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The study presents a universal approach to solving a boundary value problem for waveguide of arbitrary cross-
section with longitudinally magnetized plasma filling. The approach utilizes representation of longitudinal fields by
infinite scalar series. The dispersion equation of magnetized plasma-filled waveguide of arbitrary cross-section is
obtained. As examples, numerical results for three types of plasma-filled waveguides (circular, coaxial and rectan-
gular) are presented. Their dispersion properties, as well as convergence of numerical results, are investigated nu-
merically. The validity of the results is verified by comparison with known data.
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INTRODUCTION

The use of plasma-filled waveguides for charged
particle acceleration, generation of high-power electro-
magnetic radiation and transport of charged-particle
beams requires knowledge of eigenfrequencies and ei-
genfields of such structures. Calculations of the eigen-
frequency spectrum of plasma-filled waveguide with an
arbitrary cross-section, embedded in an external axial
finite magnetic field, are associated with significant
mathematical and computational difficulties.

First, longitudinal components of the electric and
magnetic fields are coupled due to plasma gyrotropy
caused by magnetization [1]. Second, boundary condi-
tions at the metal walls of the arbitrary cross-section
gyrotropic waveguide restrict the use of the method of
variable separation [2]. As a result this method disal-
lows to determine eigenfrequencies and eigenfields for
waveguides with arbitrary cross-sections filled with
plasma embedded in finite external magnetic field. Up
to now either axisymmetric magnetized plasma-filled
waveguides (cylindrical [1, 3-5] and coaxial [6, 7]) or
arbitrary cross-section waveguides filled with plasma
embedded in infinite magnetic field [8] have been con-
sidered. The lack of generalization due to specific forms
of waveguides or infinite value of external magnetic
field motivates the present study.

Thus, the paper is devoted to electromagnetic analy-
sis of longitudinally magnetized plasma-filled wave-
guide of arbitrary constant cross-section. The analysis
utilizes a new universal approach to solving a
waveguide problem. It is based on field expansion into
series of eigenfunctions of well-known Neumann and
Dirichlet problems for Helmholtz equation in a two-
dimensional domain. The domain coincides with
waveguide cross-section. The dispersion equation is
obtained from the existence condition of non-zero solu-
tions for the set of linear algebraic equations for the
unknown expansion coefficients. It was numerically
tested for different waveguide cross-sections. Details of
the developed approach and some numerical examples
are addressed below.

1. DESCRIPTION OF THE APPROACH

Let us consider metallic waveguide of arbitrary con-
stant cross-section S. The waveguide is uniformly
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filled with magnetized plasma. The plasma is consid-
ered to be cold, collisionless; plasma ions are immobile.

We introduce unit vectors s and n with respect to
cross-section contour C . Both unit vectors belong to
the plane of cross-section. Vector n is the outward
normal to C (i.e. directed into metal). Vector s is di-
rected along the cross-section contour. Vectors n, s
and the waveguide axis z form a right-hand triple.

By assuming that the electromagnetic fields and the
velocities of plasma electrons have the form
A(r,t) = A(r, ) exp(—iot + ik z) , we obtain
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o, are the Langmuir and cyclotron frequencies of
plasma electrons, c is the speed of light in vacuum, £,
and B_ are the longitudinal field components related to
each other by the equations
(A, +a)B. =bE_, 3)
(A, +c)E, =dB.. 4)
Here A, is the transverse part of Laplace operator,
a= _C4/X2 ) b= —iﬁzksz4/X4 > d =ig,kk_ [, ,
c= —(83)(4 +ek’k’ )/(8])(2) .
The equations (3) and (4) should be supplemented
by the following boundary conditions:

E|.=0, 0B./on| =—igoB./os|,, Q)

which reduce the tangential electric-field components at
the waveguide wall to zero.

