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The description of open quantum dissipative systems was analyzed on the basis of equations for the density matrix

and the nonstationary Schrodinger equation with linear and nonlinear (non-Hermitian) Hamiltonians. Questions of

capture, the first stage of the fusion reaction, and the nucleon transmission of interacting nuclei were considered. The

quantum-dynamical description of fusion-quasifission of nuclei was proposed as open quantum system based on the

calculations for emission of nucleons from the dinuclear system (DNS) and the transmission of nucleons at allowed

[±n,±p] and [±n,±p± (n + p)] transitions.

PACS: 12.10Kt, 23.20.En,24.10.-i, 25.40.Lw, 25.70.Gh

1. INTRODUCTION

The study of quantum dynamical laws in fusion-
quasifission of heavy nuclei will enable to more accu-
rately plan experimental studies of synthesis of SHE
and correctly identify the processes that occur in nu-
clei capture dynamics, fragmentation of nuclei and
compound nucleus, transitions of nucleons from one
nucleus to another, emission of nucleons in different
stages of the formation of SHE, etc. Influence of
closed quantum systems on one another and/or of
the environment (reservoir) on the dynamics of par-
ticles may be taken into account by using equations
for the density matrix and/or stochastic Schrodinger
equations.

2. QUANTUM DISSIPATIVE SYSTEMS

2.1. Density matrix-based equations

The approach which is based on the interaction of
the system (subsystem) with the reservoir [1, 2, 3]
is a way to describe open quantum systems. It is
necessary to make a reduction, i.e. to sum in the
degrees of freedom of the reservoir in order to cal-
culate the behavior of subsystem + reservoir. So we
obtain a description of the system by means of the
reduced density matrix. So, S1 +S2 (where S1 - sub-
system of concern, S2 - reservoir) is a closed system
describing by vector of state |ψ〉 or density matrix
R̂ = |ψ〉 〈ψ|. Then we obtain the only description
of subsystem of concern S1 by summing the density
matrix in degrees of freedom S2 (get partial trace of
the full density matrix), ρ̂ = TrS2R̂. The equation
for the density matrix with dissipation was proposed
by Lindblad [4]:

∂ρ̂

∂t
= − i

h̄

[
Ĥ, ρ̂

]
−

∑

i

(
L̂†i L̂iρ̂− 2L̂iρ̂L̂†i + ρ̂L̂†i L̂i

)
,

(1)

where Ĥ - Hamiltonian of the system, L̂i - operators
describing the dissipation.

Description of the quantum system without a spe-
cific model of reservoir is presented in references [2, 3].
One approach is as follows: each measurement is de-
scribed by the reduction of von Neumann, and con-
tinuous measurement is presented as a series of in-
stantaneous measurements [2].

The theory of continuous measurements, which
is based on the restricted path integrals [2, 5], ef-
fectively represents the dissipation of the quantum
system and describes the dynamics of open systems
as a result of continuous measurements. This ap-
proach enables to construct a general theory of dissi-
pation, then, a description of its dynamics is reduced
to the Schrodinger equation with a complex Hamil-
tonian [2]: ∣∣∣

.

ψ
〉

= − i

h̄
Ĥ[a] |ψ〉 , (2)

where Ĥ[a] = Ĥ+λa(t)B̂−ih̄χ(Â− a(t))2 . Reservoir
characteristics are contained in a(t) term up to χ con-
stant. This approach yields Lindblad-type equations
[5]. In case of discrete measurements total density
matrix is defined by the equation [2]:

∂ρ̂
∂t = − i

h̄

[
Ĥ, ρ̂

]
− χ

2

[
Â,

[
Â, ρ̂

]]
−

− λ2

8χh̄2

[
B̂,

[
B̂, ρ̂

]]
− iλ

2h̄

[
B̂,

[
Â, ρ̂

]
+

]
, (3)

where [ , ]+ - anticommutator. This equation de-
scribes the dissipative system, and λ is proportional
to the friction coefficient.

