ACCIDENTAL RESONATORS: THEORY AND EXPERIMENT
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Disorder-induced resonances in randomly-layered samples are studied theoretically and experimentally. An algo-
rithm for the detection and characterization of the effective cavities that give rise to these resonances has been de-
veloped. This algorithm enables to find the eigenfrequencies and pinpoint the locations of the resonant cavities that
appear in individual realizations of random samples. The association of any resonance with corresponding acciden-
tally formed cavity allows determination of parameters of a given individual randomly-inhomogeneous sample by
external measurements. Experimental results confirm the proposed theoretical model.
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1. THEORETICAL MODEL

Propagation of waves in a randomly-inhomogeneous
media is also random in character. Reflection and
transmission coefficients, which are only accessible for
measurement under remote sensing, are also random. As
a rule, statistically averaged values of these quantities
are considered as the medium characteristics. Such av-
eraged characteristics are not able to say something
about individual realization of the medium. Moreover,
sometimes we deal with a media which exists in a single
exemplar only. It will be shown below that this problem
— extraction information about individual exemplar of
random medium from external measurements — is not so
hopeless as it may seem at first glance.

This report is a short overview of results which have
been obtained in a close collaboration with my col-
leagues and published in [2 - §].

The most startling phenomenon related to waves
propagation in a random media is Anderson localization
(see [1] and references therein). This phenomenon
manifests itself in reflection of an electromagnetic wave
from a randomly layered dielectric medium. The wave
amplitude decreases exponentially inside such disor-
dered, locally-transparent medium, which results in high
(exponentially close to unity) reflectivity.

When the thickness of disordered medium is large as
compared with the localization length, the transmission
coefficient is exponentially small, and the reflection
coefficient is exponentially close to unity. This is cor-
rect for statistically-averaged values. The frequency-
dependent transmission through any individual sample
contains, among regions where transmission is exponen-
tially small, a set of isolated frequencies, where the
sample is almost transparent (Fig. 1).

Position and amplitudes of these resonances are in-
dividual fingerprints of the sample. Namely these reso-
nances can be used for revealing the medium character-
istics and spatial distribution of the incident wave inside
the individual sample.

The basis assumption of the theory is the following:
any resonant transmission line is associated with an ac-
cidentally transparent region inside the sample which is
surrounded by semitransparent (due to Anderson local-
ization) sections. This forms resonator whose cavity is
associated with transparent region, and walls are formed
by semitransparent sections of the sample. The proce-
dure which is able to distinguish cavities and typical
parts of the sample, whose structure (the layers thick-
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nesses, reflection and transmission coefficients) is
known, is presented below.
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Fig. 1.
Let us consider the wave that propagates rightward
from the point z; +0 (right side of the interface be-

tween the (j—1)-th and j-th layers) where its ampli-
tude is Aj(.g) [thereafter superscripts (£) denote ampli-

tudes of the waves propagating to the right or to the left,
accordingly]. This wave passes through the j-th layer,

is partially reflected from the interface between the ;-
th and (j+1)-th layers, transmitted wave travels
through (j+1) -th layer and partially reflected from the

next interface, etc. Supposing, that reflection coeffi-
cients are small, |7, [ 1, and, correspondingly, the

absolute values of the transmission coefficients are
close to unity, |7, [J 1, the amplitude A;f) of the wave

that was reflected from N, layers and returned back in

its starting point, is ;1;.’) :rj(”(k)A(” where

Jjo 2

N,
. 20k (2 1o —2;) .
r (k) = erme T and k is the wave num-

m=1
ber. In the same fashion one can define the /left reflec-
N,

“2ik(zj_p=2;)

. . (7) _ . .
tion coefficient r (k) = Zr It is

Jj—m
m=0
easy to see that r/.”)(k) is -2k Fourier harmonics of the
N,
function r

nOlz=(z,,,,—2,;)] , and r (k) s

m=1

+2k Fourier = harmonics of  the function
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Z (=7,_,)8[z=(z;_,, —z;)] . In other words, r (k)
m=0
are the Bragg reflection coefficients from N, layers:
r].(” (k) determines reflection of the wave propagating
to the right from the j-th layer, whereas rj(’)(k) deter-

mines reflection of the wave that propagates to the left
of this layer.

