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The synchrotron radiation of  an ultrarelativistic  charged particle  moving along spiral  trajectory winded on 

curved magnetic force line is considered. The radiation pattern has new properties on a comparison with the radia-
tion in homogeneous magnetic field: there is a range of characteristic frequencies instead of one characteristic fre-
quency, the peaks of the radiation pattern correspond to periodically repeated directions in space, which position de-
pends on the frequency of radiation.

1. INTRODUCTION
The formulae for the synchrotron radiation mecha-

nism in a homogeneous magnetic field [1-3] are widely 
applied in various branches of science and engineering 
[4]. However, the formulae for synchrotron radiation in 
straight magnetic field lines may be insufficient to de-
scribe  radiation  of  ultrarelativistic  electrons  moving 
along dipolar field lines in the magnetosphere of a pul-
sar [5]; or the radiation emitted by runaway electrons in 
tokamaks [6].  It  is necessary to take into account the 
curvature of the magnetic force line [5, 6].

Since  synchrotron  radiation  comes  from  a  small 
length along the  trajectory,  the  curved magnetic  field 
lines are approximated by circular force lines and the ra-
diation  from  relativistic  electrons  moving  with  small 
pitch angles along spiral  trajectory is  considered. The 
radiation  formulae  have  been  calculated  by  various 
methods in the papers [5 - 8]. In [5] the radiation was 
called as synchrotron curvature. In [5, 7] the spectrum 
and  polarization  characteristics  of  radiation  was  ob-
tained, in [6] the radiation spectrum was found. Expres-
sions  for  the  spectrum obtained in  the  papers  [5  -  7] 
have various forms. The comparison of the formulae [5] 
and [7] is carried out in [8]. The limit of an undulator 
radiation,  when  the  contribution  to  radiation  occurs 
from a lot of cyclotron rotations, has been considered in 
[9, 10].

At the same time the spectral angular distribution of 
synchrotron  radiation  emitted  by  ultrarelativistic 
charged particles moving along curved spiral trajectory 
is not investigated. In the present paper such spectral an-
gular distribution is studied and the comparison of ex-
pressions for the radiation spectrum obtained in the pa-
pers [6, 7] will be also carried out.

2. TRAJECTORY OF PARTICLE
Let us assume that magnetic force lines look like a 

circle, and the magnitude of magnetic field is B0. Select 
a system of Cartesian coordinates with (x, y)-axes in the 
plane of magnetic field lines, and z-axis coinciding with 
the axis of cylindrical magnetic surface. The magnetic 
field vector can be expressed as

)cos(sin0 jiB ϕϕ −= B , (1)
where φ is the polar angle in (x, y)-plane, i,j are the ba-
sis  vectors  of  Cartesian  frame.  The  particle  with  the 
Lorentz-factor 1)/1( 2/122 > >−= −cvγ  is moving along 
magnetic force lines with the velocity close to speed of 

light.  The angular velocity  Ω  corresponding this mo-
tion ( R/||v≡Ω , where ||v  is the velocity of the guiding 
center along the magnetic line with curvature radius R) 
is much less than the frequency of rotation around mag-
netic force line Bω ,  || Bω< <Ω .  The radius of Larmor 
circle Br  is much less than R , R< <Br .

Equations  of  motion  of  a  charged  particle  in  the 
magnetic field (1) are integrated in quadratures. The so-
lution expresses through elliptic integrals of the 1-st and 
3-rd  kind.  The  asymptotic  expansion  of  the  position 
vector  of  trajectory,  in  which  the  terms  proportional 

1)/ 2
B < <R(r  are dropped, has the form [7, 8]
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where  γω αα cmBe /0B = ,  1/ B < <Ω= ωδ , 
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D /ωRΩ−=v  is the drift velocity, αe  and αm  is the 
charge and mass of a particle of a sort α , i, j, k are the 
basis vectors of the Cartesian frame.