Consequently, the same equation for the density
matrix corresponds to the various forms of stochas-
tic equations for the state vector. In addition, one
of the forms of such equations corresponds to the
Schrodinger equation with a complex Hamiltonian.
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2.2. Dissipative Schrodinger equations

The Schrodinger equation, including the dissipative
terms in the Hamiltonian, may be used for the
descrip-tion of open quantum systems. In references
[7, 8], the attenuation factor was introduced to de-
scribe the dissipation at the microscopic level, and
Hamiltonian was represented as follows:

Ĥ(t) = − h̄2

2m

∂2

∂x2
e−γt + V (t)eγt. (4)

In reference [6], an average value of the momentum
was received on the basis of the Heisenberg-Langevin
equations for the momentum operator p̂ and coordi-
nate x̂, thus the Schrodinger equation takes the fol-
lowing form:

ih̄
∂ψ

∂t
=

(
− h̄2

2m

∂2

∂x2
+ U + UR + UL

)
ψ, (5)

where U - interaction potential, UR(x, t) - potential
for accidental exposure, depending only on x, UL -
dissipative potential which is equal to the following:

UL =
h̄f

2im
ln

(
ψ

ψ∗

)
+ W (t), (6)

where W (t) = − (h̄f/2im)
∫

ψ∗ ln (ψ/ψ∗) ψdx, ψ∗ -
complex conjugate of the wave function, f - friction
coefficient, m - mass of a particle. Equation (6), ex-
cluding accidental exposure, satisfies the continuity
equation for the probability density ψ∗ψ. Hamil-
tonian of the system can be written as Ĥ0 + γŴ ,
where Ŵ dissipative term.

A series of dissipative terms [8], in which the
ground state of the Schrodinger equation without dis-
sipative potential is reserved and the law of energy
dissipation is similar to the classic dE

/
dt = −fẋ2 was

proposed to be used for nonstationary Schrodinger
equation with nonlinear (non-Hermitian) Hamil-
tonian. The linear (Hermitian) Hamiltonians [8]
should also be extracted.

Papers [7, 8] which offer the challenge for the
study of irreversible processes in quantum theory and
papers [8, 11] where different approaches of quantum
dissipative theory to the nuclear research are repre-
sented should be allocated among the papers dedi-
cated to the problem of quantum equations of motion
with dissipa-tive terms.

3. PROCESSES IN
FUSION-QUASIFISSION OF HEAVY

NUCLEI

Two approaches - the model of nucleons collectivi-
zation (MNC) and the dinuclear system concept
(DNSC) - should be distinguished to describe the
fusion-quasifission of heavy nuclei.

3.1. Fusion models

The nucleon structure of colliding nuclei is consid-
ered in MNC [9]. The nucleons are moving from one

core to another after the dissipation of kinetic energy
due to the overlap of nuclear surfaces. This leads to
a sequential process of nucleons collectivization and,
eventually, to fusion.

DNSC [10] can be interpreted as follows:
1. The dynamics of the capture process is consid-
ered from the moment of contact to the minimum
of the interaction potential, where ”excited” DNS is
formed after dissipation of the kinetic energy. DNS
fragments retain its individuality; it is reflected by
considering the binding energies of the nuclei in the
potential energy of DNS.
2. The compound nucleus is formed due to transi-
tions of nucleons from one nucleus to another one in
the direction of DNS minimal potential energy. This
raises the competition between the channels of com-
plete fusion and quasifission (DNS decay). Internal
fusion barrier that reduces the fusion cross section
was found.
3. Emission of nucleons and γ-quantum which re-
moves the excitation takes place after the formation
of the compound nucleus.

As it follows from DNSC that the fusion process
may be conventionally divided into three parts, then
the evaporation residue cross section, leading to the
for-mation of SHE, is written as [10]:

σER(Ecm) =
X
L=0

σc(Ecm, L) · PC(Ecm, L) ·Ws(Ecm, L) ,

(7)

where σc - partial capture cross section of the
nucleus-target of the incident nucleus (first stage);
PC - probability of the compound nucleus formation
after capture (second stage); Ws - survival of the com-
pound nucleus (third stage).

