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The new mechanism of stabilization of beam instability is proposed. The considered mechanism plays a special 

role at stabilization of beam instability in plasma systems with small size of interaction area of a beam of particles 
with field of exited waves. The basis of this mechanism is the process of three-wave decay with participation of a 
wave which easily abandons the field of interaction and also the process of chaotization of the fields at nonlinear in-
teraction of waves.
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1. INTRODUCTION
The essence of the mechanism can be explained by 

the fact that in short electrodynamic systems the known 
mechanisms of instability stabilization such as capture 
of  beam  particles  by  the  field  of  exited  waves  and 
stochastic instability of movement of beam particles oc-
cur at mush bigger intensities of exited fields than it is 
observed in long systems. It is caused by short time of 
flight of beam particles through area of interaction with 
a field. Local instability of wave - wave process can be 
essential in such conditions. At the same time dynamics 
of fields becomes chaotic. Efficiency of interaction of a 
charged beam with fluctuating field is much lower than 
with  fields  of  regular  waves.  In  addition  fluctuating 
fields rapidly convey their energy to heating of plasma 
particles. Thus a new channel of rapid dissipation of en-
ergy of excited waves appears.  

As a result stabilization of instability or even failure 
of process of excitation of waves takes place. Chaotiza-
tion of wave fields exited by beam may result in fast 
heating both particles of a beam, and particles of plas-
ma. The results of some experiments at which, apparent-
ly, the described mechanism of failure of plasma-beam 
instability is realized, are described.

It is necessary to note, that the stabilization of insta-
bilities caused by the regular mechanism of decay has 
been discussed in the literature for a long time (for ex-
ample [1]).

2. STOCHASTIC INSTABILITY OF DY-
NAMICS OF WEAK NONLINEAR IN-

TERACTION OF WAVES
At  rather  high  amplitudes  of  the  waves  exited  in 

plasma it is possible that effective nonlinear interactions 
of these waves with other proper waves of plasma elec-
trodynamic structure take place. Dynamics of this inter-
action can be both regular and chaotic. We are interest-
ed in chaotic regimes. Such regimes appear in different 
schemes of nonlinear wave-wave interaction. 

The more simple are modified decay and also the 
case of three-wave interaction, when during interaction 
the fourth wave can participate in this interaction. The 
characteristics of this wave are close, for example, to a 
low-frequency wave participating in the interaction. The 
last case we shall term quasi-four-wave. The stochastic 
instability develops only when amplitude of a decaying 

wave (pump wave) exceeds some threshold value. Let's 
consider these two cases in details.

2.1. QUASI-FOUR-WAVE INTERACTION

Let the wave with amplitude  a1  wave number  k1  
and frequency  ω 1  decay into two waves  a k2 2 2, ,ω  
and a k3 3 3, ,ω . Besides that let us assume, that there is 
one  more  wave  with  the  following  parameters 
a k4 4 4, ,ω ; k k4 3= , ω ω ω3 4 1− < < .Let us consid-
er that the fourth wave does not influence the process of 
decay. The equation, which describes dynamics of com-
plex amplitudes at interaction of the first three waves 
can be presented as [3]:

 *a iV a a1 1 2 3= ,

 *a iV a a2 1 1 3= , (1) 

 *a iV a a3 1 1 2= ,

where V V i o1 1= | |exp( )Φ  is the matrix element of in-

teraction,  a a ij j j= | |exp( )Φ .  On the  linear  stage  (
| | ,a const const1 1= =Φ )  of  decay  the  amplitudes 
| |a1  and  | |a2  growth  exponentially  with  increment 
G a V= | || |1 1 . The phase change 
Φ Φ Φ Φ Φ= − − +2 1 2 3 0( )  obeys  equation  of 
mathematical pendulum:

 ( | || |) sinΦ Φ+ =2 01 1
2a V . (2)