In contrast to known expressions of drift theory, the 
terms, which are proportional  tBsin2 ωδ ,  is taken into 
account.  It  is  necessary  to  reduce  evaluations  in  the 
Cartesian frame to evaluations in the frame of natural 
trihedral [7, 8].

The magnitude of particle velocity remains constant 
and is given by expression 
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The curvature radius of trajectory (2) is equal to
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where  k is  the curvature,  the  parameter   
)/( 2

B
2
B Rrq Ω= ω  is equal to the ratio of the Larmor ve-

locity BBL || rω=v  to the magnitude of drift velocity.
Further  we shall  consider the case,  for which the 

projection  of  a  particle  velocity  on  magnetic  lines  is 
close to speed of light, c→||v . Thus the Lorentz-factor 
corresponding  to  motion  along  magnetic  field  lines, 

1)/1( 2/122
|| > >−= −

| | cvγ .
If the magnitude of magnetic field depends on radi-

al coordinate )(0 rBB → , the corresponding drift veloci-

ty  )/()2/1( B
2 Rg ω⊥= vv ,  (where  ⊥v  is  the  velocity 

transverse to magnetic field lines) is smaller than the ve-



locity of centrifugal drift )/()2/1( B
2
|| RD ωvv = .  There-

fore, we shall consider the constant magnetic field ap-
proximation.

It is known that radiation of a relativistic charged 
particle occurs from the small part of trajectory and con-
centrates within the angle γ/1~  at apex of cone along 
particle’s velocity [4, 11]. Thus, the instantaneous angle 

γ/1~  of the radiation beam should be less than the an-
gle  between  the  particle  velocity  and  drift  trajectory. 
From this requirement, definition of Lorentz-factor γ , 
and  inequality 1> >| |γ  follows  that  the  limit  of  syn-
chrotron radiation takes place, if

2
| |

2 > > γγ  (5)
Suppose that the inequality (5) is fulfilled.

3. SPECTRAL ANGULAR DISTRIBUTION 
OF SYNCHROTRON RADIATION

The energy E  emitted by a charged particle in the 
solid angle between ο  and οο d+ , and the interval of 
frequencies between γ  and ωω d+  is given by [11]
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where the Fourier integral representation of an electrical 
field is
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Here R0 is the distance up to the observer, n is the unit 
vector pointing to the observer, c/v=β , v is the veloc-
ity, r is the particle position vector (2).

To calculate integral (7), we use a frame of natural 
trihedral  at  time  0t . Denote  by  v/)( 0tv=τ ,  )( 0tν , 

)( 0tb  the tangent,  normal,  and binorma,  respectively. 
By definition, the instant 0t  is found from requirement 
that  the  vector  n  belongs  to  (τ,  b)-plane,  i.  e.,  the 
equation 0)( 0 =tnν  being satisfied

bτn χχ sincos += , 0)( 0 =tnν ,  (8)
where χ  is the angle between the vectors τ and n.

The polarization unit vectors πe ,  σe  on the plane 
that is perpendicular to line of sight are

,νe =σ
   ,cossin bτe χχπ −=      ],[ neσ

.  (9)

Expanding the position vector r(t) into a Taylor se-
ries about )( 0tt − ,  and then substituting in (7), we ob-
tain [8]
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where  σπ ,=i ,  the top string is related to π- polariza-
tion,  and  ]/)(/ 000 cttcR nr−+[=Φ ω  is  the constant 
phase.

As shown in [8], it is possible to neglect the term 
χsin3kvκ , and we have 
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where γ χψ = , 2/3)1)(/(21 2+)/(= ψωωη c , 

vkc
3)2/3( γω = , )(3/1 xK , )(3/2 xK  are the modified 

Bessel functions.
Since the instantaneous curvature radius changes as 

the particle moves from one to another trajectory points, 
the synchrotron radiation mechanism in circular  mag-
netic field differs from synchrotron radiation in straight 
magnetic lines. Let us consider the radiation pattern.