On the basis of DNSC, the paper [11] proposes a
quantum-mechanical description of the initial stage
of fusion (capture), in which the capture is presented
as a process for settlement of a part of the initial
Gaussian packet in a ”pocket” of the nucleus-nucleus
potential. Thus, the process is described as an open
quantum system by using the equation for the re-
duced density matrix ρ(t, R, z) of Lindblad type [4]:

d
dtρ(t, R, z) =

[
i h̄
µ

∂2

∂R∂z − iz ∂V
∂R − i z3

24
∂3V
∂R3 − λpz

∂
∂z

−Dpp
z2

h̄2 − i
h̄

(
zDRP

∂
∂R + ∂

∂RzDRP

)]
ρ(t, R, z) ,

(8)
where DPP , DRP and λp - momentum diffusion co-
efficient, mixed diffusion coefficient and friction co-
efficient, respectively. The probability of capture is
determined as follows:

P (t = τ, Ecm, L, ΩP , ΩT ) =

0R
−∞

ρ(t = τ, R)dR

∞R
0

ρ(t = 0, R)dR

. (9)

The total capture probability Pcap was obtained by
averaging over all possible orientations ΩP and ΩT of
deformed interacting nuclei. The statistical approach
is generally used in the calculation of probabilities of
compound nucleus formation from DNS and survival
rates.
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3.2. Transitions of nucleons

Nucleon exchange between interacting nuclei has a
determining influence on the probability of fusion.
Nucleus-nucleus potential, binding energy, potential
energy of DNS, barriers of quasifission and fusion are
changed within successive transitions of nucleons.

Sequential method of coupled channels [12] has
been successfully used to describe the collective ex-
citations in the near-barrier fusion processes. The
semi-empirical model [13] has shown that the inter-
mediate neutron transfer with Q > 0 leads to a con-
siderable increase of sub-barrier fusion. The most
successful description of neutron transfers is proposed
in paper [14], where the semi-classical model was
used with independent description of the neutron
wave function evolution by means of nonstationary
S Schrodinger equation:

ih̄
∂ψ

∂t
= − h̄2

2m3
∆r3ψ + Vn(r3; r1(t), r2(t))ψ(r3, t),

(10)
where ψ(r3, t) - wave function of an external neu-
tron in the field of heavy nuclei whose centers are
moving along trajectories r1(t) and r2(t). Dissipa-
tive forces are determined as follows: F1 = −γṙ1,
F2 = −γṙ2, where γ - phenomenological friction co-
efficient. Vn - interaction potential between the neu-
tron and nuclei was selected as the Woods-Saxon
potential. The nonstationary Schrodinger equation
with the Hamiltoni-an was used in the quantum
model with three-dimensional movement of the neu-
tron as follows:

H = − h̄2

2µ
∆r − h̄2

2M

∂2

∂R2
+ V12(R) + Vn(r3; r1, r2),

(11)
where r1 = Rnη1 − rη2, r2 = −Rn(1 − η1) − rη2, n
- unit vector in the direction of the internuclear axis.
The calculations in [14] have shown that an increase
of barrier penetration was observed for certain com-
binations of nuclei; this is due to the transition of
the neutron from upper-energy state to the underly-
ing free one and to lowering the energy of originally
occupied states in the near-barrier region.

4. RATIONALE FOR DYNAMICAL
DESCRIPTION OF NUCLEAR FUSION

In the description of the processes occurring in
fusion of heavy nuclei it is necessary to consider
the following factors which have a major influ-
ence on the formation of SHE: transitions of nu-
cleons (protons and neutrons) in the formation of
compound nucleus, emission of nucleons from DNS
fragments, as well as characteristics of the nucleus-
nucleus potential and potential energy at the dynam-
ics of nuclei passage along the interaction potential.
It means that the process of heavy nuclei fusion-
quasifission should be considered in view of the dy-
namic concept of DNS (DC DNS). In paper [15]
the dynamics of the transitions of nucleons in DNS

fragments and its influence on the nucleus-nucleus
potential and the potential energy at [±n,±p],
[±n,±p± (n + p)] and [±n,±p± (n + p)± α] al-
lowed transitions were analyzed. Fig. 1 shows the
dependence of the number of nucleons in the heavy
DNS fragment on the number of protons in the
same fragment, the initial nucleus - 238

92 U for dif-
ferent Ni isotopes. The dynamics of transitions were
obtained in the minimum nucleus-nucleus potential.

Fig.1. Dependence of the number of nucleons in the
heavy DNS fragment on the number of protons in the
same fragment at [±n,±p± (n + p)] allowed transi-
tion for the reaction: 238

92 U + A1
28 Ni

Emission of nucleons from DNS and the nucleon
transitions change the isotopic composition of the
fragments, and therefore, the potential energy of the
system and the nucleus-nucleus potential.

