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The temporal evolution of the linear diocotron instability of the cylindrical annular plasma column, which is
driven by the shear of the equilibrium velocity of pure electron non-neutral plasma in crossed external magnetic and
own electric fields, is investigated by using the extension of shearing modes methodology onto the cylindrical ge-
ometry. That approach does not use any spectral transforms in time and gives the solution of the initial value prob-
lems for any desired time. The evolution process leads toward the convergence to the phase-locking configuration

of the mutually growing eigen and forced modes.
PACS: 52.27.Gr

1. BASIC EQUATIONS OF
THE NON-MODAL APPROACH

The diocotron instability [1], is the electrostatic in-
stability of the low-density non-neutral plasmas in mag-
netic field. It is driven by the shear of the equilibrium
velocity of non-neutral plasma in crossed external mag-
netic and own electric fields. In recent years, the inves-
tigations of this instability are going far beyond tradi-
tional studies of plasma stability in Malmberg-Penning
traps. The understanding the physics of this instability is
important for the development of a new type of beam
collimator system in high-energy colliders, which util-
izes pulsed hollow electron beam to kick halo particles
transversely while leaving the beam core unperturbed
[2]. The diocotron instability is considered [3] as a
promising mechanism leading to highly unstable flows
in the pulsar inner magnetosphere.

In this paper we develop the theory of the diocotron
instability of the cylindrical annular plasma column by
extending the shearing modes methodology [4] onto
cylindrical geometry. We consider the most simple
model of the confined electron plasma as an infinitely
long along the magnetic field hollow annulus with step-
function electron density profile, which, nevertheless,
requires the development of the shearing mode ap-
proach [4] to the rotating cylindrical plasma with a
radially inhomogeneous angular velocity. The basic
equation in that model is the drift-Poisson equation for
the perturbed electrostatic potential ¢
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where the angular velocity Q(r) is equal to

Q(r)=ﬁ(1—i]. e

The boundary conditions for potential ¢ are the

)]
(6(r-b)-5(r-a)),

continuity of the potential across the edges =5 and
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r=d, ie. $(r=b-¢6,t)=¢(r=>b+¢,60,t) with

& — 0 and the same condition at » =d , the zero mag-
nitude of the potential on the conducted boundary
r =R and the conditions on the jump of the d¢/dr at

r=band r=d,
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We describe two areas: the electron layer, b, r,, d,
and vacuum in the rest of space. Eq. (1) in the vacuum
has a form
2V2¢ =0. 4

ot
The solutions to Eq.(4) for the separate Fourier harmon-
ics ¢(r,l,t), determined as

0

¢(r.0,0)= D ¢(r.Lt)exp(il0), (3)

I=—0
are
#(r,0,0)=C (1,0)r for 0<r<b,
21
(r.0,6)=C, (L1)r" (1—%} for d <r, R.
In electron layer, the right hand side of Eq. (1) is equal
to zero, except the edges at » =b,and r=d i.e.

9 A )
(5+Q(r)%jv 4(r,0.1)=0. 7

Instead of application of the commonly used spectral
transform in time, here we use other approach, which
gives easy and transparent treating of the problem con-
sidered. That approach is grounded on the transforma-
tion of Eq. (7) to the sheared coordinates ¢ =¢,

r=7 0=1Q(r)+6, (8)

(6)
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where the sheared coordinate 6 = 0 —1Q(r) is the char-

acteristic for Eq.(7). In these coordinates, we have
o/ot+Q(r)o/00=0/0t and Eq.7) is integrated

easily over time. That gives for the Fourier harmonic
¢(7,0,t)  of the potential, determined as

¢(f,é,t) = i¢(f,l,t)exp(ilé), the equation
f—

dQ(f)j op(7,1,t)
di

or
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dr

¢(f,l,t) =4rxen, (f,l,t = to)

and brings into the further consideration the initial per-
turbation n, (7,,,) of the electron density in electron

layer. The general solution to Eq.(9) is obtained
straightforwardly and is equal to

#(7.0.0)= > ", (1.r)

=1
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That solution is valid for any time. It does not con-
tain any singularities, which are inherent for the solu-
tions obtained with spectral transforms in time and
compose serious obstacles for the determining the ex-
plicit time dependence for the potential for the finite
time.