As it is known, the radiation of an ultrarelativistic 
charge is concentrated into a cone along the particle ve-
locity. When the charge drives along trajectory (2), the 
instantaneous direction of the radiation beam changes. 
As a  result,  the  radiation  will  be  concentrated  in  the 
neighborhood of a surface (design it by S), which gener-
ating lines coincide with the velocity vectors. The inter-
section of the surface S with the unit sphere gives a line 
L. Points at line  L correspond to directions at different 
instants of time 0t .

In the plane, which is perpendicular to the line  L, 
the form of radiation pattern is described by equations 
(11), (12) with the curvature radius at time 0t  being tak-
en as the circle radius. For σ - polarization the radiation 
has maximum in directions at the line L, 0=χ ; the ra-
diation  in π - polarization  has  peaks  for  angles 

γχ /1|| =  and tends to zero at line L, ( 0=χ ).
Let us consider the radiation pattern, assuming that 

the direction of  emission passes  near  to  x-axis.  Intro-
duce angular coordinates  yθ  and  zθ , where  yθ  is the 
angle between n and  (x, z)-plane,  and zθ  is the  angle 
between  x-axis and the projection of the vector n onto 
(x, z)-plane.

The projection of line L on (y, z)-plane in the case 
of small angles 1< <yθ , 1< <zθ  is given by equations

( )00 sin/ tqt BB
B

yy ωω
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θ +Ω−=≈ vv

( )0cos1/ tq B
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zz ω
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θ +Ω−=≈ vv .      (13)
The form of the radiation pattern depends on the re-

lation between the velocity of centrifugal drift || Dv  and 
Larmor velocity, BL r|||| Β= ωv , |/| DLq vv≡ .

In case  1> >q  the radiation pattern resembles the 
radiation cone (with the apex angle | |γ/1~  and angular 
width  γ/1~  for  the  cone  wall)  in  straight  magnetic 
field. In the case 1< <q  we have the limit of curvature 
radiation. In both cases 1> >q  and  1< <q ,  the curva-
ture radius does not depend on time 0t  so that the pro-
files of radiation pattern remain constant.

In case 1~q  the spectral angular distribution of ra-
diation has specific features as compared with the syn-
chrotron radiation mechanism in homogeneous magnet-



ic  field.  For  1~q  the drift  velocity is  approximately 
equal to Larmor velocity BD r|||| Β≅ ωv  )2/( | |≅ γc  so 

that the curvature radius varies with time 0t . There ap-
pears  the  range  of  characteristic  frequencies  from 

|q−1|Ω∼ 3γω  up  to )( q+1Ω∼ 3γω  instead  of  one 

characteristic frequency ( Ω∼ 3 qγω  for an emission in 

straight magnetic field lines, or Ω∼ 3γω  for a curvature 
radiation).

In Fig.1 the radiation patterns (for σ -+π -polariza-
tion) at frequencies corresponding to minimal (Fig.1a) 
and maximum (Fig.1,b)  curvature  radius  of  trajectory 
(2) at  2,1=q ,  1 5=γ δ , πωπ ≤≤− 0tB  are represented. 
The picture is periodically repeated with time along yθ -
axis, Fig.2,a. If the frequency of radiation corresponds 
to  the  maximum  characteristic  frequency 

)1(8338,0 qc +=/ ωω ,  the  radiation  pattern  has  peaks 
for  directions  corresponding  to  trajectory  points  with 
minimal  curvature  radius,  ny π δθ 2= ,  ...,1,0 ±=n ; 

δθ )1( qz +−= . Denote these directions by A. At higher 
frequencies,  the radiation is  more concentrated in  the 
neighborhood of directions A.