It is seen from Eq.(2) that the half width of nonlinear 
resonance equals 4G . If we replace the third wave by 
forth wave we obtain the following set of equations: 

 exp( )*a iV a a i1 2 2 4= − δ τ ,

 exp( )*a iV a a i2 2 1 4= δ τ ,          (3)

 exp( )*a iV a a i3 2 1 2= δ τ .
On  the  linear  stage  phase 

Ψ Φ Φ Φ Φ= − − + +2 1 2 4 0( )δ τ satisfies  Eq.(2) 
too,  where  G a V2 1 2= | || | ,  δ ω ω ω= − −1 2 4 .  This 
means that the distance between nonlinear resonances is 
equal  to  2δ .  Assuming the width of  nonlinear  reso-
nance for the forth wave is small ( G G> > 2 ) we obtain 
the  condition  of  the  nonlinear  resonance  overlapping 
and, correspondingly, the criterion of stochastic instabil-
ity:



2 1G / δ > . (4)
2.2. MODIFIED DECAY

The important case of three-wave interaction is the 
case of modified decay. At such decay the increment of 
linear stage is  larger then the frequency of a low-fre-
quency wave, which participates in three-wave interac-
tion. As we showed before [4] the modified decay is al-
ways chaotic.

Let us consider the decay of the HF electromagnetic 
wave (i) with frequency ω i , wave vector 


k i  and ampli-

tude  

Ei ,  which  propagates   in  uniform,  unbounded 

plasma in the HF (s) electromagnetic wave ( ω s s sk E, ,
 

) and LF Langmuir wave (ω φpe pk, ,


). In order to de-
scribe this process we started from Maxwell's equations 
for electromagnetic fields and hydrodynamic equations 
for  plasma electrons.  We neglected  the  movement  of 
ions, assuming that background ions serve for compen-
sation  of  electron  charge.  Time  averaging  to  (
t t tslw o fst> > > > ,  t slw pe∝ 1 / ω ,  t fst i∝ 1 / ω  - 
periods of slow and fast variables, respectively) leads to 
the following system of coupled equations:
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where  
~ve  -  HF electron  velocity  (varies  on  the  fast 

time-scale -  t fst i∝ 1 / ω ), 
~
E  - HF component of the 

electric  field  (varies  on  the  fast  time-scale  - 
t fst i∝ 1 / ω ),  neo  -  equilibrium  electron  density, 
δ ne  - electron density perturbation (varies on the slow 

time-scale - t slw pe∝ 1 / ω ), e m,  - charge and mass of 
the electron, respectively, c  - speed of light in vacuum, 
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Note, that we used the similar approach described in 
[3] to receive the set of equations (5). Assuming follow-
ing form for HF electromagnetic field and LF plasma 
density:
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where 
 
E t and E ti s( ) ( )  - slowly varying in time am-

plitudes  of  the  HF  pumping  wave  and  LF  scattered 
wave, respectively, one can obtain from (5):
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where  cos( )α  -  angle  between  

Ei  and  


E s , 

E E tio i= =( )0 .  In order to obtain the set of equa-
tions (6) we assume that there is a spatial synchronism 
between coupling waves: 

  
k k ki s p− = .

On the linear stage of the decay when | |ε i const=  
we can obtain from (6) the dispersion relation:

( )( )ω ω2 2 1− + =Ω ∆ , (7)
and following expressions for maximum values of the 
growth rates:

G = =Im /ω 1 2Ω , Ω 2 1> > ; 

G = =Im /ω 3 2 , Ω 2 1< < .
In the first case, when the amplitude of the pumping 

wave is small, parameter K < < ∝1, ( )∆ Ω  and dy-
namics of the decay according to (4) must be regular. At 
large  amplitudes  of  the  incident  wave 
K > > ∝1 0, ( )∆  and  the  decay  must  be  chaotic. 
Note that the region of parameters where K > > 1 is re-
lated to the modified decay.