2. MODAL DIOCOTRON INSTABILITY

If we suppose that any initial perturbation in layer is
absent, ie. n (7,0,4,)=0, the solution (10) in layer

(10)
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+ R
/

b <r <d reduces to a form
$(7,0.0)= 3" (¢, (L) +¢, (Le)i") (1)
=1
which describes only the surface waves, which form the
discrete spectrum of perturbations. The condition of the
perturbed potential continuity on the boundaries » =5

and r=d couples the coefficients C,(/,1), C,(l,t) of
Eq.(6) with C;(/,1),

presentation for the potential in the vacuum regions:

C, (1), and gives the following

et io 1
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We apply the boundary conditions (3) to (12) - (13),
and obtain the system of equations for C, (l,t) and

C,(Lt),ie
ac, (1.1

+ilQ(d)(C3 (Lt)+ ¢, (lsf)j

L, (b)) C(Le)
:12; {cs(z,z)(l—p(l—FJ} 4d21 ,

oC, _
ot
The solution to Eqs.(14) has a modal form,

C, (Z,[) = (l)e—iw(l)r+7() +c, (Z)e—i(u(z)py(z)t’
C4 (l’t) = (Z)alefiw(l)tﬂ( ) +c, (l)azefiw(l)tfy(/);’

where

a, =b”( “’ (a)(l)ii;/(l))—lJ ,

and
wZ bz d2/ b2/
4 Hl_dzj RZ’(I_F}’ (10

b2/ b le
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(1) =2
1/2 (17)
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which define the known frequency and growth rate for
diocotron instability in cylindrical annular plasma
column [1] with conducted boundary. It follows from
(17), that instability is absent for /=0 and /=1. and
exists when

bZl b le
“Fl-F e
2
b2 d21 b21
- FE-E)]

3. MODAL DIOCOTRON INSTABILITY
INTERPRETED IN TERMS OF EDGE
WAVES INTERACTION

The application of the transformation to shearing
coordinates (1) opens the way to effective analysis of
the diocotron instability in terms of edge waves
interaction [5], applied for the diocotron instability in
plane geometry in Ref. [4]. Writing the functions

C,(1,t) and C,(/,t) in the complex form [4],

G, (1) =0, (1.0)e™.C, (1) = 0, (1.1) e, (19)
the edge perturbation of the potential can be regarded as
two edge waves with amplitudes O, (/,¢) and Q,(/,7)

2
we
-i? (G (Le)p" +C, (L1)).

ce

(15)

a)(l)=

and phases & (/,7) and ¢,(/,¢). By substituting Eqs.

(19) into Egs. (14) and separating the real and
imaginary parts at »=b and r=d, we obtain, that

amplitudes O, (/,¢) and Q, (/,1), and the relative phase
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e=¢& —¢g, of the edge diocotron waves evolve

according to equations

o, @, ., . p*\d*
dt3 :gp&d 21Q4Sln8|:1—l(1—?jp 5
o o (20)
T: = jﬁebﬂg sing,
and
de
Z:F(cosgt[)’(t)) @n
where
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From Egs. (20) one can obtain the integral,
. 5 b21 b2 dZZ
0, —Q4F 1-1/ 1—? el +C. (24

Due to the exponential growth of amplitudes Q,,

(23)

O, with time from infinitesimal beginnings, the
amplitudes become

b2l b2 d2l

then SB(¢) and I' approaches the values

l b2 d2[ b2/
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At condition (18), under which the diocotron
instability develops, S, is less than unity and therefore,