At  the  minimal  characteristic  frequency 
|1|8338,0 qc −=/ ωω , Fig. 1,b, the peaks of the radia-

tion  pattern  correspond  to  the  trajectory  points  with 
maximal  curvature  radius,  ny π δπ δθ 2+−= , 

...,1,0 ±=n ;  δθ )1( qz +−= ,  Fig. 2,b.  For  lower  fre-
quencies the radiation is even more concentrated in the 
neighborhoods of  these  points.  When the direction of 
light  biases  to  A,  the  section  of  radiation  pattern  be-
comes two-humped because  of  increasing the  relative 
contribution of π -polarization component in the total (
π - + σ -) radiation beam, Fig. 1,b.

Fig. 1 Radiation pattern at the given frequency ω :  
a) ω  is equal to the maximal characteristic frequency;  

b) ω  equals minimal characteristic frequency; 
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)(





+≡

ωοωο
σπσ

dd
EEE d

dd
dF

Thus the form of radiation pattern depends on the 
frequency of  radiation while the particle moves along 
trajectory (2).

Polarization properties of radiation are described by 
equations (9), (10). The ort  σe  coincides with the tan-
gent to line L, Fig. 2, πe  is perpendicular to σe  and n. 
For the directions at line L the radiation has linear polar-
ization ( 0≠σE , 0=πE ). The sense of elliptical polar-
ization  coincides  with  the  sense  of  particle  rotation 
around n.

    

Fig.2. The width of radiation pattern. (solid line) is  
the contour at level of one half of maximal value; (+),(-) 

denote the sense of elliptical polarization



In the case of exact equality 1=q  the trajectory (2) 
has points at which the curvature becomes equal to zero. 
At these point equation (10) is failed. In [8] it was found 
that  the  approximation  (10)  is  correct,  if 

2/1
B ))/(|(||1| Ω>− γωq  

2/1)/( γγ | |= .  The  case  1=q  

needs a special study. This will be the object of another 
paper.

4. RADIATION SPECTRUM
To find the radiation power per unit frequency, we 

shall integrate equations (11), (12) over the radiation an-
gle and then divide it by the time interval of radiation. 
Let µ  and χ  be angular coordinates.  The variable µ  
describes directions that  correspond to segments of line 
L. The angle χ  corresponds to  arcs of the great circle, 

which is perpendicular to line L. v|vv /|/ 0dtdd
••

== rµ

0dtkv= , and the element of solid angle has the form
0dtkdddd vχµχο == .            (14)

Dividing  (11),  (12)  by |2 Bωπ |/  and  integrating 
over a solid angle, we obtain
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where  cy ωω /= ,  22)/)(3/2()( vkcekW 42= γα .  The ex-
pression after the first integral sign in (15) can be inter-
preted as a spectral power of radiation for a charged par-
ticle moving in a circular orbit with the instantaneous 
radius )(1

C tkr −= .
Let us derive formula (15) without using expression 

(14). At first we integrate over solid angle in (6).

4.1. SCHWINGER’S FORMULA 

Substituting (7) in equation (6), we obtain
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where )( ii trr = , )( iii tββ = , 2,1=i .
Integrating by parts the second term in (16), then 

integrating  in  οd ,  and  introducing  the  variable
12 tt −=τ , we obtain (see also [12])
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From expression (17) follows the expression for a 
spectral power at the time t  
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It is the formula (I.37) obtained by Schwinger in [3]. He 
considered the rate at which the electron does work on 
the radiation field. Equation (18) is the starter formula 

in [6]. Let us now show that (15) is also followed from 
equation. (18). Using the Frenet formulae, we obtain
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Substituting equations (19), (20) into (18), we re-
duce expression (18) to
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where )(tkk = .

After introducing in (21) the new integration vari-
able vkx τ γ=  and  employing  the  formula  from  [3], 
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we obtain expression (15).

4.2. GENERALIZATION OF RADIATION SPEC-
TRUM 

To integrate with respect to 0|| tBω  in (15), we in-
troduce the variable 0

2 cos21 tqqz Bω++=  and change 
the order of integration. Then [8]
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C 3
2  is the total power emitted by a 

charged particle moving with velocity ||v  along a circu-
lar orbit of radius R, Cy ωω /C = .

