КИНЕТИКА ПИРОЛИЗА ЛЕТУЧИХ СОЕДИНЕНИЙ МЕТАЛЛОВ ПРИ НАНЕСЕНИИ ПОКРЫТИЙ В ВАКУУМЕ

Ю.И. Поляков, Г.Н. Картмазов, Ю.В. Лукирский, С.Г. Руденький, Л.А. Ферлий Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина E-mail: kartmazov@kipt.kharkov.ua, men. +38(057)335-67-82

С позиций равновесной термодинамики оценены некоторые закономерности процессов получения покрытий путем осаждения металлов из их летучих соединений в вакууме. Расчетные значения энергии активации химических реакций находятся в согласии с известными из экспериментов.

введение

Применение летучих галогенидов тугоплавких металлов (NbCl₅, TaCl₅, MoCl₅, WCl₆ и др.) в технологическом процессе нанесения ионно-пиролитических покрытий вызывает интерес, прежде всего, с точки зрения химического активирования конденсирующейся плазмы с целью более эффективного воздействия на поверхность изделия перед нанесением покрытия для улучшения адгезии, а также воздействия на процесс структурообразования посредством вовлечения в него химических транспортных реакций, массоперенос которых, в свою очередь, интенсифицируется наличием ионной бомбардировки.

Существенно, что при этом появляется дополнительная возможность контролируемого легирования покрытий металлом, входящим в состав летучего галогенида. Применение галогенидов для целенаправленного влияния на процесс конденсации покрытий нуждается в данных, касающихся особенностей пиролиза (термического разложения) указанных соединений в вакууме.

Отметим, что пиролитическое покрытие из карбида ниобия NbC, полученное из NbCl₅ на поверхности твердого сплава ВК6, обнаружило высокую кавитационную стойкость, что в последующем предопределило направление поиска оптимальной технологии и привело к созданию кавитационно-эрозионно-стойкого покрытия системы Nb-C с аномально высокой стойкостью [1]. Температура получения пиролитического покрытия NbC на твердом сплаве ВК6 составляла 1400...1500 К, что неприемлемо для нанесения покрытий на материалы лопаток паровых турбин (сталь 15Х11МФ, 20Х13 и др.), поэтому основные усилия были сосредоточены на поиске путей снижения температуры осаждения покрытий металлуглеродного типа и создания микроструктуры в них, обеспечивающей высокое сопротивление эрозионному износу.

Целью настоящей работы является оценка кинетических характеристик процессов осаждения покрытий из газовой фазы (CVD) летучих соединений металлов (галогенидов, карбонилов) с точки зрения возможности их практического применения в технологии ионно-пиролитического получения комбинированных покрытий, сочетающей методы CVD и физического осаждения из газовой фазы (PVD) и реализуемой на модернизированном оборудовании типа АИР.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Скорость образования покрытий, наносимых из газовой фазы с участием химических реакций, как правило, лимитирована доставкой реагентов к поверхности осаждения и отводом продуктов реакции от нее. Для гетерогенных обратимых реакций в интервале 1000...2000 К характерно наличие квазиравновесного соотношения концентраций участвующих веществ, что позволяет на основании термодинамического анализа прогнозировать процесс осаждения, в частности, оценить влияние парциального и суммарного давлений на выход реакции, температуру начала последней; выделить из совокупности возможных в химической системе процессов реакции, вносящие наибольший вклад в наблюдаемую скорость осаждения.

При реализации процессов, протекающих с увеличением числа частиц в газовой фазе (например, термическая диссоциация соединений), температура начала осаждения может быть снижена путем нанесения покрытий в вакууме. Эффективность применения пониженных давлений обусловлена сдвигом равновесия реакции в сторону образования большего числа молей газообразных реагентов, т.е. увеличением равновесной степени превращения исходных реагентов при прочих равных условиях.

В работе [2] показано, что вблизи равновесия скорость гетерогенной обратимой реакции типа $A \leftrightarrow B$ (без увеличения числа молей) пропорциональна изменению свободной энергии.

