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ACCIDENTAL RESONATORS: THEORY AND EXPERIMENT 
Y.P. Bliokh 
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Disorder-induced resonances in randomly-layered samples are studied theoretically and experimentally. An algo-
rithm for the detection and characterization of the effective cavities that give rise to these resonances has been de-
veloped. This algorithm enables to find the eigenfrequencies and pinpoint the locations of the resonant cavities that 
appear in individual realizations of random samples. The association of any resonance with corresponding acciden-
tally formed cavity allows determination of parameters of a given individual randomly-inhomogeneous sample by 
external measurements. Experimental results confirm the proposed theoretical model. 
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1. THEORETICAL MODEL 
Propagation of waves in a randomly-inhomogeneous 

media is also random in character. Reflection and 
transmission coefficients, which are only accessible for 
measurement under remote sensing, are also random. As 
a rule, statistically averaged values of these quantities 
are considered as the medium characteristics. Such av-
eraged characteristics are not able to say something 
about individual realization of the medium. Moreover, 
sometimes we deal with a media which exists in a single 
exemplar only. It will be shown below that this problem 
– extraction information about individual exemplar of 
random medium from external measurements – is not so 
hopeless as it may seem at first glance. 

This report is a short overview of results which have 
been obtained in a close collaboration with my col-
leagues and published in [2 - 8]. 

The most startling phenomenon related to waves 
propagation in a random media is Anderson localization 
(see [1] and references therein). This phenomenon 
manifests itself in reflection of an electromagnetic wave 
from a randomly layered dielectric medium. The wave 
amplitude decreases exponentially inside such disor-
dered, locally-transparent medium, which results in high 
(exponentially close to unity) reflectivity.  

When the thickness of disordered medium is large as 
compared with the localization length, the transmission 
coefficient is exponentially small, and the reflection 
coefficient is exponentially close to unity. This is cor-
rect for statistically-averaged values. The frequency-
dependent transmission through any individual sample 
contains, among regions where transmission is exponen-
tially small, a set of isolated frequencies, where the 
sample is almost transparent (Fig. 1).  

Position and amplitudes of these resonances are in-
dividual fingerprints of the sample. Namely these reso-
nances can be used for revealing the medium character-
istics and spatial distribution of the incident wave inside 
the individual sample. 

The basis assumption of the theory is the following: 
any resonant transmission line is associated with an ac-
cidentally transparent region inside the sample which is 
surrounded by semitransparent (due to Anderson local-
ization) sections. This forms resonator whose cavity is 
associated with transparent region, and walls are formed 
by semitransparent sections of the sample. The proce-
dure which is able to distinguish cavities and typical 
parts of the sample, whose structure (the layers thick-

nesses, reflection and transmission coefficients) is 
known, is presented below. 

 
Fig. 1. 

Let us consider the wave that propagates rightward 
from the point 0jz +

 
(right side of the interface be-

tween the 1)( j − -th and j -th layers) where its ampli-

tude is ( )
0jA +  [thereafter superscripts ( )±  denote ampli-

tudes of the waves propagating to the right or to the left, 
accordingly]. This wave passes through the j -th layer, 
is partially reflected from the interface between the j -
th and ( 1)j + -th layers, transmitted wave travels 
through ( 1)j + -th layer and partially reflected from the 
next interface, etc. Supposing, that reflection coeffi-
cients are small, | | 1jr � , and, correspondingly, the 
absolute values of the transmission coefficients are 
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are the Bragg reflection coefficients from rN  layers: 
( ) ( )jr k+  determines reflection of the wave propagating 

to the right from the j-th layer, whereas ( ) ( )jr k−  deter-
mines reflection of the wave that propagates to the left 
of this layer. 

The wave that made a closed path and returned back 
after consequent reflections from rN  layers located on 
the right, and rN +1 layers located on the left from the 
chosen j-th layer, has the amplitude ( )

1jA +  which is note 

equal to the initial amplitude ( )
0jA + . The difference be-

tween these amplitudes is defined by the func-
tion ( ) ( )( ) ( ) ( )j j jk r k r k+ −Δ = : 

( ) ( ) ( )
0 1 0 [1 ( )].j j j jA A kA+ + + − Δ− =

.
 