In the description of multiparticle theory of de-
cay, a neutron and a proton may be considered as
existing clusters. As for α - and heavy cluster decay,
where such conditions do not exist, there is a problem
in the for-mation of such clusters from nucleons, i.e.
the calculation of probabilities of its formation. The
calculations in [16] show a low probability of forma-
tion of such systems. Therefore, it is appropriate to
consider only the neutron and proton emission from
DNS fragments. Emission process from DNS frag-
ments in quasi-stationary state may be described by
multiparticle Schrodinger equation ( J – spin; M –
projection of the spin on the axis; σ - other quantum
numbers, which include charge Zi and atomic weight
Ai of DNS fragment) [16]:

HAiψ
JM
σ (ξ) = E

J

σψJM
σ (ξ), (12)

where ΨJM
σ - wave function of the fragment isolated

state; HAi - many-particle Hamiltonian of the one of
DNS fragments with Ai number of nucleons. More-
over, the number of nucleons is determined by the dy-
namics of transition, and the complex energy may be
represented as ĒJ

σ = EJ
σ −

(
iΓJ

σ

/
2
)
, EJ

σ = Bi - bind-
ing energy of the fragment Ai, ΓJ

σ - total width, which
is determined by the sum of partial widths of frag-
ment decay (emissions) in all open channels. This pa-

170



per considers only neutron and proton emissions, thus
the DNS fragment may pass to either (Ai− 1, Zi) or
(Ai− 1, Zi− 1) states. Moreover, proton emission is
typical for neutron-deficient nuclei and neutron one -
for proton-deficient nuclei. The energy of the relative
motion, the emission energy, Qc.em of child nucleus
and nucleon is determined as follows:

Qc.em = B(Ai)−B(Ai − 1) ≈ µemυ2
c.em

2
, (13)

where B(Ai) - the binding energy of one of the DNS
fragments, from which the emission takes place (by
hypothesis, it should be negative), B(Ai − 1) - bind-
ing energy of the same fragment after emission, µem

- reduced mass, υc.em - speed of relative movement.
All known half-lives of nuclei are usually equal to
> 10−6 s which is significantly higher than the life-
time of DNS (≈ 10−20 s), thus the emission may be
considered to be instantaneous. Moreover, a higher
value of the negative binding energy of fragment is
observed with increasing asymmetry in the DNS frag-
ments, which is formed by transitions of nucleons. As
several dozens of nucleon transitions take place dur-
ing the DNS lifetime, the process of nucleon emission
with negative binding energy of the fragment may be
considered as an adiabatic one in comparison with
the process of single-particle nucleon transition.

Calculation of nucleon transitions were made
for A1Fe+238U , A1Ni+238U , A1Zn+238U reactions
with provision for the emission of nucleons from
DNS fragments. Fig. 2 shows the dependence of
changes in binding energy of light DNS fragment
for A1Ni + 238U reaction at [±n, ±p ± (n + p)] al-
lowed transitions. The binding energy of the heavy
DNS fragment at transitions and emissions is reduced
by not more than 15 percents of the initial value.

Fig.2. Dependence of the binding energy of light
DNS fragment

It follows from the analysis of the influence of the
number of neutrons in the heavy DNS fragment on
the dynamics of transitions of nucleons with provi-
sion for the emission that light nucleus should be
neutron-deficient one in order to extend the chain
of transmission pairs (n + p) and to decrease the
emission of neutrons, as well as that heavy nuclei

should be neutron-rich one for the greater content of
neutrons in the compound nucleus.

For A1Fe+238U reaction the full range of tran-
sitions may be divided into five sections where the
emission of neutrons takes place. Moreover, the more
original content of neutrons is in the light fragment,
the greater number of neutrons is emitted from the
fragment. Table shows the emission energy Qc.em

for each neutron and the number of neutrons emit-
ted in each section. The last column shows the to-
tal number of neutrons emitted for each Fe isotope
and the sum of emission energies of all neutrons.

