convex set then the controlp, = ¢, +Ap will
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also be permitted, where ¢ [0,1]. From the representa-
tion of variation (9) follows that
d(p,.e0p) = el (p,, A9).
Thus
A (p,,eAp)= &6l (p,, Ap)+o(s).

It is clear that for sufficiently small &, we obtain
Al <0that contrary to the assumption that the con-
trol ¢, provides a minimum of the functional (8).

Theorem 2. Let the ¢, minimizes the functional
(8). Then for any admissible variation A¢g

Re[Ap(x(s)- Hs)els)]2 0
forall s €0, 5].
Proof. Suppose this is not the case. Then there is
s, €(0,8) that
Re[Ap(x(s,))- (s, Jols, )] < 0
at some admissible variation Ag . By continuity there
will be an interval [sl,sz] containing inside point s, and
such that
Re[Ap(x(s))- z(s)els)]<0.
Forall s e [sl,sz].

(15)

We choose a neighborhood of point 7, = ;((so) )
small that to get into it could only points of the curve L
corresponding to the parameter s values within the in-
terval [sl,sz], and the points of intersection of the circle

|77 - 770| = R with the curve there were only two. Denote

the resulting neighborhood
SR(’]()): {|77 _770| = R}
We construct the variation of the control function in
the following way
AG(n(s) = Apls)K (n(s). . R).
where
1

2 2 <
ry Z_Zo| - ) |z—zo|_ro,
K(zz r)= 7

270270

0, |z—zo|>r0.

The function K takes real values of the range [0,1].

It is easy to see that the introduced variation will be
valid.

With this choice of variation of control obviously be
violated condition of Theorem 1:

Rejmm»-z(s)w(ws:

—Re [ Agl(s)- 2(5)ols K (1), 26, R -

= Re | 8{(s))- 7 Yol K (2(6). 26, RMs <0,

where s, ands, correspond to the points of intersection
of the curve L with the circle |I]—?70| =R . Hence ¢,

cannot deliver the minimum of the functional (8). This
contradiction proves the theorem.

Remark. Obtained results obviously can be ex-
tended to the case of piecewise smooth boundary of area
G.

91



CONCLUSIONS

In this paper a new approach to optimization prob-
lems in electrostatic axially symmetric field was pro-
posed. Analytical representation for the variation of the
optimized functional and the necessary optimality con-
ditions are found. On the basis of the expression for the
variation of the functional can be built directed methods
of optimization. Various practical implementations of
fields obtained in the optimization process are possible.
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OINTUMM3AIUSA JTUHAMUKUA MTYYKA B DJIEKTPOCTATUYECKOM IIOJIE
AJI. Oscannuxos

CoBpeMeHHbIe TpeOOBaHM K YCKOPUTENBHOM TEXHUKE, K IIapaMeTpaM yCKOPSEMOro Iydka 3apsKEHHBIX YacCTHUIl
TpeOyIOT M HOBBIX IIOIXOJ0B K PAacueTy YCKOPSIONMX M (OKYCHPYIOIIMX CTPYKTYp Ha CTaJuu NPOEKTUpOBaHM:A. B
JaHHOW paboTe paccMaTpuBaeTcs 3ajaya ONTHMHU3AIMK JUHAMHUKH ITy4YKa 3apsDKEHHBIX YacTHIl B aKCHAJIBbHO-
CHMMETPHYECKOM JJIEKTPUUECKOM MoJjie. KOMIUIeKCHBIH MoTeHnnal npeAcTaBisieTcsl B Buie uHTerpaia tuna Komu
oT (pyHKIMH, 3aJaHHON Ha TpaHuUIle 00JACTH M pacCMaTpHBaeMOil B KadecTBe ynpasiisitomieii ¢pyHkimu. Mcnonb3o-
BaHME KOMIIJIEKCHOTO MPE/ICTABIICHUS TO3BOJISIET MOIYYNTH SIBHBIH BUJ 3aBHCUMOCTEH HAaNpsHKEHHOCTH TOJIS BHYT-
pu obnacTH OT ynpaBisiomed (QYHKIMH M TOMYyYUTh HEOOXOMMMBIE YCJIOBHS ONTHMAIBHOCTH JJIsI BBEICHHOTO
(dyHKIMOHANA.

ONTUMIBAIISA JUHAMIKHU ITYYKA B EJEKTPOCTATUYHOMY I10JII
0./1. Oscannuxos

CydJacHi BUMOTH 10 MPHUCKOPIOBAJIBHOI TEXHIKH, 0 MapaMeTpiB MPUCKOPIOYOro My4YKa 3apsHKeHUX YaCTHHOK
BHMAraroTh 1 HOBUX MiAXOMIB 10 PO3PaxyHKY MPHUCKOPIOYHNX i POKYCYIOUHX CTPYKTYp Ha CTalii IPOCKTYBaHHA. Y
IaHiii poOOTI pO3TIANAETHCS 3aJada ONTHUMI3aIlil MUHAMIKA MydYKa 3apsPKEHNX YacTHHOK B aKCiaJdbHO-
CUMETPHYHOMY €JIEKTPUIHOMY TOi. KOMIUIeKCHUI TTOTEHITiall MpeACTaBIA€ThC Y BUTILAAL iHTerpana tumy Komri
BiZ QyHKIIT, 3a7jaH01 Ha MexXi 00JIACTi 1 PO3IIIAAAETHCS B IKOCTI Kepyrouoi GpyHKIii. BukopucTaHHS KOMITJIEKCHOTO
YSIBIICHHSI JIO3BOJISIE OTPUMATH SIBHUM BUIJIS 3aJIE)KHOCTEH HANPYKEHOCTI MOJIsi B cepeiHi 00nacTi Bi Kepyrodol
(GyHKUIT 1 OTpUMAaTH HEOOXiHI YMOBHU ONTUMAJIBHOCTI [UIsl BBECHOTO (DYHKI[IOHATY.

92 ISSN 1562-6016. BAHT. 2013. Ne4(86)