It seems reasonable for our purpose to set the num-
ber of the layers rN  equal to number locN  of layers on 
the localization length locl . 

Now we will show that properties of the function 
( )j kΔ depend on whether the j-th layer is placed either 

in a cavity or not. To do this let us calculate this func-
tion for two extreme cases: for a conventional resonator, 
and for a Bragg grating. 

The conventional resonator is formed by two semi-
transparent walls spaced by a distance d. Selecting an 
arbitrary point z between the walls as a starting point, 
one can calculate the difference between the amplitudes 
of the waves: [ ]( )

0 1 ( )z z kA + − Δ , where corresponding 

reflection coefficients are 2 ( )( ) ( ) rik z z
rr k r e −+ =  and 

2 ( )( ) ( ) lik z z
lr k re −− = , and rz  and lz  are positions of 

the right and left resonator walls. For the resonator ei-
genmode the difference between the amplitudes is 
minimal, i.e., Im ( ) 0z kΔ =  and Re ( ) 0z kΔ > . Both 
these conditions can be written as 
arg ( ) arg arg 2 2z r lk r r kd nπΔ ≡ + + = , that is a con-
ventional definition of the resonator eigenfrequency. It 
is easy to see, that for eigenfrequency the resonator Q-
factor is defined as follows: [ ]1 / 1 Re ( )zQ k= − Δ . 

Now let us calculate the function ( )z kΔ  for a regu-
lar periodic sample (Bragg grating) assuming that all 
reflection coefficients are equal and the layer thick-
nesses d are equal too. When the Bragg reflection condi-
tion kd π=  is satisfied, then Im ( ) 0z kΔ =  and 

Re ( ) 0z kΔ < . 
Thus, functions ( )kΔ  calculated for both conven-

tional resonator and Bragg grating differ by the signs of 
their real parts: Re ( ) 0kΔ >  for resonator, and 
Re ( ) 0kΔ <  for Bragg grating. It seems reasonable to 
suppose that namely the sign of Re ( )j kΔ  distinguishes 
cavities from typical parts of the random layered me-

dium. The wave number resk  of the cavity eigenmode 
can be defined as a wave number is defined as a root of 
equation Im ( ) 0j kΔ = . These statements are confirmed 
by numerical simulations in the following way. 

If the peaks in the transmission spectrum are associ-
ated with the accidently formed cavity, the wave inten-
sity maximum should be placed in regions inside the 
sample, where Re ( ) 0j kΔ > , and cannot be found in 

regions, where Re ( ) 0j kΔ < . Fig. 2 shows result of cal-

culation of the function Re ( )j kΔ  along the sample 
(horizontal axis) for different wave numbers (vertical 
axis). Regions where Re ( ) 0j kΔ >  are marked by 
black, and regions where Re ( ) 0j kΔ < are marked by 
gray. The wave intensity (if it is more than half of its 
maximum) is marked by light gray; regions, where 
Im ( ) 0j kΔ = , are shown by light-light gray lines. This 
picture confirms that the field intensity is concentrated 
in cavities, and the resonant frequency is determined by 
the condition resIm ( ) 0j kΔ = . 

 
Fig. 2. 

There is also a strong correlation (shown in Fig. 3.) 
between spatial distributions of resRe ( )j kΔ  (light line) 

and the wave intensity ( )j resI k  (dark line).  

 
Fig. 3. 