Рассмотрим более общий случай процесса, когда стехиометрическое уравнение гетерогенной химической реакции имеет вид:

$$\nu_{1}A_{1} + \nu_{2}A_{2} + \dots + \nu_{k}A_{k} + \nu_{k+1}A_{k+1} + \dots = 0,$$

$$\left(\sum_{i=1}^{n} \nu_{i}A_{i} = 0\right).$$
 (1)

Здесь $A_1, A_2, ..., A_k$ – химические символы исходящих веществ; $A_{k+1}, A_{k+2}, ..., A_n$ – химические символы продуктов реакции; v_i – стехиометрические коэффициенты, положительные для исходных веществ и отрицательные для продуктов реакции, т.е.

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2011. №2.

Серия: Физика радиационных повреждений и радиационное материаловедение (97), с. 163-167.

*V*_{*i*} ≥0, если *i*≤*k*,

$V_i < 0$, если i > k.

При протекании реакции только на поверхности (что характерно для вакуумных процессов) потоки веществ в направлении, перпендикулярном ей, связаны условиями стехиометрии потоков:

$$\frac{j_1}{v_1} = \frac{j_2}{v_2} = \dots = \frac{j_i}{v_i}.$$
 (2)

Поток вещества считается положительным, если он направлен к поверхности и отрицательным, если направлен от поверхности.

При квазистационарном протекании процесса выполняется условие диффузионной стехиометрии потоков:

$$\frac{\beta_1(C_1 - C_1')}{v_1} = \frac{\beta_2(C_2 - C_2')}{v_2} = \dots = \frac{\beta_k(C_k - C_k')}{v_k} = \dots$$
(3)

Здесь C_i и C'_i – концентрации *i*-реагента соответственно в объеме и на поверхности, а β_i - его коэффициент массоотдачи.

Скорость реакции равна скорости диффузии:

$$j = \frac{\beta_i}{\nu_i} (C_i - C_i')$$
 (4)

Если и прямая, и обратная реакции находятся в диффузионной области, то у поверхности должно установиться равновесие:

$$\prod_{i} (C_{i}')^{-v_{i}} = K_{c}.$$
 (5)

Исключая из системы уравнений неизвестные концентрации C_i' на поверхности и вводя максимальную работу реакции U при изотермическом процессе, равную убыли свободной энергии

$$U = RT \ln(K_c \prod C_i^{\nu_i}), \qquad (6)$$

где R – универсальная газовая постоянная, получаем

$$U = -RT \sum v_i \ln\left(1 - \frac{v_i j}{\beta_i C_i}\right).$$
(7)

При U>0 реакция идет самопроизвольно с образованием веществ $A_{i>k}$. С практической точки зрения интересен случай, когда исходные реагенты

 $A_{i \le k}$ подают в избытке, а продукты реакции интенсивно удаляют, т.е.

$$\beta_i C_i >> v_i j$$
 при *i*≤*k*,
 $\beta_i C_i << v_i j$ при *i*>*k*. (8)

При выполнении этих условий скорость реакции, полученная из (7), равна

$$j = \prod_{i>k} \left(\frac{\beta_i}{|\nu_i|} \right)^{\frac{|\nu_i|}{\sum_{i>k}}} \prod C_i^{\frac{|\nu_i|}{\sum_{i>k}}} K_c^{\frac{|\nu_i|}{\sum_{i>k}}}.$$
 (9)

В выражении (9) первый множитель зависит от коэффициентов диффузии реагентов, а также от геометрии аппарата для осаждения покрытий.

Второй множитель определяет вид функциональной зависимости скорости осаждения от концентраций (парциальных давлений) реагирующих веществ. Следует отметить, что порядок реакции по реагенту A_i , как следует из (9), равен $\frac{|v_i|}{\sum_{i>k}^{|v_i|}}$ и для

реакции с увеличением числа молей численно всегда меньше единицы, что находится в хорошем соответствии с описанными в литературе многочисленными данными по кинетике термического разложения, а также водородного восстановления летучих галогенидов металлов.

Учет возможного торможения продуктами реакции приводит к появлению максимума зависимости осаждения от суммарного давления в аппарате, что экспериментально отмечено в работе [2].