(26)

the stationary (or fixed) points of the equation (21),
where de/dt=0, exist and are determined by the
equation cos&+ 3, =0. The solutions of this equation

are two sets of stationary points: stable (or attractors) at

& = (71' —cos ', ) +2kr, 27

and unstable at
& = —(ﬂ—cos’lﬂo)+2k7r. (28)
The solution of the equation

de/dt =T (cose+ f3,) with initial condition & = ¢, at
t=t, =0, has a simple form

1_ 2
tang=—/1+ﬂ° 14 4V A

_ 2 |’
2 1-4, I_Aerol‘dl—ﬂo
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(29)

where

(l—ﬂo)tan%+dl—ﬂ02

A= . (30)
(1=4,)tan 2 ~\1- 5}

As it follows from Eq.(29), the initial perturbations
with an arbitrary value of the initial phase of each wave,
will evolve with time to the ultimate value ¢, of relative

phase,
cosé&, = f3,, (31)
which does not depend on the initial data.

This solution of the initial value problem reveals the
linear stage of the instability development as a process
of the formation of the phase locked configuration.
Figure illustrates such configurations for separate

modes [ =5 with relative phase ¢&,, determined by
Eq.(31). On Figure, we use the values of the parameter
b/d, for which the growth rate (/) attains the
maximal values. These values are b/d =0.83 with
&, =2.17 rad for / =5. The time of the developing of

such configuration is comparable with the inverse
growth rate time of the diocotron instability.

Phase-locked configuration for azimuthal wave number
=5 (a) with b/d=0.838, d/R=0.8,
& =2.136 rad, and (b) with b/d =0.8316,
d/R=0.5, & =2.352 rad

4. NON-MODAL ANALYSIS
OF THE DIOCOTRON INSTABILITY

Now we obtain the complete solution of the boun-
dary and initial value problems, determined by the
condition of the continuity of the potential ¢ and by

Egs. (3) with accounting for the initial perturbation of
the electron density. The condition of the potential
continuity at the inner and outer surfaces of the electron
cylinder gives the connection formulae for the functions

C (Lt), C,(1,t) and C,(1,¢), Cy(L,t), and as a result,
presentation of solutions (6) through the functions
C,(1,t) and C,(/,t) of the solution (11). We obtain for

the vacuum region, 0 <r <b,

o(7.6.0)= D" (¢, (1) + €, (Le)b
=1

2 d . Als ~ —iltQ(#
S A CRANE "”)’

and for region » > d
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§(7.0.1) = 3" (¢, (1e)a™ + €, (10)

=
272’6 dzzJ‘ df\];l ln] (’ﬁalato)e_im(ﬁ)j-

The apphcatlon of the conditions (3) to the above
solutions gives the inhomogeneous equations for

C; (L) and C, (L),
aqa—(tl’t)ﬂlﬂ(d)[q (L.6)+ Cﬁf;t)J

a,Ze dZI b21 C l,t
2 el 08 4

ce

2

oC, —
ot 20

ce

E(Cy (Le)b" +Cy (L)) + £ (Lt). (32)

where functions f, ,, determines the effect of the initial

perturbations of the electron density introduced by
solution (10) into the boundary conditions (3), and are
equal to

e 2 —iltQ( 7
fi(L)=1 20’; ”ejdl n, (701, )e ")

ce

e d* b b
X{I’il l{l—p_l[;—z—yj} (33)
1
2
+A {Hl[l—lﬁ—zﬂ},
4
£ (11)= Ope 2”ejd““’ (7.1,1,)
(34)

The system (32) - (34) compose second initial value
problem in the investigation of the stability cylindrical
annular plasma column, the solution of which gives
complete linear description of the temporal evolution of
the diocotron instability. The solutions to system (32)

for C,(1,r) and C,(l,r) with [>2 are obtained

straightforwardly and are given by
C3 (l, Z) = (Z)e—im(l)t+y(l)t

+c, (l)e—iw(l)z—,v(z)z + é} (l, t),
C4 (1, t) = ([)ale*iM(l)Hy([),
+c, (l)aze )= +C (l t)

(35)

(36)

where

2 d2[ b2 -1
a 5 :(dzllil a)pe (l)](lﬁ[ —?) 1] .