3. EFFICIENCY OF TRANSMISSION OF 
ELECTRONIC BEAM ENERGY TO 

FLUCTUATING FIELD
It was noted earlier that as a result of wave - wave 

interaction dynamics of field becomes chaotic. It could 
cause diminution of effectiveness of interaction of parti-



cles with field in electrodynamic system and respective-
ly stabilization of beam instability. For the study of pro-
cess of energy interchange with fluctuating field in re-
stricted area of space let’s use the set of equations given 
in [5]:
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Where ε = V V2
0
2/  –dimensionless energy of par-

ticle,  0, VV  –current  and  initial  velocity  of  particle, 
V v Vph ph= / 0 ,  v ph –  phase  velocity  of  wave, 

1)/()2( 0 < <= VmE ωµ –  dimensionless  velocity  of 
wave,  Φ = −ω t kz  –phase of wave,  L –length of a 
system, ξ ω= z V/ 0 – normalized coordinate of a par-
ticle.

The  set  of  equations  (8)  describes  moving  of  a 
charged particles in a field of a standing wave and can 
be solved by the method of successive approximations 
using the small parameter µ . Suspecting that the phase 
of a wave has fluctuation parts ( ∆ Φ ), the system (8) 
can be reduced to:
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Initial conditions for dimensionless energy e m, . 
We guess that  ...1 )3(3)2(2)1( ++++= εµεµµ εε  Then 
in zero-order approximation from the second equation 
of the system (9) for a phase of a wave in which there is 
a particle we shall receive the following expression:
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Where  0Φ  -  phase of field at  the moment of en-
trance of a particle in a cavity. Substituting expression 
for Φ  as (10) in the first equation of the system (9) and 
integrating it we shall receive expression for )1(ε :
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By analogy with ε  the phase can be submitted as:
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From the second equation of the system (9) it is pos-
sible to receive the expression for correction of the first 
degree to the phase:

∫ ′′−=Φ
ξ

ξξε
0

)1()1( )(
2
1 d .

Prolonging iterative procedure we shall receive the 
correction of the second degree to dimensionless ener-
gy:
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First of all, we are interested in the corrections of the 

first and the second degree in the expression for dimen-
sionless energy, which are defined in relations (11) and 
(12). From (11), in particular, it follows that at injection 
of  continuous  homogeneous  monoenergetic  beam,  an 
addend )1(µ ε  (i.e. linear with respect to the amplitude of 
the field) does not give any contribution in the expres-
sion for interchange of energy of beam with a field. It 
will influence only on modulated beam. The influence 
of fluctuations of a phase ∆ Φ  on interchange of energy 
is of interest. For this purpose it is necessary to average 
the expressions (11) and (12) at realization of random 
function )(ξ∆ Φ . Analytically it can be made in the ele-
mentary case by guessing that the density of probabili-
ties of distribution )(ξ∆ Φ  is uniform. Let us guess that 
the peak value  of  fluctuations  of  phase is  equal m∆ Φ  
and average value is 0)( > =∆ Φ< ξ .

It  is  possible  to  show,  that 0)(sin > =∆ Φ< ξ  and

m

m

∆ Φ
∆ Φ

> =∆ Φ<
sin

)(cos ξ .  Using  these  relations  for 

(11), we shall receive for average value >< )1(ε :

m

m
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∆ Φ

> =<
sin)1()1( εε . (13)

In the case when  δ - correlated fluctuations, i.e. at 
realization of requirement

)()()( ξξδξξ ′−> =′∆ Φ∆ Φ< N
for average value of the correction of the second degree 
to dimensionless energy we shall receive:

2

2
)2()2( sin

m

m

∆ Φ
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> =< εε . (14)

Thus, from expressions (13) and (14) it follows that 
at presence of fluctuations of the phase of electromag-
netic  field  in  restricted  area,  contribution  of  addends 
(linear and square-law in amplitude of a field) in the ex-
pression ε  decreases. Therefore, the efficiency of inter-
action of the electron beam with fluctuating electromag-
netic fields reduces.