Изменение скорости с температурой определяется температурной зависимостью константы равновесия K_c и имеет вид экспоненты, подобной закону Аррениуса. В связи с этим представляет интерес сопоставить опубликованные данные по энергии активации со значениями, которые могут быть получены из (9). В качестве одного из примеров рассмотрим реакцию восстановления тетрахлорида кремния водородом.

В табл. 1 приведены необходимые для расчета константы равновесия теплового эффекта и изменение энтропии соответствующих процессов, в том числе с участием субхлоридов, а также расчетные значения энергии активации для интервала температур 1300...1600 К.

Таблица 1

Тепловой эффект, изменение энтропии и расчетные значения энергии активации реакций термического восстановления субхлоридов кремния водородом

Номер реакции	Реакция	∆Нреакц, ккал/моль	∆Ѕреакц, ккал/(град·моль)	Е _а , ккал/моль
1	$SiCl_4(\Gamma) + 3/2H_2(\Gamma) = SiCl(\Gamma) + 3HCl(\Gamma)$	126,10	64,74	31,52
2	$SiCl_3(\Gamma) + H_2(\Gamma) = SiCl(\Gamma) + 2HCl(\Gamma)$	84,61	39,19	28,20
3	$SiCl_2(\Gamma) + 1/2H_2(\Gamma) = SiCl(\Gamma) + HCl(\Gamma)$	50,94	18,58	25,47
4	$SiCl_4(\Gamma) + 2H_2(\Gamma) = Si(TB) + 4HCl(\Gamma)$	70,02	41,52	17,64
5	$SiCl_4(\Gamma) + H_2(\Gamma) = SiCl_2(\Gamma) + 2HCl(\Gamma)$	75,17	46,16	25,06
6	$SiCl_4(\Gamma) + 1/2H_2(\Gamma) = SiCl_3(\Gamma) + HCl(\Gamma)$	41,50	25,55	20,75
7	$SiCl_3(\Gamma) + 1/2H_2(\Gamma) = SiCl_2(\Gamma) + HCl(\Gamma)$	33,67	20,62	16,83
8	$\operatorname{SiCl}_3(\Gamma) + 3/2\operatorname{H}_2(\Gamma) = \operatorname{Si}(\operatorname{TB}) + 3\operatorname{HCl}(\Gamma)$	28,52	17,82	9,52
9	$\operatorname{SiCl}_2(\Gamma) + \operatorname{H}_2(\Gamma) = \operatorname{Si}(\operatorname{TB}) + 2\operatorname{HCl}(\Gamma)$	-5,15	-4,72	_
10	$SiCl (\Gamma) + 1/2H_2(\Gamma) = Si(TB) + HCl(\Gamma)$	-6,09	-23,28	—

В условиях квазиравновесия реакции 9 и 10 не могут являться лимитирующими стадиями процесса в целом, поскольку они наиболее выгодны энергетически. Для остальных реакций значения кажущейся энергии активации находятся в пределах 9,51...31,52 ккал·моль⁻¹ и хорошо согласуются с интервалом 10...35 ккал·моль⁻¹ изменения экспериментальных значений энергии активации [3].

С учетом результатов сравнения изменение энергии активации процесса восстановления SiCl₄ водородом следует связать с различиями в условиях осаждения, приводящими к преимущественной реализации одного или нескольких каналов протекания реакции с соответствующими значениями энергии активации. Переменные значения энергии активации, свидетельствующие об одновременном протекании нескольких процессов с участием субгалогенидов при восстановлении пентафторидов ниобия и тантала водородом, наблюдали также авторы работы [4].

Вышеприведенный сопоставительный анализ позволяет заключить, что если при осаждении протекают различные реакции в сложной химической системе, изменение парциальных давлений реагентов, а также суммарного давления (разрежения) в аппарате приводит к изменению относительного вклада отдельных реакций в наблюдаемую скорость осаждения.

Соотношение (7) существенно упрощается для случая гетерогенных обратимых реакций типа $A \leftrightarrow vB$ и при этом приобретает вид:

$$\left(1 + \frac{\nu j}{\beta_2 C_B}\right)^{\nu} \exp^{\frac{U}{RT'}} = 1 - \frac{j}{\beta_1 C_A}.$$
 (10)

Здесь β_1, C_A и β_2, C_B - коэффициенты массоотдачи, концентрации в объеме веществ A и B соответственно.