Emission parameters for the reactions AFe + 238U

1 2 3 4 5 Sum.n
AFe Qc.emi , QC ,

MeV MeV
11.2 6.84 12.85 4.9 6.48 26/
6.4 12.2 5.78 13.57 18.57

11.15 6.51 12.81 4.01 5.32
58Fe 6.1 12.14 5.13 13.7 19.49 288.64

11 6.11 12.69 46.05
12.04
5.6

0 12.14 12.85 4.9 6.48 18/
6.11 5.78 13.57 18.57

57Fe 12.04 12.81 4.01 5.32 217.24
5.6 5.13 13.7 19.46

12.69 46.05
0 12.2 12.85 4.9 6.48 20/

6.51 5.78 13.57 18.57
12.14 12.81 4.01 5.32 235.95

56Fe 6.11 5.13 13.7 19.49
12.04 12.69 46.05
5.6

0 12.04 12.85 4.9 6.48 16/
5.6 5.78 13.57 18.57

54Fe 12.81 4.01 5.32 189.99
5.13 13.7 19.49
12.69 46.05

0 0 0 13.57 6.48 8/
4.01 18.57

53Fe 13.7 5.32 127.09
19.49
46.05

52Fe 0 0 0 0 0 0
51Fe 0 0 0 0 0 0
50Fe Three protons are emitted at the end 21.77

of transition

For A1Ni+238U and A1Zn+238U reactions the
emission ranges may be divided into six or seven
sections, respectively. Picture of emission from
light fragment is fully consistent with A1Fe+238U
reaction with the repetition of the energy spec-
trum values. It follows that the light DNS frag-
ment is responsible for the emission and the final
results after transitions are the same according to
the number of neutrons and protons in the light
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fragments regardless of the source channel. Fig. 3
shows the dependence of number of neutrons emit-
ted from the mass number of a light nucleus, from
which it follows that the number of emitted neu-
trons increases with increasing mass number of light
fragment for [±n,±p] allowed transitions, and for
[±n,±p± (n + p)]. Neutron emission is not observed
for neutron-deficient DNS fragments in the above-
mentioned reactions, thus it leads to a higher content
of neutrons in the compound nucleus. Proton emis-
sion (3p) from light DNS fragment at the final stage is
occurred in 50Fe+238U , 53Ni+238U and 57Zn+238U
reactions at [±n,±p± (n + p)] allowed transitions.
That is, the proton emission promotes formation
of a compound nucleus without the fusion barrier.

Fig.3. Dependence of the number of emitted
neutrons on the mass number of light DNS

fragments. Reactions are shown in the figure

The depth of quasifission barrier (Bqf ) is increased
by 0.8...0.9 MeV /n (proton) within the transition
of protons from light DNS fragment to heavy one.
Neutron emission from light fragments reduces the
quasifission barrier by 0.6...0.7MeV /n (neutron).

Fig.4. Dependence of the quasifission barrier,
within transition of nucleons, on mass number in a

light fragment

Fig. 4 shows that for reaction 3, where (n + p) transi-
tions occur, the growth of quasifission barrier up to

A1 = 40 is slower than in case of transfer of protons
onlyA1 > 40. Saw-tooth behavior of curves is char-
acterized by the emission of neutrons from the light
fragment. The quasifission barrier decreases with
neutron-deficient light fragments [16], when neutrons
only from light nuclei are transfer to heavy one. This
leads to the disappearance of quasifission barrier and
the probability of fusion becomes practically zero. In
such a case quasifission barriers Bqf are reduced by
0.1...0.3MeV/n (neutron). In transmissions of nu-
cleons there is a shift of minimum value of potential
energy in the opposite direction of nuclei DNS touch
configuration, this is correct at both neutron and
proton transitions. Maximum (Coulomb barrier) for
proton transitions is shifted to touch configuration
of fragments overrunning the contact, and its value
decreases for neutron transitions.

5. DESCRIPTION OF DC DNS AS OPEN
QUANTUM SYSTEMS

On the basis of the above results it is possible to
offer a dynamic description of the fusion-quasifission
of heavy nuclei with provision for the transitions and
emission of nucleons in motion of DNS along the
nucleus-nucleus potential.