4. HEATING OF PLASMA PARTICLES BY A 
FIELD OF NOISE WAVES

As it was mentioned above stochastic instability re-
sults in chaotization of excited fields. The field energy 



with randomly varying parameters is transmitted rather 
effectively  into  thermal  energy  of  charged  particles, 
which move in this  field.  The transmission of  energy 
from the  field  to  particles  is  powerful  mechanism of 
wave attenuation. The presence of such mechanism of 
energy sink, together with mechanism reducing efficien-
cy of energy transmission from beam to exited waves 
(at development of stochastic instability) can break the 
process of excitation of waves by electronic beam. Let 
us estimate the efficiency of energy transmission from 
random field to the particles. For this purpose we shall 
choose the most prime model. Let us consider that the 
charged particles move in random field where there are 
no correlations,  i.e. 2

1 2 1 2( ) ( ) ( )E t E t A t tδ⋅ = ⋅ − .  From 
general equations of motion of charged particles in field 
of  electromagnetic  waves it  is  possible  to receive the 
following equation for definition of variation of particle 
energy ( )γ τ  in time:

v Fγ = ⋅
 (15)

In equation (15) the following designations are used: 
, , / ,d d t v v cγ γ τ τ ω= = ⋅ → 

/F q E m c ω= ⋅ ⋅ ⋅
 

 - parameter of wave force, ω - some 
average frequency of   spectral  distribution of electro-
magnetic field.

Taking into account that there is no field correlation 
from the equation (15) it is easy to determine the fol-
lowing estimation for energy which can be gained by 
the particles in such field:

( )2 2 2( ) ( ) (0) v Aγ γ τ γ τ∆ = − = ⋅ ⋅ (16)
For nonrelativistic moving it is convenient to rewrite 

equation (13) in dimensional unities:

0 0
0

2 cW W W A t
v

ω− = ⋅ ⋅ ⋅ ⋅ , (17)

where  W  - kinetic energy of particles,  0v  - initial ve-
locity of particles.

As it is seen from (17) the energy of plasma elec-
trons can vary from several eV (electronvolt) up to keV 
(kiloelectronvolt) in a time about hundreds of periods of 
high-frequency field, electric field amplitude of which is 
equal ~100 V/cm.

5. CONCLUSIONS
Above we have considered the processes which de-

velop in time. In beam amplifiers the processes pass in 
space. Many of described above peculiarities of interac-
tion of beam particles and plasma with electromagnetic 
waves will take place in this case too. Thus, the equa-
tions of three-wave interaction will differ, for example, 
from the equations (1) only by the fact that time deriva-
tive will  be replaced by coordinate derivative and the 
coupling coefficients will gain a multiplier  gv equal to 
group velocity of the appropriate wave in a denomina-
tor. 

In general case the processes take place both in time 
and in space in plasma-beam experiments. Therefore it 
is difficult to expect good quantitative agreement of the 
results of the analysis of the simplified theoretical mod-
els with the results of experiments. Only in the specially 

posed experiments it is possible to rely on such coinci-
dence. Below we shall shortly describe the results of the 
experiment,  in  which  above  described  mechanism of 
stabilization of level of waves exited by beam was prob-
ably observed.

In the experiment the electronic beam with current 
1-10 A and energy 10-40 keV was injected in the inter-
acting region. As a result beam-plasma discharge devel-
opment the plasma was created. Density of plasma var-
ied from 5⋅1011 up to 1⋅1013 e/sm-3. All system was locat-
ed in a constant external homogeneous magnetic field. 
The strength of this field was made ~0.2Т. During cre-
ation of plasma it got the form of the tubular cylinder.

As a result of development beam-plasma instability 
the  proper  wave  of  plasma  electrodynamic  structure 
were  exited.  The  pulse  radiation  of  electromagnetic 
waves, which were directed practically as perpendicular 
to the axis of plasma electrodynamic structure, were ob-
served  in  experiment.  The  duration  of  pulses  varied 
from several µs (3-10) down to 0.5 µs.

The higher level of electromagnetic wave intensity, 
the shorter duration radiation pulses were transforming 
to intense single pulses. The radiation pulses from plas-
ma follow through approximately equal time intervals. 
At the large levels of capacity of an electron beam the 
duration of a radiation pulse is reduced and the time in-
terval between them becomes larger transforming to in-
dividual pulses. During failure of electromagnetic wave 
radiation the heating both of plasma electrons and elec-
trons of beam was observed. 