Рассмотрим предельные случаи, когда система находится вдали и вблизи от равновесия. Соотношение U >> RT' осуществляется в следующих случаях, представляющих практический интерес (v = 1):

$$\begin{cases} C_B >> C_A \\ K_C(T') \approx 1 \end{cases}$$

при этом

$$j \approx \frac{\beta_{l}C_{A}}{1 + \frac{\beta_{l}}{\beta_{2}K_{C}(T')}};$$

$$\begin{cases}
K_{c}(T') \gg \frac{C_{B}}{C_{A}}, \\
K_{c}(T') \gg 1
\end{cases}$$
(11)

при этом

$$\frac{C_B}{C_A} << K_C(T')$$

 $j \approx \beta_1 C_4;$

при этом

$$j \approx \beta_2 C_A K_c(T'). \tag{13}$$

При $v \neq 1$ анализ уравнения (10) аналогичен.

Выражение (11) справедливо вблизи термодинамической температуры начала реакции, характеризующейся нулевым значением изобарно-изотермического потенциала. Существенно, что зависимость скорости процесса от температуры, согласно (11) и (13) в отличие от известного из [1] выражения (12) определяется не изменением коэффициента диффузии, а экспоненциальным ростом константы равновесия с температурой.

Если система находится вблизи равновесия, т.е. $U \ll RT'$, из (10) следует:

$$\left(1 + \frac{\nu j}{\beta_2 C_B}\right)^{\nu} \left(1 - \frac{U}{RT'}\right) = 1 - \frac{j}{\beta_1 C_A}.$$
 (14)

Рассмотрим частный случай процесса, в котором исходное вещество A, нагретое до температуры T < T', подают к поверхности, например, диссоциацию летучих галогенидов металлов по реакции:

$$Me\Gamma_{\nu}(\Gamma) \leftrightarrow Me(TB) + \nu\Gamma(\Gamma).$$

В этом случае соотношение между C_A и C_B определяется химическим равновесием при температуре T:

$$\frac{C_B^{\nu}}{C_A} = K_C(T) \,. \tag{15}$$

Если в исходной смеси концентрация *B* мала, а скорость реакции гораздо меньше массового потока вещества *A*, т.е. $\frac{v_j}{\beta_2 C_B} >> 1$, $\frac{j}{\beta_1 C_A} << 1$, то скорость

реакции определяется выражением

$$j \approx \frac{\frac{\beta_2}{\nu} C_A^{\frac{1}{\nu}} K_A^{\frac{1}{\nu}}(T')}{1 + \frac{\beta_2 C_{\nu}^{\frac{1}{\nu}}}{\beta_1 \nu^2} K_C^{\frac{1}{\nu}}(T')}.$$
 (16)

Переходя к парциальным давлениям и рассматривая область температур, в которой $K_p^0 \ll 1$ (начало заметного протекания реакции), получаем

$$j = Q \exp\left(-\frac{\Delta H_{298}^0}{\nu R T'}\right),$$

где

(12)

$$Q = \frac{\beta_2}{\nu} \left(\frac{P_a}{RT}\right)^{\frac{1}{\nu}} (RT')^{\frac{1-\nu}{\nu}} \exp\left(\frac{\Delta S_{298}^0}{\nu R}\right).$$
(17)

При выводе (17) были использованы соотношения:

$$R T' \ln K_{P}^{0}(T') = -\Delta G^{0}(T')$$
$$\Delta G^{0}(T') = \Delta H_{298}^{0} - T' \Delta S_{298}^{0}.$$

Как видно, выражение (17) аналогично уравнению Аррениуса. Отсюда следует, в частности, что при экспериментальном определении энергии активации гетерогенного процесса из кинетических данных необходимо убедиться в наличии кинетической области, в противном случае в качестве энергии активации может быть принята величина $\frac{\Delta H_{298}^0}{v}$. Это показывают приведенные ниже, в табл. 2, литературные данные по значениям энергии активации