The first two terms in Egs. (35), (36) describe the
modal temporal evolution with growth rate y (1) (16),

of the initial perturbations of the electrostatic potential
on the boundary surfaces at » =5 and r =d , which are
determined by constants ¢, and c¢,. The functions

C,(Lt) and C,(1,¢) are

28

G, (Lt)=

L PO P
4(0“7/(1) Rzl dz
{ Jlane ™D (£ (L) =a i (1))e ™ 37)

Hanf; (1)~ £ (Lt ))e’“)(”")},

e d (A B

4o,y (1) RY d?
x{ ttdtlefiw([)(H]) [az (fz (l, t ) -a,f, (l,t1 ))eiy(l)(H])
+a (a f; (11) = £ (Lt ))e’“’(”’l)}}. (38)

The functions C, (1,7), C, (1,) for any values of /

introduce the non-modal modification of the modal
evolution, that arises from the initial perturbations of
the electron density, which are sheared due to the
rotation of electron column with inhomogeneous

angular velocity Q(7). Now, the solution for the

C,(L,t)=

electrostatic potential in region b<r<d may be
presented in a simple form,

B(7.0.1)= 4o, (7. 0. )+ 4, (7. 6.1) + 8, (7. 6.1).(39)
Here ¢(O)(f, 0, t) is determined by a general

solution of the homogeneous system (32),

¢(0) (f, é, t) = ie’iw(l)tﬂ](éﬂg(;))

=
><[(cl (l)e’(l)' +e, (l)eiy(l)’ )f’
+(alcl (l)e’(’)' +a,c, (l)eiy(’)' )f”},

where the Fourier harmonic with /=1, which is stable
in the geometry considered, is omitted,

b (7. é,z)=i”("“g (& (o) +

1=1

(40)

(l,t)f"), (41)

0

¢(2) ( ) zlezl 0+tQ

[Id (j ‘,z,zo)e’”’“(’"‘l)

AN/
+.|.;fidﬁ’:1 (%j ! (’:1’ L1, )eimg(ﬁ) J’

is formed by the initial perturbations in Eq. (9). The
exact solution (41), (42) are valid for any time, at which
the linear theory of the diocotron instability is valid.

The integration of ¢(2) on time by parts displays the

‘.‘>|\>

(42)

decay of ¢, (r,0,t) as ¢ for 1? (lQ(d))fl. The

obtained asymptotics reveals that the origin of this non-
modal time dependence, which is attributed usually to
the continuous spectrum, is the non-modal effect of the
continuous shearing of the initial disturbance of the

electron density determined by eim(ﬁ]) function in

Eq. (42). For the better understanding the contents of
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Egs. (37), (38) it is instructive to obtain the large time,
t? (lQ(d))_] , asymptotics for coefficients C, (1,1)
and C, (1,7). The integration of (37) on time, in which
only the exponentially growing terms are retained,

yields C, (1,£)=C,, (1, ¢)+Cy, (I, 1), where

A irea’ d™ (o )(ie
C31( 7t):We (ia(1) 7(1))(t to)

A

o1 +ir (D)

d21 b2 b2 (43)
Jor (£ 2)
271 RZI ’/12 dZ
s b? a
+7 l[l+l[1_ﬁ_2]](l+_Ril ]:l

ﬂ_edfz(zfl) a’,z;e d2

632 (1,t) R 7(1){111 (dal,to)e’”’ﬂ(d’ o

21 2
{azd’ [1—22,} d' [1 +1(1 —Zzn(l +1‘;§1ﬂ
X

o(l)-19(d)+iy(I)

m (b)) b2 (. d ( b D
SR D 1= 1- 2
o(l)+iy(l) d* {a [ R )i

I ) -2
b (1+Fj}+0(t ).
The same asymptotic is for
C,(1,t)=aC,(1,1) (45)
experience the power-law decay with time (as ¢~ in the

non-modal parts of the perturbed potential (39)
@, (r,0,t) and C,,(L,t)). Only the exponentially