Thus, any resonant line in the transmission spectrum 
(resonant hole in the reflection spectrum) is associated 
with resonator. The resonator walls are formed by 
“typical” parts where the wave amplitude decreases 
exponentially due to Anderson localization. Therefore, 
the walls transmission coefficients depend on the posi-
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tion cx  of the cavity in the interior of the sample of the 
total length L: 

       loc loc
1 2

2 / 2( )/,c cx l L x lT e T e− − −� � .       (1) 
The “typical” transmission and the reflection coeffi-

cients are  
                           loc2 /

typ
L lT e−�           (2) 

      typ typ loc1R T= − −Γl         (3) 
The resonant transmission and reflection coeffi-

cients, and the resonant line width, can be easily calcu-
lated using the analogy with a resonator: 

( )
1 2

res 2

res 1 2

4T T
T

T T
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Γ + +l
,        (4) 

res res res res 21 / ,R T T T= − −Γl       (5) 

   ( )res res 1 2
res4

,c
T Tδω

π
= Γ + +l

l
   (6) 

where lres oc2ll �  is the cavity length. The parameter Γ  
characterizes the dissipation in the medium. The nor-
malized intensity of the resonant wave inside the cavity 
is  

 res res 2/ .I T T=           (7) 
In principle, the values in the left-hand sides of 

Eqs. (2) - (6) can be found experimentally using exter-
nal measurements only. These values allow determina-
tion of the cavity position, the localization length, and 
the wave field enhancement in the cavity. In practice, 
some measurements are difficult if not possible to real-
ize. For example, sometimes only reflected wave can be 
registered. In this case certain characteristic of the me-
dium and the wave intensity distribution can be re-
vealed, and others remain unknown.  

2. EXPERIMENTS 
The model described above was confirmed experi-

mentally. The experiments were carried out using the 
following setups: 
1. single-mode waveguide randomly filled with dielec-

tric plates (14…16 GHz);  
2. the random stack of dielectric plates (75…110 GHz);  
3. single-mode optical fiber with randomly-located 

Bragg gratings (1540 nm ).  

 
Fig. 4. 

In the first set of experiments only reflected signal 
can be measured. Example of the reflected signal ampli-

tude is shown in Fig. 4. The transmitted signal intensity 
was below the experimental noise. 

The narrow slot along the waveguide allows the 
measurement of the intensity distribution along the 
sample (see Fig. 5.).  

 
Fig. 5. 

We calculated position of the intensity maxima in-
side the waveguide and the intensity enhancement fac-
tor, and compared these values with the experimentally 
measured ones. The results are presented in Tabl. 1. 

Table 1 
 

resx  res in/I I  
T h e o r y 4 .0 ,  4 .8 ,  3 .6 190, 150, 123 
Experiment 4 .2 ,  5 .5 ,  3 .6 8 6 ,  2 0 1 ,  9 6 

In the second experiment both reflected and trans-
mitted signals were registered and analyzed. Because 
the position of the intensity maxima and the enhance-
ment coefficient could not be measured, the calculated 
and actual loss factors of the medium were compared. 
Results are presented in Tabl. 2. The value of the tan-
gent of the loss angle, averaged over 5 analyzed reso-
nances, is 48.35 10−⋅ , whereas the actual value is 

45.2 10−⋅ . It is important to note that for non-resonant 
frequencies the difference 1 ( )R T− +  is too small to be 
measured.  

Table 2 
Frequency 

(GHz) 1-R T fδ   4tan 10α −⋅  

f1=83.5 0.978 0.75 0.40 4.77 
f2=92.0 0.998 0.33 0.39 13.45 
f3=105.7 0.993 0.31 0.34 10.14 
f4=101.8 0.87 0.18 0.25 6.22 
f5=99.8 0.77 0.30 0.45 7.16 
The aim of the third experiment was determination 

of the number of resonances in a given frequency inter-
val as a function of number of scatterers (number of 
Bragg gratings). The analytical dependence is shown in 
Fig. 6 by dashed line, black points mark experimental 
results. 

When the sample length is large enough, there is the 
chance that eigenfrequencies of two or more resonant 
cavities are close. These cavities interact with each over 
by their evanescent fields. Such chain of coupled cavi-
ties (resonators) forms so-called necklace state. 
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Fig. 6. 