различных процессов и соответствующие величины ΔH^0_{298}

$$\frac{\Delta H_{298}}{V}$$

Таблица 2

Расчетные и экспериментальные	е данные значения	і энергии	активации	пиролитических	реакций
		p		r	P

Номер реакции	Реакция	1 ν ккал/моль	<i>Е</i> _а (эксп.), ккал/моль	Источник информации
1	$TiJ_4(\Gamma) = Ti(TB) + 4J(\Gamma)$	43	42,5±2	[5]
2	$\operatorname{Zr} J_4(\Gamma) = \operatorname{Zr}(TB) + 4J(\Gamma)$	50,2	50,3±2	[6]
3	$W(CO)_6(\Gamma) = W(TB) + 6(CO)(\Gamma)$	8,4	12,3±1,5	[7]
4	$Mo(CO)_6(\Gamma) = Mo(TB) + 6(CO)(\Gamma)$	10,1	10,0±1,5	[8]
5	$NbCl_5(\Gamma) = Nb(TB) + 6(CO)(\Gamma)$	63	62±3	[9]

В работе [10] приведена зависимость энергии активации процесса диссоциации йодида циркония от температуры колбы Ван Аркеля-Де Бура. С точки зрения кинетических представлений подобная зависимость не объяснима. Однако, если иметь в виду, что осаждение металла может происходить по следующим реакциям: $\begin{aligned} &ZrJ_4(\Gamma) = Zr(TB) + 4J(\Gamma); \\ &ZrJ_3(\Gamma) = Zr(TB) + 3J(\Gamma); \\ &ZrJ_2(\Gamma) = Zr(TB) + 2J(\Gamma), \end{aligned}$

причем вклад каждой из них в наблюдаемую скорость осаждения Zr при фиксированной температуре нити определяется температурой колбы, то суммарная скорость осаждения Zr приближенно может быть представлена в следующем виде:

$$j = Q_1 \exp\left(-\frac{\Delta H_{peaky}^{(1)}}{RT'}\right) + Q_2 \exp\left(-\frac{\Delta H_{peaky}^{(2)}}{RT'}\right) + Q_3 \exp\left(-\frac{\Delta H_{peaky}^{(3)}}{RT'}\right).$$
(18)

Очевидно, что выражение для суммарной скорости не представляет собой экспоненты. При изменении температуры колбы соотношение между Q_1 , Q_2 и Q_3 может изменяться таким образом, что в пределах экспериментальных ошибок зависимость окажется экспоненциальной с соответствующей «энергией активации», зависящей от температуры колбы.

С этой точки зрения увеличение энергии активации процесса йодидного рафинирования циркония [10] в интервале 200...420 °С температуры колбы может быть обусловлено увеличением вклада реакций пиролиза двух- и трехвалентного йодидов циркония в наблюдаемую скорость осаждения металла с ростом температуры. Дальнейшее увеличение температуры колбы сопровождается ростом парциального давления ZrJ₄, причем выше 500 °С пар состоит в основном из молекул ZrJ₄. Это приводит к тому, что в интервале температур 420...500 °С энергия активации уменьшается. Следовательно, приведенные выше положения позволяют качественно объяснить ход зависимости энергии активации йодидного процесса от температуры колбы.

Около 400 °С наблюдается минимум скорости осаждения Zr при одновременном максимуме энергии активации. Этот факт легко объясняется, если считать, что при указанной температуре колбы на нити преобладает пиролиз йодида циркония: соответствующее этой реакции значение ΔH реакции максимально, а из условия термодинамического равновесия следует, что степень диссоциации ZrJ₂ низка по сравнению со степенью диссоциации ZrJ₄, что снижает массовый поток ZrJ₂. Проведенный анализ литературных данных при описании гетерогенных процессов указывает на полезность использования развитых в настоящей работе представлений при разработке и оптимизации технологических процессов нанесения ионнопиролитических покрытий на оборудовании типа АИР.

С учетом изложенного были проведены исследования, включая масс-спектрометрические, механизма процессов термического разложения галогенидов ряда тугоплавких металлов: TiJ₄, ZrJ₄, CrJ₂, TaCl₅, NbCl₅,WCl₆.