Thus, the universal function of synchrotron radia-
tion for a relativistic electron moving in circular orbit 
[2, 3, 12]

f y y dxK x
y

( ) ( )/=
∞

∫9 3
8 5 3π              (23)

is replaced by expression (22) for a relativistic electron 
moving along the spiral trajectory in circular magnetic 
field. In [6], the radiation spectrum, which form is dif-
ferent from (22), was obtained from the Schwinger for-
mula (18). As it has shown above, spectrum (22) also 
follows from (18). The radiation spectrum obtained in 
[6] is given in Appendix. Thus (22) and the correspond-
ing formula in [6] are two different representations of 
the radiation spectrum.



Integrating  in  (22)  with  respect  to  frequency,  we 
obtain the total emitted power

( )21
3
2 q

c
eP +Ω= 22

| |
4

2

βγα .              (24)

The same form has the expression for power losses of a 
relativistic electron moving along the circular trajectory 
of effective radius 21/ qR + .

Equation (22) at 1< <q  и 1> >q  reduces to formu-
lae of the curvature radiation and synchrotron radiation 
for spiral  trajectory in straight  magnetic field,  respec-
tively. In these cases, the first integral in (22) is smaller 
than the second one. The most essential difference from 
the case of synchrotron radiation in  straight  magnetic 
field  arises,  if  1~q ,  and then the  second integral in 
(22) is larger than the first.

Fig.3. Universal functions of synchrotron radia-
tion: (solid line) is the spectrum (23); (dotted line) the 

spectrum in straight magnetic field lines; (dot-and-dash 
line) the curvature radiation spectrum; (dashed line)  

synchrotron radiation for an electron having the circu-
lar trajectory with effective radius 21/ qR +

Let us compare exact expressions for spectrum (22) 
and total energy losses (24) with approximate expres-
sions  (usually  used  at  interpretation  of  experimental 
data), in which formula (23) is used. In Fig. 3 we com-
pare different radiation mechanisms when 1~q . a) The 
curvature of magnetic force lines is not taken into ac-
count, and the formula for synchrotron radiation of an 
electron moving with the pitch angle crBBP /sin ωψ =  in 
straight  magnetic  field  is  used. In  this  case 

][= 3
PBcy ψωγω sin||)2/3(/  and  the  spectrum is  de-

scribed by the first integral with the lower limit of inte-
gration  qyc /  in (22), (dotted line in Fig.3). The total 
emitted  power  is  proportional to  2q . b)  We  neglect 
pitch angles and consider the curvature radiation for an 
electron moving along the circular magnetic line with 
curvature radius  R.  This spectrum is described by the 
first integral,  which has the lower limit  of integration 

cy , in (22). The spectrum of curvature radiation is plot-

ted by the dot-and-dash curve. The total power losses is 
described by the first term in (24). c) As it was already 
mentioned above, the total power loss for particles in 
curved  magnetic  field  (24)  coincides  with  the  power 
loss of a relativistic electron having circular trajectory 
of radius 21/ qR +  (dashed line in Fig.2).

Considering the graphs such as represented in Fig.3 
at various values of parameter q, we find that the differ-
ences between spectrum (22) and the spectrum of syn-
chrotron radiation in straight magnetic field are essential 
if  q belongs  to  the  interval,  52,0 << q .  Thus  when 

1~q , it is necessary to use formula (22).  The derived 
formulae, strictly speaking, are obtained when condition 
[8] 2/1

B ))/(|(||1| Ω>− γωq 2/1)/( γγ | |=  is  taken  place. 
These conditions can be fulfilled both in astrophysical, 
and in laboratory plasma.

APPENDIX

Averaging (21) over time |2 BT ωπ |/=  and by tak-
ing expansion

∑
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Replacing the  variable of  integration / 2Ω= τγx  and 
introducing  )2/3( Ω)/ (= 3γωy ,  we  obtain  expression 
(14) from the paper [6].
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