Let us seek the solution of the waveguide problem
(3) - (5) in the form:

Bl =Y ay, (r,)+ > bo,(r), (6)
E = ch(pk (ll) > @)
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where expansion coefficients a,, b, and ¢, are un-

known constants. Here we introduce two complete
countable sets of functions

(A, +k)o, =0, . =0, )

(A, +K)w, =0, 8y, /on| =0. )

They are the eigenfunctions of the well-known self-

adjoint Neumann and Dirichlet problems for Helmholtz

equation in a two-dimensional domain. Whatever the
contour shape is, these functions are orthogonal

J‘(P:(Pde = kl;zsik > IW:\deS = kjsik .
s s

Multiply (3) and the complex conjugated (9) by v,

(10)

and B!, respectively. Then subtract the results and inte-

grate the obtained expression over S . Using the or-
thogonality condition (10), the second Green’s formula
and the boundary conditions on C, one finally comes to
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The same procedure applied to equations (3), (4) and
to the complex conjugated equation (8) leads to the fol-

where

lowing:
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Set of linear homogeneous equations (11)-(13)
have nontrivial solution only if the determinant of the
set is equal to zero.

Bi(;) = Ski d/klzk >

40 B ¢
D(w,k,)=det| 4P B? C? |=0. (14)
47 BY G

Equation (14) is the unified dispersion relation for
magnetized plasma-filled waveguides of arbitrary cross-
section. The shape of cross-section determines the ei-
genvalues of the problems (8), (9) and also their eigen-
fuctions presented in integrands of 7, and ©, .

Below we apply (14) to analysis of dispersion prop-
erties of cylindrical, coaxial and rectangular waveguides
filled with magnetized plasma. Solutions of the bound-
ary value problems (8), (9) in these cases have rather
simple form (see, for example [9]).

2. NUMERICAL EXAMPLES
2.1. CYLINDRICAL WAVEGUIDE

Let us consider cylindrical waveguide of radius R,

filled with magnetized plasma. For circular cross-
section the eigenfunctions of the problems (8), (9) in
polar coordinates r, ={r,¢} have the form:
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v, = AJ,(ky,r)exp(il) , (15)
¢, =B.J,(k,r)exp(ilp), (16)
where k, =u,, /R, , k, =u;;/R,, 1, and p;, are the
zeros of Bessel function J,(x) and its derivative, con-
stants 4, and B, are determined by the conditions (10).

In axisymmetric case basis functions are character-
ized by the pair indexes (azimuthal / and radial 7).
Basis functions with different azimuthal indexes are
orthogonal and total fields with different azimuthal in-
dexes can be considered independently. So, above we
assume (for simplicity) that the total indexes of basis
functions coincide with their radial indexes.

Using (15), (16), we come to

—2il
]-;k = ’ (17)
=P b =7
2R}
(18)
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Substitution (17) and (18) into (14) gives the disper-
sion equation of cylindrical waveguide filled with mag-
netized plasma. This equation was solved numerically
(Fig. 1,a). The results were compared with solutions of
exact dispersion equation [3]. The convergence of nu-
merical results turns out to be rather good. It was found
that three terms ( N =3) of series (11) - (13) suffice to
achieve good agreement with [3] both in frequencies
and fields (Figs. 1,b,c) even for the highly gyrotropic
plasma.
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Fig. 1. Frequencies and fields of cylindrical waveguide
filled with magnetized plasma. The fields correspond to

. . . 1
the circles on dispersion curves (®, =3x10 * rad/sec,

o, =4x10" rad/sec, R, =5 cm)
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2.2. COAXIAL WAVEGUIDE

We now turn to consideration of coaxial waveguide
with outer radius R, and inner radius R, filled with

magnetized plasma. For coaxial waveguide the bound-
ary value problems (8), (9) have the following solutions

v, = 427 (k) exp (ilg) = (19)

=4, [J, (ky,r)+ o, N, (kzl.r)]exp(il(p),

¢, =BZ" (k,r)exp(ilo) =

=B [J,(k,r)+B,N, (k)] exp(ilop).
Here N, (x) is the Neumann function, &, =vy,; / R,,