The details of experimental researches are in detail 
represented in the report [6].

At theoretical description, apparently, it is possible 
to consider that electrodynamic structure is tubular plas-
ma. As it is known there can be two eigen slow surface 
waves in such plasma. The frequencies of these waves 
are of order / 2pω . These waves are exited by beam. 
When amplitude of exited waves reaches some thresh-
old level, the mechanism of three-wave decay of these 
waves  on  low-hybrid  wave  and  on  electromagnetic 
transverse wave takes part. Let us note, that electromag-
netic  transverse wave is  an improper wave of  plasma 
electrodynamic  structure.  The  appropriate  dispersion 
curves and scheme of three-wave decay are shown in 
figure 1.
We do not give the expressions for coupling coefficients 
of three-wave decay as they are enough unwieldy and 
what is more important, we have no opportunity to carry 
out quantitative comparison of the experimental results 
with the results of calculations. The values of many pa-
rameters defining the dynamics of model are unknown 
for us. In particular we don’t know field intensities. Fur-
thermore the plasma cylindrical stratum is nonuniform 
in the experiment. And, typical size of inhomogeneity is 
of order of wave length. In experiment the process takes 
place both in time and in space. All this suggests that 
the quantitative comparison won’t be correct. It is possi-
ble  to  speak only about  qualitative  description  of  the 
process. 
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Fig.1. Dispersion curves of a tubular plasma waveguide

The  qualitative  situation  is  prime  enough.  Let  us 
give its brief description. At the beginning the beam ex-
cites one of eigen surface waves. These waves do not 
abandon the plasma cylinder. When the level of excited 
waves  is  high enough,  eigen wave decays into  trans-
verse electromagnetic wave and on low-hybrid one. As 
the transverse wave is not eigen, it easily abandons plas-
ma.  At  this  moment  the  effective  radiation  from the 
plasma cylinder is observed. And the radiation is practi-
cally perpendicular to the axe of the plasma cylinder. 
This part of the process is in good qualitative agreement 
with the experiment. Really in experiment the excitation 
of  low-hybrid waves was always observed simultane-
ously with radiation of a transverse wave (perpendicular 
to the axe of a waveguide). Heating of both plasma par-
ticles  and  particles  of  a  beam was  also  observed.  It 
shows that the process of decay becomes chaotic. Let's 
note that heating of the particles of a beam could be ob-
served as a result of local instability of dynamics of the 
particles of a beam in fields of excited waves. However 
for plasma particles this mechanism of heating is imped-
ed.  Thus,  at  the  moment  of  radiation  of  transverse 
waves from plasma two channels of sink of energy ap-
pear. The first channel is outlet of energy together with 
improper electromagnetic waves. The second one is ef-
fective heating of  particles  of  a  beam and plasma by 
fields of fluctuating waves. These two channels cause 
depression of level of fields in plasma and as a result 
failure of three-wave decay. The radiation from plasma 
stops. Let us note one feature of the considered mecha-
nism which can appear in such rather long system. In 
ordinary dynamics of plasma-beam instability the stabi-
lization of level of exited field occurs as a result of in-

verse influence of the field on dynamics of particles of a 
beam. As a result of such influence the particles of a 
beam move from braking phase into accelerating phase. 
The electromagnetic energy of the field is returned to 
particles of a beam. As a result of three-wave interac-
tions the level of the field is reduced. The inverse action 
of the field on particles weakens. Efficiency of energy 
transmission from particles to the field can be enlarged. 
Besides  if  the  process  of  decay  becomes  chaotic,  the 
phases of the field vary at random fashion and the in-
verse action of the field (which causes extraction of en-
ergy of the wave by the particles of a beam) is broken. 
The particles of the beam will prolong transmission of 
the energy to the wave though with smaller efficiency. 
This  pattern  of  the  process  of  excitation of  waves  in 
plasma-beam system qualitatively coincides well with a 
pattern, which is observed in experiment. We can not 
speak about quantitative coincidence yet.
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