The experimental setup 1 allows investigation of 
necklace state formation. First of all, positions of reso-
nances in the disordered stack of dielectric plates were 
found. Second, the air gap with tunable dimension was 
inserted into the stack. The position at which the air gap 
is introduced was chosen to correspond to the peak of a 
single Anderson localized mode of unperturbed random 
sample. This allowed us to tune the eigenfrequency of 
the selected mode. The spectral positions of the local-
ized states as functions of the air gap thickness are plot-
ted in Fig. 7.  

 
Fig. 7. 

 
Fig. 8. 

The frequencies of Anderson localized modes may 
cross or exhibit anticrossing (level repulsion). The reso-
nator model allows prediction what will happened: ei-
ther the level repulsion or crossing. The resonator pa-
rameters and the coupling coefficients were calculated 
using experimental data. Next, using these characteris-
tics, we calculated the minimal frequency differences 
for interacting pairs of resonances, and compared them 

with experimentally measured ones. Result of this com-
parison is shown in Fig. 8. 

Among experimental investigations, the numerical 
simulations were done in order to expand the model to 
nonlinear random media. The theory showed that meas-
urements of the transmission spectra for only two dif-
ferent intensities of the incident wave is required for 
quantitative description of such properties of nonlinear 
disordered sample as bistability, hysteresis, and nonre-
ciprocal transmission. 

 
Fig. 9. 

Fig. 9. demonstrates comparisons between results of 
numerical experiments (circles) and spectral characteris-
tics which were calculated using two different intensi-
ties of the incident wave (solid lines). Left and right 
panels correspond to two resonances. 

CONCLUSIONS 
The non-typical, resonant peaks in the transmission 

spectrum, or deeps in the reflection spectrum from dis-
ordered one-dimensional layered structure, can be iden-
tified with resonator-like structures into the medium. 
This mapping allows adequate interpretation of external 
measurements and determination of the individual sam-
ple parameters. The comparisons between the calculated 
and experimentally measured characteristics of the sam-
ples and the wave intensity spatial distributions show 
that they are in a rather good agreement. One might 
think that the accuracy of determining the characteris-
tics of media is not high enough. It is worth to remind 
here that we deal with media containing dozens of ran-
domly arranged layers, and there are no any real resona-
tors in these media. The developed model allows map-
ping the system which contains several dozen or even 
hundreds parameters onto the simple resonator. I want 
to emphasize that, in some cases, the definition of the 
medium parameters is possible only in the presence of 
both disorder and dissipation.  
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СЛУЧАЙНЫЕ РЕЗОНАТОРЫ: ТЕОРИЯ И ЭКСПЕРИМЕНТ 

Ю.П. Блиох 
Резонансы слоистой случайной среды исследуются теоретически и экспериментально. Разработан алго-

ритм, позволяющий выявить области, образующие резонатор, ответственный за резонансное прохождение 
волны через случайно-неоднородный образец. Этот алгоритм позволяет определить резонансную частоту и 
характеристики случайно сформированного резонатора. Ассоциация каждого резонанса с соответствующим 
случайно сформированным резонатором позволяет определить параметры отдельного случайно-
неоднородного образца с помощью внешних измерений. Предложенная теоретическая модель подтверждена 
экспериментально.  

ВИПАДКОВІ РЕЗОНАТОРИ: ТЕОРІЯ І ЕКСПЕРИМЕНТ 
Ю.П. Бліох 

Резонанси шаруватого випадкового середовища досліджуються теоретично і експериментально. Розроб-
лено алгоритм, що дозволяє виявити області, що утворюють резонатор, відповідальний за резонансне про-
ходження хвилі через випадково-неоднорідний зразок. Цей алгоритм дозволяє визначити резонансну часто-
ту і характеристики випадково сформованого резонатора. Асоціація кожного резонансу з відповідним випа-
дково сформованим резонатором дозволяє визначити параметри окремого випадково-неоднорідного зразка 
за допомогою зовнішніх вимірювань. Запропонована теоретична модель підтверджена експериментально. 


