О НЕКОТОРЫХ ХАРАКТЕРИСТИКАХ КРИОТРОННОГО ГЕНЕРАТОРА РЕЛАКСАЦИОННЫХ КОЛЕБАНИЙ С УПРАВЛЯЕМОЙ ЧАСТОТОЙ

В.А.Рахубовский

Национальный научный центр "Харьковский физико-технический институт", г.Харьков, 61108, ул. Академическая, 1, Украина, тел. 40-44-48

Проведены исследования криотронного генератора релаксационных колебаний с управляемой частотой, построенного из проволочных двухобмоточных криотронов. Вентили криотронов изготовлены из сплава Sn+1%Sb. Представлены сравнительные характеристики генераторов, построенных из обычных и сплавных двухобмоточных криотронов. Показано, что использование сплавных двухобмоточных криотронов приводит к улучшению (на порядок) основных характеристик генератора.

ВВЕДЕНИЕ

Криотронный генератор релаксационных колебаний (КГРК) является преобразователем постоянного тока питания в переменный ток, частота которого зависит от величины тока питания, температуры вентилей криотронов и внешнего магнитного поля. Как показано в [1], КГРК может быть использован в технике физического эксперимента при гелиевых температурах в качестве преобразователя малых постоянных напряжений в переменные термометра, амперметра, индикатора слабых магнитных полей, указателя уровня жидкого гелия. Особый интерес представляет КГРК с управляемой частотой, используемый в качестве амперметра для измерения тока в сверхпроводящих цепях. Он представляет собой устройство, в котором посредством тока в дополнительных сверхпроводящих обмотках криотронов возможно управлять частотой генератора независимо от тока питания. В работе [2] был исследован КГРК, построенный из проволочных двухобмоточных свинцово-оловянных криотронов¹. С целью улучшения эксплуатационных характеристик КГРК нами был построен и исследован в работе генератор из проволочных двухобмоточных криотронов, вентили которых изготовлены из сплава $Sn + 1\%Sb^2$. Добавление к олову 1 мас.% Sb практически не изменяет вентиля, но значительно увеличивает сопротивление вентиля криотрона в резистивном состоянии.

Так, если сопротивление вентиля обычного криотрона $\sim 10^{-4}\,{\rm Om},$ то сопротивление вентиля сплавного криотрона $1.9\cdot 10^{-3}\,{\rm Om}.$ Это приводит к

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Были проведены экспериментальные исследования работы 3-х каскадного КГРК с управляемой частотой, построенного из сплавных криотронов. Исследования проводились в жидком гелии при Т=3,62 К. Для стабилизации частоты генератор помещался в защитный экран [4]. Результаты исследований показаны на рис. 1-3.

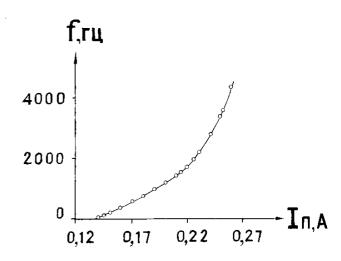


Рис. 1. Частотно-токовая характеристика КГРК $npu\ T$ = 3,62K , Iy =0

уменьшению в 20 раз постоянной времени криотрона [3] и соответственно к повышению частоты генератора.

¹ Такие криотроны будем называть в дальнейшем обычными криотронами.

² Такие криотроны будем называть сплавными криотронами.

Характеристики 3-х каскадных КГРК, построенных из обычных и сплавных криотронов приведены в таблице

			Таблица
1		2	3
Dч	Гц	30-150	50-4000
D_I	A	0,22-0,42	0,14-0,27
D_y	A	± 0,05	± 0,03
S_I	Гц/А	6,4 ·10 ²	2,7 ·104
S_y	Гц/А	1 ·10 ³	3,4·10 ⁴
S_T	Гц/К	2 ·10³	8 ·104
ΔF	Гц	0,1	0,5

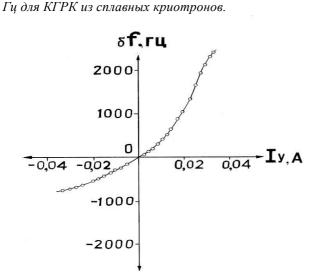


Рис. 2. Изменение частоты $\delta F = F - Fo$ КГРК от величины тока управления при T = 3,62K, $I_n = 0,21A, Fo = 1450 \ \Gamma u$