The wave that made a closed path and returned back
after consequent reflections from N layers located on

the right, and N_+1 layers located on the left from the
chosen j-th layer, has the amplitude Aj(.f) which is note
equal to the initial amplitude A;g). The difference be-

tween these amplitudes is defined by the func-
tion A (k) = rj“) (k)rj(_) (k):

(+) +) _— 4(+)
Al — A = A=A, ()]

It seems reasonable for our purpose to set the num-
ber of the layers N, equal to number N, of layers on

loc

the localization length 7, .

Now we will show that properties of the function
A (k) depend on whether the j-th layer is placed either

in a cavity or not. To do this let us calculate this func-
tion for two extreme cases: for a conventional resonator,
and for a Bragg grating.

The conventional resonator is formed by two semi-
transparent walls spaced by a distance d. Selecting an
arbitrary point z between the walls as a starting point,
one can calculate the difference between the amplitudes

of the waves: Az(g) [1-A_(k)], where corresponding

2ik(z,—z) and

r(k)=re™ ™ and z and z, are positions of

reflection coefficients are " (k)=re

the right and left resonator walls. For the resonator ei-
genmode the difference between the amplitudes is

minimal, i.e., ImA_(k)=0 and ReA_(k)>0. Both
these
argA_(k)=argr, +argr, +2kd = 2rzn, that is a con-

conditions can be written as

ventional definition of the resonator eigenfrequency. It
is easy to see, that for eigenfrequency the resonator Q-
factor is defined as follows: 1/Q =[1—ReA (k)].

Now let us calculate the function A_(k) for a regu-

lar periodic sample (Bragg grating) assuming that all
reflection coefficients are equal and the layer thick-
nesses d are equal too. When the Bragg reflection condi-

tion kd =z is satisfied, then ImA_(k)=0 and
ReA_(k)<0.
Thus, functions A(k) calculated for both conven-

tional resonator and Bragg grating differ by the signs of
their real parts: ReA(k)>0 for resonator, and

ReA(k) <0 for Bragg grating. It seems reasonable to
suppose that namely the sign of ReA (k) distinguishes

cavities from typical parts of the random layered me-
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dium. The wave number & of the cavity eigenmode
can be defined as a wave number is defined as a root of
equation ImA (k)= 0. These statements are confirmed

by numerical simulations in the following way.

If the peaks in the transmission spectrum are associ-
ated with the accidently formed cavity, the wave inten-
sity maximum should be placed in regions inside the
sample, where ReA (k) >0, and cannot be found in

regions, where ReA (k) <0. Fig. 2 shows result of cal-
culation of the function ReA (k) along the sample

(horizontal axis) for different wave numbers (vertical
axis). Regions where ReA (k)>0 are marked by

black, and regions where ReA (k)< 0are marked by

gray. The wave intensity (if it is more than half of its
maximum) is marked by light gray; regions, where
ImA (k) =0, are shown by light-light gray lines. This

picture confirms that the field intensity is concentrated
in cavities, and the resonant frequency is determined by

the condition ImA (k) =0.

res
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Fig. 2.
There is also a strong correlation (shown in Fig. 3.)
between spatial distributions of ReA (k) (light line)

and the wave intensity I]. (km) (dark line).

Intensity & Re A

T T T T ¥ 1
200 300 400 500
Layer number

Fig. 3.

Thus, any resonant line in the transmission spectrum
(resonant hole in the reflection spectrum) is associated
with resonator. The resonator walls are formed by
“typical” parts where the wave amplitude decreases
exponentially due to Anderson localization. Therefore,
the walls transmission coefficients depend on the posi-
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tion x, of the cavity in the interior of the sample of the
total length L:
Tl

25, /Lo, 2(L=x,)/hog
e, Tlle e (1)
The “typical” transmission and the reflection coeffi-

cients are

2L/l
T, Ue 2)

R, =1-T -T¢, 3)

t

The resonant transmission and reflection coeffi-
cients, and the resonant line width, can be easily calcu-
lated using the analogy with a resonator:

41T,

C(re_+T+T)

R S zl_z—;es_rgres]:es/];’ (5)

Te:

“4)

res

c
5a)l’05 =
4rl.