(20)

ky =7,,/R,» v,, and v], are the zeros of functions
Z"(x/C,) and Z2(x/C,), C,=R,/R ,
a; = _‘]l'(kZiRO)/NI,(k%RO) s Bi=-Y (kliRO)/Nl (k;Ry) »
constants 4, and B, should be found from (10).
Using (19), (20), we obtain
T, =-2mil4 4, {Z/m (’Y/’i)Z/(Z) (Y;k )_
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The equation (14) in terms of (21) and (22) becomes
the dispersion equation of coaxial waveguide filled with
magnetized plasma. We solved this equation numeri-
cally (Fig. 2,a) for the same parameters as used in the
case of cylindrical waveguide.
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Fig. 2. Frequencies and fields of coaxial waveguide
filled with magnetized plasma. The fields correspond
to frequencies marked by circles (v, =3x10" rad/sec,

o, =4x10" rad/sec, R, =5 cm, R, =135 cm)
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Compared to this case, the number N should be in-
creased to multiply precision of the field evaluation in
the neighborhood of the waveguide boundary
(Figs. 2,b,c). Moreover, when N is insufficiently high

the dispersion curves can discontinue at {*=0 (see

Fig. 2,a). As seen from (1), (2), when (' =0 field ex-

pressions are of indeterminate form 0/0 (otherwise
fields would be nonregular). Thus, the number of terms
in field expansion should be enough to avoid computa-
tional errors in this case.

2.3. RECTANGULAR WAVEGUIDE

We now proceed to study rectangular waveguide
filled with magnetized plasma. The waveguide cross-
section has the width a and the height 5. For such a
cross-section the eigenfunctions of the problems (8), (9)
in rectangular coordinate system r, ={x,y} have the
form:

v, =V, =4, cos(mnx/a)cos(nny/b), (23)
¢, =9, =B, sin(m'nx/a)sin(n'ny/b), (24)
where m, n, m', n' are the integer numbers,

ky, =mym?/a* +n"?[b* | ky, = nm*/a* +n*[b*, A,
and B . are the normalization constants (see, (10)),
m',n'#0.
Using (23), (24), we come to
T, =T =4,4 (nzmlz—nlzmz)x

mn,mlnl mn*“mlnl

((_1)7”1—”1 _1) ((_l)nl—n _1)
m’ —m’
q)ik = q)mn,m'n'
((_l)m'fm _1) ((_1)n’ﬂl _1)
m/z _ mZ n/z _ nz .
As evident from (25), (26), coupling coefficients
and @ differ from zero only if the differ-

m'n'
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X

>
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X

T
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ences (m'—m) and (n'—n) are odd simultaneously.

Thus, one can take into consideration functions (23),
(24) with even sum of indices (both indices are odd or
even) and separately those which have odd sum of indi-
ces (one of the indices is odd and another is even).
Together with (25) and (26), the equation (14) be-
comes the dispersion equation of rectangular waveguide
filled with magnetized plasma. This equation was
solved numerically. The results are presented in Fig. 3.
The figure also demonstrates applicability of our ap-
proach to analysis of plasma waves (w, <, in the

present case) in addition to cyclotron waves presented in
previous examples. We have also calculated the eigen-
fields of the rectangular plasma-filled waveguide. As
seen from the Fig. 3, we have achieved rather good ac-
curacy in field evaluation near the waveguide boundary
with relatively small number of terms in field expan-
sion.

Despite the obtained results, the electromagnetic
properties of rectangular waveguide filled with magnet-
ized plasma still remain almost unexplored and require
further study. At present this study is in progress.
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Fig. 3. Frequencies and fields of rectangular waveguide
filled with magnetized plasma. The fields correspond
fo frequency marked by circle (0,=4x 10" rad/sec,
o, =3x10" rad/sec, a=5 cm, b=1.9 cm)

CONCLUSIONS

A unified dispersion equation for smooth metallic
waveguides of arbitrary cross-section filled with longi-
tudinally magnetized plasma is derived analytically.
This equation is not solely of academic interest. It also
can contribute to choice of optimal electrodynamic
structure with gyrotropic filling for different applica-
tions. The dispersion equation has been successfully
applied for three examples of such structure. The results
were compared with known data, including those for
vanishing plasma gyrotropy (®, >0, ®, >0, @, —0).