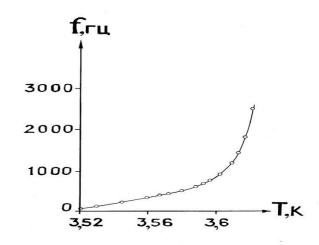


Рис. 3. Частотно-температурная характеристика $K\Gamma PK \ npu \ In = 0,235 \ A, \ Iy = 0$

Как видно из таблицы, КГРК из сплавных криотронов имеет больший (в 20 раз) частотный диапазон, большую (в 30 раз) чувствительность к току управления, большие (в 40 раз) чувствительности к току питания и температуре по сравнению с КГРК из обычных криотронов. Так как характеристики $F = f(I_n)_{T,I_y}, F = f(T)_{In,I_y}$ и $F = f(I_y)_{T,I_n}$ являются нелинейными в значительной области параметров In,I_y,T , то такой КГРК наиболее удобно использовать в качестве сверхпроводящего нуль-индикатора [6], измерителя малых разностей температур, индикатора установления рабочей температуры жидкого гелия в криостате.

выводы

КГРК с управляемой частотой из сплавных криотронов является простым и удобным в эксплуатации устройством, позволяющим измерять токи $\sim 10^{-4} \rm A$ в сверхпроводящих цепях с погрешностью $\sim 2 \cdot 10^{-5} \rm A$ и разности температур $\sim 10^{-4} \rm K$ с погрешностью $\sim 7 \cdot 10^{-6} \rm K$. Он может быть использован как многофункциональный прибор в технике физического эксперимента при гелиевых температурах.

ЛИТЕРАТУРА

- 1. Я.С.Кан, В.А.Рахубовский. Некоторые применения криотронных генераторов релаксационных колебаний для исследований при низких температурах//Электронная техника. Серия 15. Криогенная электроника, 1971, вып.1(3), с. 72-78.
- 2. Я.С.Кан, В.А.Рахубовский. Криотронный генератор релаксационных колебаний с управляемой частотой//ПТЭ. 1966, № 1, с. 221-222.

- Я.С.Кан, В.А.Рахубовский. Использование проволочных криотронов в вычислительных и измерительных устройствах: Препринт ХФТИ 74-29, Харьков:ХФТИ, 1974, с. 4.
- Я.С.Кан, В.А.Рахубовский. О частотной нестабильности криотронного генератора релаксационных колебаний // Измерительная техни*κа.* 1967, № 8, c. 94-95.
- А.В.Фремке. Электрические измерения. М.: «Госэнергоиздат», 1963, с. 23-26.
- Я.С.Кан, В.А.Фролов. Исследования структуры промежуточного состояния, создаваемого током в монокристаллических и поликристаллических сверхпроводниках. 1. Измерение на олове вблизи Т_к //ФНТ. 1978, т. 4, № 1, с. 17-

ПРО ДЕЯКІ ХАРАКТЕРИСТИКИ КРІОТРОННОГО ГЕНЕРАТОРА РЕЛАКСАЦІЙНИХ КОЛИВАНЬ З КЕРОВАНОЮ ЧАСТОТОЮ

В.А.Рахубовский

Національний науковий центр "Харківський фізико-технічний інститут" вул. Академічна, 1, Харків, 61108, Україна, 40-44-48

Проведено дослідження кріотронного генератора релаксаційних коливань з керованою частотою, побудованого з дротових двухобмоточних кріотронів. Вентилі кріотронів виготовлені зі сплаву Sn + 1%Sb. Представлені порівняльні характеристики генераторів, побудованих зі звичайних і сплавних двухобмоточних кріотронів. Показано, що використання сплавних двухобмоточних кріотронів приводить до поліпшення (на порядок) основних характеристик генератора.

ON SOME CHARACTERISTICS OF THE FREQUENCY-CONTROLLED CRYOTRON GENERATOR OF RELAXATION OSCILLATIONS

V.A.Rakhubovskii

National Science Center "Kharkov Institute of Physics and Technology" 1 Akademicheskaya St, Kharkov 61108, Ukraine

The frequency-controlled cryotron generator of relaxation oscillations fabricated on the basis of the wire doublewound cryotrons has been investigated. The cryotron gates were made of Sn + 1%Sb alloy. The comparison characteristics of the generators fabricated on the basis of the ordinary and alloyed double-wound cryotrons have been shown. It has been shown that the use of the alloyed double-wound cryotrons leads to the improvement (by one order of magnitude) of the main characteristics of a generator.