(Fgrcs+7—;+]—'2)’ (6)

where ¢ [] 2/ is the cavity length. The parameter I"

characterizes the dissipation in the medium. The nor-
malized intensity of the resonant wave inside the cavity
is

Is:T;es/T;' (7)

In principle, the values in the left-hand sides of
Egs. (2) - (6) can be found experimentally using exter-
nal measurements only. These values allow determina-
tion of the cavity position, the localization length, and
the wave field enhancement in the cavity. In practice,
some measurements are difficult if not possible to real-
ize. For example, sometimes only reflected wave can be
registered. In this case certain characteristic of the me-
dium and the wave intensity distribution can be re-
vealed, and others remain unknown.

2. EXPERIMENTS

The model described above was confirmed experi-
mentally. The experiments were carried out using the
following setups:

1. single-mode waveguide randomly filled with dielec-
tric plates (14...16 GHz);

2. the random stack of dielectric plates (75...110 GHz);

3. single-mode optical fiber with randomly-located
Bragg gratings (1540 nm ).
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Fig. 4.

In the first set of experiments only reflected signal
can be measured. Example of the reflected signal ampli-
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tude is shown in Fig. 4. The transmitted signal intensity
was below the experimental noise.

The narrow slot along the waveguide allows the
measurement of the intensity distribution along the
sample (see Fig. 5.).

< 0
Position (mm) Frequency (GHz)

Fig. 5.

We calculated position of the intensity maxima in-
side the waveguide and the intensity enhancement fac-
tor, and compared these values with the experimentally
measured ones. The results are presented in Tabl. 1.

Table 1
xres Ires/lin
Theory 4.0, 4.8, 3.6 190, 150, 123
Experiment 4.2,5.5,3.6 86, 201, 96

In the second experiment both reflected and trans-
mitted signals were registered and analyzed. Because
the position of the intensity maxima and the enhance-
ment coefficient could not be measured, the calculated
and actual loss factors of the medium were compared.
Results are presented in Tabl. 2. The value of the tan-
gent of the loss angle, averaged over 5 analyzed reso-
nances, is 8.35-10", whereas the actual value is
5.2-107. It is important to note that for non-resonant
frequencies the difference 1—-(R+7) is too small to be

measured.
Table 2
Fr?g;f;;y 1-R T of | tane-10"
f1=83.5 0.978 | 0.75 | 0.40 4.77
£=92.0 0.998 | 0.33 | 0.39 13.45
£=105.7 0.993 | 031 | 0.34 10.14
f=101.8 0.87 0.18 | 0.25 6.22
£5=99.8 0.77 0.30 | 0.45 7.16

The aim of the third experiment was determination
of the number of resonances in a given frequency inter-
val as a function of number of scatterers (number of
Bragg gratings). The analytical dependence is shown in
Fig. 6 by dashed line, black points mark experimental
results.

When the sample length is large enough, there is the
chance that eigenfrequencies of two or more resonant
cavities are close. These cavities interact with each over
by their evanescent fields. Such chain of coupled cavi-
ties (resonators) forms so-called necklace state.
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The experimental setup 1 allows investigation of
necklace state formation. First of all, positions of reso-
nances in the disordered stack of dielectric plates were
found. Second, the air gap with tunable dimension was
inserted into the stack. The position at which the air gap
is introduced was chosen to correspond to the peak of a
single Anderson localized mode of unperturbed random
sample. This allowed us to tune the eigenfrequency of
the selected mode. The spectral positions of the local-
ized states as functions of the air gap thickness are plot-
ted in Fig. 7.
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The frequencies of Anderson localized modes may
cross or exhibit anticrossing (level repulsion). The reso-
nator model allows prediction what will happened: ei-
ther the level repulsion or crossing. The resonator pa-
rameters and the coupling coefficients were calculated
using experimental data. Next, using these characteris-
tics, we calculated the minimal frequency differences
for interacting pairs of resonances, and compared them
ISSN 1562-6016. BAHT. 2013. Ne4(86)

with experimentally measured ones. Result of this com-
parison is shown in Fig. 8.