. —ilty O (A
.[d nl(”l’lﬁo ¢ o)

with C,, (1,¢) determined by Eq. (43), we obtain the

observed in the laboratory frame the modal presentation
for ¢, (r,0,t) as for the normal unstable diocotron

wave. It follows from the last expression, that the
relative phase difference ¢ of the edge surface waves,

determines as a, =|a, |¢“ becomes constant and is

equal to that corresponds to the formation of the phase
locked state for the edge surface waves. This result
reveals, that the accounting for the initial perturbations
of the electron density does not destroy of the phase
locked configuration. The performed analysis displays,
that in spite of the similar spatial and temporal
dependencies with normal unstable diocotron mode,
solution actually is not a normal mode. As a solution of
the inhomogeneous system it is a forced wave, which is
resulted from the interaction of separate spatial mode of
the electrostatic potential, formed by the rotating initial
perturbation of the electron density, with the unstable
modal diocotron wave.
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Eq. (43), survives. Changing 0+Q(#)=6 in Eq. (43) ricle recetve

MOJXO/JI CIBUTOBBIX MO/ K TEOPUH TUOKOTPOHHOM HEYCTOMYUBOCTH
OUJIMHAPUYECKOTI'O CJ1051 JIEKTPOHOB

B.B. Muxaiineunxo, Xaii /[xcyn JIu, B.C. Muxaitnenxo, H.A. A3apenkoe

BpeMmeHnHas nuHelHas 3BONIOLUS AUOKOTPOHHOM HEYCTOWYMBOCTH LIMJIMHAPUYECKOTO CIIOSI 3JIEKTPOHOB, KOTO-
past Bo30y»KJIaeTcsl IMPOM PaBHOBECHOW CKOPOCTH HJIEKTPOHOB B CKPEUICHHBIX BHEIIHEM MAarHUTHOM M COOCTBEH-
HOM 3JIEKTPHYECKOM IIOJISIX, MCCIIEYETCs UCTIONB3ys 0000IeHNEe METOMOJIOTHH CABUTOBBIX MOJ| HA IMJIMHAPHYE-
CKYIO TEOMETPHIO. DTOT MOAXO0] HE HCIOJB3YET CHEKTPaIbHOE MpeoOpa3oBaHKe 1O BPEMEHH M AaeT PELICHHE Ha-
YaJbHOHM 3ama4u Ui J1I000ro BpeMeHH. DBOJIOLMOHHBIN MpOLEcC NPUBOJUT K 0Opa30BaHHMIO KOH(PUIypaLH C
(ha30Bo¥ CHHXpOHHU3ALIMEH B3aUMHO PACTYIIUX COOCTBEHHBIX U BBIHYK/IEHHBIX MOJI.

MIAXIJI 3CYBHUX MO/, O TEOPIi JIOKOTPOHHOI HECTIMKOCTI
JITHAPUYHOT O IIAPY EJIEKTPOHIB

B.B. Muxaiinenko, Xaii /[oicyn JIi, B.C. Muxaitnenxo, M.O. A3apenkos

Yacosa JiHIiHA €BOJIOLSI JIOKOTPOHHOI HECTIMKOCTI IMJIIHAPUYHOTO LIAPY ENEKTPOHIB, siKa 30y/KY€EThCS LIH-
POM DIBHOBaXKHOI MIBHJKOCTI €ICKTPOHIB Y CXPEIICHUX 30BHIIIHBOMY MArHITHOMY Ta BJIACHOMY CICKTPHYHOMY
HOJISIX, JOCIIIDKYETHCSI BUKOPUCTOBYIOUH y3arajJbHEHHS METOMOJIOTIT 3CYBHHX MOJ Ha LUIIHIAPHYHY T€OMETPIlO.
e#t mixxix He BAKOPUCTOBYE CIEKTPaIbHE TIEPETBOPEHHS IO YaCOBiil 3MiHHIN 1 Ja€ PO3B 30K 33aqadi Ha IIOYaTKOBI
JaHi Juis aroboro yacy. EBosroniiiHuil poliec Bene A0 yTBOpeHHs KOHGirypatii 3 (pa30Bo0 CHHXPOHI3ALIEI0 B3a€e-
MHO 3POCTAl0UYHX BJIACHUX TA BUMYIICHHX MOJI.
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