5.1. The dynamic process of DNS movement can
be described by classical Newtonian equations [17]:




µ(t)d
•
R(t)
dt + kR

(
∂Vn(R)

∂R

)2 •
R(t) = −∂Vnn(R,L)

∂R

µ(t)dL(t)
dt + kθ

(
∂Vn(R)

∂R

)2

L(t) = 0

,

(14)
where kR = 1× 10−23 s/MeV and
kθ = 0.01× 10−23 s/MeV are radial and tangential
friction coefficients respectively, R – distance be-
tween the centers of nuclei, µ – reduced mass, L –
system angular moment, Vnn = VCoul + Vn + Vrot –
nucleus-nuclear potential, VCoul – Coulomb poten-
tial, Vn – nuclear potential, Vrot – centrifugal po-
tential. This system was numerically solved on the
range of R from the contact point of interacting nu-
clei Rcont = 1.28(A1/3

1 + A
1/3
2 ). The excitation en-

ergy E∗
ki(R, Ai, Zi) – the main value, which is nec-

essary to determine the energy levels, is defined in
solving this system, where i=1, 2 – number of the
nucleus, k – step in time or R.

5.2. Nonstationary Schrodinger equation (see
Section 1), excluding fluctuations, with dissipative
Hamiltonians may be used in order to calculate the
probability of SHE formation:

ih̄
∂ψ

∂t
=

(
− h̄2

2µ(t)
∂2

∂R2
e−γt + Ueγt

)
ψ, (15)

or

ih̄
∂ψ

∂t
=

(
− h̄2

2µ(t)
∂2

∂R2
+ U + UL

)
ψ. (16)

For (16): UL = h̄γ
2iµ(t) ln

(
ψ
ψ∗

)
+ W (t), W (t) =

− (h̄γ/2iµ(t))
∫

ψ∗ ln (ψ/ψ∗) ψdR, which is more gen-

172



eral. The interaction potential U depends on R - dis-
tance between the centers of nuclei, A1(t), A2(t) and
Z1(t), Z2(t), which are determined by the transitions
and emission of nucleons, as well as deformation and
relative orientation of nuclei.

5.3. The allowed transitions for nucleons of in-
teracting nuclei are determined by the stationary
Schrodinger equations. The potential energy for a
neutron DNS sub-system is chosen as the sum of the
Woods-Saxon potential, and for the proton - the sum
of the optical potentials is added with the sum of
Coulomb potentials of DNS fragments. The transi-
tion is considered to be allowed if the overall energy
level is formed with provision for the excitation en-
ergy E∗

ki(R, Ai, Zi) of each subsystem and the relative
distance between the centers of nuclei R. The bar-
rier of transition decreases with decreasing R, and
increase of DNS energy levels is observed with in-
creasing E∗

ki(R,Ai, Zi). It should be expected that
the nuclei approach and the increase of excitation en-
ergy will lead first to allowed neutron transitions, and
then to the (n + p) transitions.

If the sum of transition time is less than the
time of DNS movement along the nucleus-nucleus
potential, then R may be written as follows: R =(
1.28A

1/3
1 + 1.28A

1/3
2

)
− 2 · 1.28 · (∆A1/3

)
. This ex-

pression may be used, when the overlap of the nu-
clei volumes is not large, and within the fusion the
overlap is less than 7 persents. Thus the following
nonstationary Schrodinger equation may be applied
to calculate the transitions of nucleons:

ih̄
∂ψn,p

∂t
=

(
h̄2

2mn,p
· 1.76A5/3 ∂2

∂A2
+ Vn,p

)
ψn,p,

(17)
where ψn,p – probability of a neutron or a proton
transition, mn,p – mass of a neutron or a proton,
Vn,p – potential of neutron or proton interaction
with DNS, A5/3 ∂2

∂A2 = n5/3 ∂2

∂n2 – for allowed neu-
tron transitions or A5/3 ∂2

∂A2 = p5/3 ∂2

∂p2 – for proton
transitions. If the transformation time of the nucle-
ons is comparable with the time of DNS movement
along the nucleus-nucleus potential, then the follow-
ing Schrodinger equations (15) or (16) with a dissi-
pative Hamiltonian should be applied:

ih̄
∂ψn,p

∂t =
(
− h̄2

2mn,p

∂2

∂R2 e−γn,pt + Vn,pe
γn,pt

)
ψn,p ,

or

ih̄
∂ψn,p

∂t =
(
− h̄2

2mn,p

∂2

∂R2 + Vn,p + Un,p(L)

)
ψn,p .