Among experimental investigations, the numerical
simulations were done in order to expand the model to
nonlinear random media. The theory showed that meas-
urements of the transmission spectra for only two dif-
ferent intensities of the incident wave is required for
quantitative description of such properties of nonlinear
disordered sample as bistability, hysteresis, and nonre-
ciprocal transmission.
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Fig. 9. demonstrates comparisons between results of
numerical experiments (circles) and spectral characteris-
tics which were calculated using two different intensi-
ties of the incident wave (solid lines). Left and right
panels correspond to two resonances.

CONCLUSIONS

The non-typical, resonant peaks in the transmission
spectrum, or deeps in the reflection spectrum from dis-
ordered one-dimensional layered structure, can be iden-
tified with resonator-like structures into the medium.
This mapping allows adequate interpretation of external
measurements and determination of the individual sam-
ple parameters. The comparisons between the calculated
and experimentally measured characteristics of the sam-
ples and the wave intensity spatial distributions show
that they are in a rather good agreement. One might
think that the accuracy of determining the characteris-
tics of media is not high enough. It is worth to remind
here that we deal with media containing dozens of ran-
domly arranged layers, and there are no any real resona-
tors in these media. The developed model allows map-
ping the system which contains several dozen or even
hundreds parameters onto the simple resonator. I want
to emphasize that, in some cases, the definition of the
medium parameters is possible only in the presence of
both disorder and dissipation.
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CJIYYAVWHBIE PE3OHATOPBI: TEOPUS U DKCIIEPUMEHT
10.11. bhuox

Pe3oHaHCH cIOMCTON CcaydaifHOW Cpepl MCCISTYIOTCS TEOPETHIECKH M SKCIepUMeHTanbHo. Paspaboran anro-
PHUTM, TTO3BOJIAIONINI BBIIBUTH 00JIaCTH, 00Opa3yroNIie pe30HaTOp, OTBETCTBEHHBIN 3a PE30HAHCHOE NPOXO’KIACHHE
BOJIHBI Yepe3 CIydaifHO-HEOJHOPOJHBIH 0Opa3en. DTOT aNropuTM IO3BOJSIET ONPENCIUTh PE3OHAHCHYIO YacTOTy U
XapaKTePUCTUKH CITy4aifHO C(hOPMHUPOBAHHOTO PE30HATOPA. ACCOIMAINS KaXKIOT0 Pe30HaHCa C COOTBETCTBYIOIIUM
ciy4aifHO Cc(OpPMUPOBAHHBIM PE30HATOPOM IIO3BOJIIET ONPEAENUTH IApaMeTpbl OTAENBHOTO  CIydYaiHo-
HEOIHOPOJHOTO 00pa3iia ¢ MOMOIIBLIO BHEIHUX H3MepeHui. [IpeioxkeHHas TeopeTudeckasi MOJeNb IOATBEPXKICHA
SKCIEPUMEHTAIBHO.

BHUITAIKOBI PE3OHATOPU: TEOPISI I EKCIIEPUMEHT
1O.1I1. Briox

Pe3onaHcH mapyBaToro BHIAJKOBOTO CEPEIOBHINA JIOCTIIPKYIOTHCS TEOPETHYHO 1 eKCIIepUMEHTaIbHO. Po3po0-
JICHO alTOPUTM, IO J03BOJISE BUSABUTH OOJIACTI, IO YTBOPIOIOTH PE30HATOP, BIAMOBIAAIBHUI 32 pE30HAHCHE MPO-
XOJDKEHHS XBIJII Yepe3 BUIAKOBO-HEOAHOPITHUH 3pa3okK. Llei anroput™ 103BOIIsI€ BUSHAYUTH PE3OHAHCHY YacTo-
Ty 1 XapaKTepUCTUKH BHIAJKOBO C(POPMOBAHOTO PE30HATOPA. AcCOIiallisi KOXKHOTO PEe30HAHCY 3 BIATIOBIAHAM BHIIA-
IKOBO c(hOPMOBAHUM PE30HATOPOM JIO3BOJISIE BU3HAYUTH ITapaMeTPH OKPEMOT'0 BHIIAJKOBO-HEOJHOPITHOTO 3pasKa
3a JJOMTOMOT OO 30BHIMIHIX BAMipIOBaHb. 3alIPONOHOBAHA TEOPETHYHA MOJIENH MiATBEPIKCHA EKCIIEPUMEHTAIBHO.
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