Результаты указанных исследований были положены в основу и использованы при разработке комбинированных способов нанесения ионно-плазменных покрытий и оборудования на основе установок типа АИР для их реализации, а также при разработке методики и изготовлении тонких пленок (фольг) толщиной 0,5...5 мкм из различных стабильных изотопов тугоплавких металлов с целью их использования в качестве мишеней при проведении ядерных исследований на ускорителях заряженных частиц.

выводы

1. С точки зрения равновесной химической термодинамики процессов получения покрытий осаждением из газовой фазы (CVD) летучих металлсодержащих соединений получены выражения для температурной зависимости скорости реакций, протекающих в диффузионной области.

2. Расчетные значения энергии активации реакций совпадают с известными из экспериментов. 3. Рассмотренные в настоящей работе тенденции протекания реакций при получении металлических конденсатов методом CVD необходимы при разработке технологии ионно-пиролитических комбинированных покрытий, сочетающей химические и физические процессы CVD и PVD.

ЛИТЕРАТУРА

- 1. В.Т. Толок, В.С. Коган, В.В. Власов. Физика и Харьков. Харьков: «Тимченко», 2009, с.78.
- Д.А. Франк-Каменецкий. Диффузия и теплопередача в химической кинетике. М.: «Наука», 1967, с. 82.
- 3. А.С. Лютович, В.П. Пашкуденко, В.В. Харченко. Исследование кинетики эпитаксиального роста кремния в хлоридном процессе // Изв. АН СССР. Сер. Неорг. материалы. 1972, т. 8, № 10, с. 1713.
- 4. Н.В. Победаш, Ю.М. Королев, А.В. Рычагов и др. Получение ниобия и тантала восстановлением их пентафторидов водородом // Металлургия и металловедение чистых металлов: Сборник

научных работ МИФИ. М.: «Атомиздат», 1975, в. 11.

- Ю.И. Поляков, Б.Я. Пугач. Некоторые особенности гетерогенного пиролиза тетрайодида титана // Вопросы атомной науки и техники. Серия «Физика высоких энергий и ядра». 1974, в. 2(11).
- Л.Г. Лишенко, Т.С. Назарова, Ю.И. Поляков и др. Некоторые вопросы кинетики осаждения йодидного циркония // Изв. АН СССР. Сер. Металлы. 1971, в. 3, с. 91-93.
- 7. А.А. Розен, В.В. Сагалович // ЖФХ. 1966, т. 40, с. 226.
- 8. А.А. Розен // *УХЖ*. 1959, т. 25, с. 735.
- Л.Н. Коваленко, Ю.И. Поляков, Б.Я. Пугач, А.А. Розен. Вопросы кинетики терморазложения пентахлорида ниобия // ЖФХ. 1973, т. 47, в. 6,
- Ю.И. Поляков, А.А. Розен. О кинетике гетерогенных обратимых реакций типа А↔vВ в диффузионной области // ЖФХ. 1971, т. 45, в. 6, с.1454-1457.

Статья поступила в редакцию 15.02.2011 г.

КІНЕТИКА ПІРОЛІЗУ ЛЕТКИХ СПОЛУК МЕТАЛІВ ПРИ НАНЕСЕННІ ПОКРИТТІВ У ВАКУУМІ

Ю.І. Поляков, Г.М. Картмазов, Ю.В. Лукирський, С.Г. Руденький, Л.О. Ферлій

З позицій рівноважної термодинаміки оцінено деякі закономірності процесів отримання покриття шляхом осадження металів з їх летких сполук у вакуумі. Розрахункові значення енергії активації хімічних реакцій знаходяться в згоді з відомими з експериментів.

PYROLYSIS METAL VOLATILE COMPOUNDS KINETICS AT APPLICATION IN VACUUM

Yu.I. Polyakov, G.N. Kartmazov, Yu.V. Lukirskiy, S.G. Rudenkiy, L.A. Ferliy

From the standpoint of equilibrium thermodynamics to assess some of the processes obtaining coatings by deposition of metals from their volatile compounds in a vacuum. In particular, the calculated activation energies for chemical reactions are in agreement with the known from the experiments.