(18)
5.4. The tunneling of nucleons from one nucleus

to another should be considered in addition to its
transitions. Tunneling is a universal phenomenon in
the quantum mechanics and lies in the fact that a
particle intersects the barrier, the height of which is
greater than the energy of such particle regardless of
the laws of classical mechanics. Such quantum sys-
tem with two potential wells and the barrier between
them is formed due to the interaction of heavy nuclei.
The wave function at the initial time can be given as

a Gaussian packet with the initial velocity, which de-
pends on the excitation energy, in the following form:

ψ0(R) = A exp
[
−α(R−R0)

2
/2 + i (R−R0)V0

]
,

(19)
where R0 – coordinate of the center of package, α –
constant. V0(E∗) value characterizes the initial ve-
locity of the package center; A – dimensionless nor-
malization constant. The potential energy is given as
in 5.3. The nonstationary Schrodinger equation or
equation (16) with a dissipative Hamiltonian should
be applied in order to find the probability density,
which depends on R coordinate. The detailed conclu-
sions should be obtained from the calculation of the
average values of coordinate 〈R〉 and velocity 〈V 〉,
as functions of time, as well as within the study of
the Fourier spectra of these dynamic variables. The
coordinate dependence of the probability density at
certain times should be given for the considered mode
of motion.

Emission of neutrons and protons from DNS
frag-ments may be described by the stationary
Schrodinger equations for neutron and proton sub-
systems (12), where the energy levels for neutron sub-
systems become greater than zero, and for proton -
exceeds the Coulomb potential barrier.

6. CONCLUSIONS

The quantum-dynamic approach to the descrip-
tion of fusion-quasifission processes is proposed with
reference to the analysis of the inelastic interaction
of heavy nuclei. This description is as follows: the
processes of neutrons and protons transitions, the
emission of nucleons from DNS fragments and tun-
neling of protons and neutrons through the potential
barrier formed by the potentials of subsystems should
be considered in DNS movement along the nucleus-
nucleus potential with provision for the deformation
and the relative orienta-tion of nuclei.
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ДИНАМИЧЕСКОЕ ОПИСАНИЕ СЛИЯНИЯ-КВАЗИДЕЛЕНИЯ ТЯЖЕЛЫХ ЯДЕР
КАК ОТКРЫТОЙ КВАНТОВОЙ СИСТЕМЫ

К.В. Павлий

Проведен анализ описания открытых квантовых диссипативных систем на основе уравнений для мат-
рицы плотности и нестационарного уравнения Шредингера с линейными и нелинейными (неэрмитовы-
ми) гамильтонианами. Рассмотрены вопросы захвата, первой стадии реакции слияния, и передач нук-
лонов взаимодействующих ядер. На основании проведенных расчетов по эмиссии нуклонов из двойной
ядерной системы (ДЯС) и передач нуклонов при разрешенных [±n,±p] и [±n,±p± (n + p)] переходах,
предложено квантово-динамическое описание слияния-квазиделения ядер, как открытой квантовой си-
стемы.

ДИНАМIЧНИЙ ОПИС ЗЛИТТЯ-КВАЗIДIЛЕННЯ ВАЖКИХ ЯДЕР ЯК ВIДКРИТОЇ
КВАНТОВОЇ СИСТЕМИ

К.В. Павлiй

Проведено аналiз опису вiдкритих квантових дисипативних систем на основi рiвнянь для матрицi гу-
стини i нестацiонарного рiвняння Шредiнгера з лiнiйними i нелiнiйними (неермiтовими) гамiльтонiана-
ми. Розглянуто питання захоплення, першої стадiї реакцiї злиття, та передач нуклонiв взаємодiючих
ядер. На пiдставi проведених розрахункiв p емiсiї нуклонiв з подвiйної ядерної системи (ПЯС) та
передач нуклонiв при дозволених [±n,±p] та [±n,±p± (n + p)] переходах, запропановано квантово-
динамiчний опис злиття-квазiдiлення ядер, як вiдкритої квантової системи.
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