They show that our approach can be efficiently used in

accurate evaluation of the wave frequencies and fields
even in the case of essential gyrotropy of plasma filling.
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JUCHEPCHOHHBIE CBOMCTBA IIJIASMEHHOI'O BOJTHOBOJIA ITIPOU3BOJIBHOI'O
MONEPEYHOI'O CEUEHUSI B KOHEUHOM MATHUTHOM I10JIE
B.U. lllepounun, I.H. 3azunaiinos, B.U. Tkauenko

[peanoxeH HOBBIA YHHUBEPCAIBHBIH METOJ| PEIICHHUS 33/1a4i Ha COOCTBEHHBIC YAaCTOTHI M OISl PETyJISIPHOTO
BOJIHOBOJ]A MPOU3BOJILHOTO CEUCHUSI ¢ MArHUTOAKTHBHOW I1a3Moil. MeTO HCMONb3yeT CKAISPHBIC Pa3IOKCHUS
JUISL IPOJIOJIBHBIX TONIel BoJHOBOAA. [loyueHo AUCIIEPCHOHHOE YpaBHEHUE MAarHUTOAKTHBHOTO MJIa3MEHHOTO BOJI-
HOBOJIa C MPOU3BOJILHOI (hOpMOIi mornepedHoro ceuenus. Kak nmpumep, pacCMOTPEHBI TP THIA (LIMINHIPUYECKHH,
KOAKCHUAIIbHBIM U MPSIMOYTOJIBHBIN) TJIa3MEHHBIX BOJHOBOJOB. VX AMCIIEpCHOHHBIE CBOMCTBA, a TAKKE CXOJUMOCTh
YHCIIEHHBIX PEe3YJIbTAaTOB HUCCIEOBaHbl YHCICHHO. [l0OCTOBEPHOCTh Pe3y/IbTaTOB [TOKAa3aHa MyTeM CPaBHEHHS C M3-
BECTHBIMH JJAHHBIMU.

JIACTIEPCIVHI BJIACTUBOCTI IIJTA3MOBOI'O XBHJIEBOIY 13 TOBLJIbHUM IONNEPEYHUM
HNEPEPI3OM Y KIHIIEBOMY MATHITHOMY IIOJII
B.I Ilepoinin, I'.1. 3acunaiinos, B.1. Tkauenko

Byo 3anponoHoBaHO HOBHII yHIBepCAIbHUI METOZ PO3B'A3aHHS 3aJa4i Ha BJIACHI YaCTOTH Ta MOJIS PETYJIAPHOTO
XBHJICBOJly JIOBUJIBHOTO TEpepi3y i3 MarHiTOAKTUBHOIO MIa3MOI0. MeTo/1 BUKOPUCTOBYE CKaJSIPHI PO3KIIaICHHS IS
MO3JIOBXHIX TMOJIB XBUIIEBOAY. ByJ0 oTprMaHo aucnepciliHe piBHSHHS MarHiTOAKTHBHOTO IJIa3MOBOTO XBUIIEBOAY
3 IOBUIBHOIO (pOpMOIO MornepedHoro nepepizy. Sk npukian, 0yno po3ristHyTO TpU THNA (MUJIIHIPUYHUH, Koakcia-
JBHMH Ta NPAMOKYTHHMIA) TIa3MOBUX XBMIIEBOJIB. IXHi JAMCIIEpCiiiHi BJIACTHBOCTI, a TaKOX 30DKHICTH YHCETBbHHX
pe3ysbTatiB OyJo OCHIIPKEHO YUCEIbHO. JJOCTOBIPHICTh PE3yNbTaTiB OyJIO MPOJAEMOHCTPOBAHO NIISXOM HOPIBHSH-
H 13 BIIOMHMU JaHUMHU.
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