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The influence of oscillation potential modes upon the point vortex movement near a solid wall is studied. The 

equations describing the point vortex movement in the given field of a potential wave in the presence of a solid wall 
are obtained. The character of the vortex movement is shown to change qualitatively under the influence of a poten-
tial wave. All the possible modes of vortex movement under the influence of a potential wave are analyzed.  
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1. INTRODUCTION 
In all the hydrodynamic spheres there are two types 

of extremely important objects. They are wave and vor-
tex. Both objects are claimed to explain a lot of phe-
nomena in hydrodynamic media. The problem is that 
vortexes, unlike waves, are the solutions of nonlinear 
hydrodynamic equations. Linear approximation for vor-
texes has little content. This causes a number of obsta-
cles for their introduction and studying. The latter gets 
even more complicated because the fruitful idealization 
of nonlinear waves – „one-dimensionalization” – does-
n't work for vortexes. Vortexes are inevitably many-
dimensional. The closest to quasiparticles and well-
studied vortexes appear in two-dimensional, ideal hy-
drodynamics. They are point vortexes. The point vor-
texes movement equations in the Hamiltonian form 
were obtained by Kirchhoff. The evolution of interact-
ing point vortexes is studied rather fully. Two vortexes 
movement was studied as early as in the works (see, for 
example, [1]). Three point vortexes evolution was ana-
lyzed in detail in the papers [2,3] (see also [4,5]). Non-
integrability of four or more vortexes problem, in case 
of general position and chaos initiation, is proved in the 
papers [6-9]. The studying of liquid boundaries was 
started rather long ago by Helmholtz. Today the proper-
ties of waves, on the one hand, and vortexes, on the 
other hand, have been studied rather deeply. But in hy-
drodynamic media waves and vortexes are usually pre-
sent simultaneously. So the research on the mutual in-
fluence of the main hydrodynamic objects is of great 
importance. The base of such influence studies is made 
in Lighthill works [11,12]. They explore the potential 
waves generation by vortex movements. The research of 
the reverse influence of potential waves on the vortexes 
evolution has been started comparatively recently 
[14,13]. It has turned out that the potential waves cause 
the character of point vortexes evolution to change 
qualitatively. The example of it can be the phenomenon 
of vortexes (with the same vorticity sign) collapse under 
the influence of potential oscillations, even with small 
amplitude [14,13]. Such a collapse of point vortexes 

with shared vorticity sign is impossible without any 
potential oscillations. 

The paper studies the influence of oscillation poten-
tial modes upon the point vortex movement near a solid 
wall. It is shown that the character of the vortex move-
ments changes qualitatively. All the possible modes of 
vortex movement under the influence of a potential 
wave are analyzed. 

2. VORTEX MOVEMENT EQUATIONS  
IN THE FIELD OF A POTENTIAL WAVE 

NEAR A WALL 
Let us first discuss the velocity field of a potential 

wave in the presence of a solid wall in a compressed 
liquid. Let us consider the potential waves amplitudes 
small. In this case, there is a potential mode in the com-
pressed liquid – sound waves (see, for example, [15]). 
In the presence of a wall two the most interesting sta-
tionary situations of sound wave spreading are realized. 
They are its spreading parallel to the wall and falling to 
the media boundary at some angle. In this paper we 
shall consider the field of falling and reflected waves 
from the wall as the most general case. Let the liquid 
occupy half-space , and the impermeable boundary 

. Without loss of generality, let us consider poten-
tial waves spreading in the plane . 

>0y
= 0y

( , )x y
Then the velocity field potential is determined by 

the falling and reflected wave from the solid boundary 
 and has the following form.  = 0y

( )0= cos cos(s y xa yk k xϕ − Ω )t    (1)  

The angle α  of the wave falling on the medium 
boundary  and . tan( = /y xk k)α = ckΩ

Now let us consider the movement equations for a 
point vortex, which is situated near the wall under the 
influence of the given potential wave. To derive these 
equations, we use the approach, developed in [13,14]. It 
is generally known that the vortex is trapped in the liq-
uid, and so, the vortex velocity coincides with the liquid 
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velocity  in the point of its location, which 

means that 

( , )V Vx y

1
1 1

= = =
dx

Vx x x y ydt
, 

1

1 1
=

= =
dy

Vy x x y ydt
. 

Here  is the vortex location in the positive half-
space . According to Helmholtz theorem, the ve-
locity field can be split to a sum of vortex and potential 
components 

G
. The potential component 

consists of a given external flow and waves induced by 
the vortex movements. But the contributions connected 
with the induced potential waves are proportional to 
square Mach number (see. [11]) and can be neglected in 
the general approximation [13,14]. 

1 1( , )x y
> 0y

 

p

y

= vV v v+
G G

The vortex velocity field for a single vortex near a 
solid wall is well known [10] v , and the 

potential component of the velocity  (the ve-

locity potential is shown above). Then the equations of 
the vortex movement in the field of the given falling 
and reflected wave (1) can be written in the following 
form 

= ( /4 , 0)v πΓ
G

=pv ϕ∇
G

( )= 1 cos sin(
dX

Y X
d Y

δ
ε

τ
− − )   (2) 

( )= sin cos( )
dY

Y X
dτ

∆   (3) 

where dimensionless variables τ ,  are 

introduced and the transition to moving base is made  
. In this case, dimensionless parameters 

= tΩ = yY yk

=X k xx τ−

0
2

=
a kxε
Ω

, 0
2

=
a ky

∆
Ω

 and =
4

x yk k

ckπ

Γ
δ , which charac-

terize the wave velocity components amplitudes and the 
vortex intensity respectively, appear. 

In the absence of potential oscillations, this equa-
tions system is reduced to the well-known vortex 
movement equations near a solid wall (see, for example, 
[10]). The character of vortex movement in this case is 
very simple. The vortex moves along the wall preserv-
ing the distance to it and with constant speed 

, depending on the vorticity value  and 
the initial distance to the wall. Using the equations ob-
tained, let us pass to the analysis of the possible vortex 
movement modes under the influence of a potential 
wave near a solid wall. 

0= /4Vv πΓ y Γ

3. VORTEX MOVEMENT MODES  
IN THE FIELD OF FALLING  

AND REFLECTED SOUND WAVES 
Let us qualitatively analyze the equations system 

(2), (3). The coordinates of fixed points are defined by 
the zeros of the right parts in these equations 

( )1 cos sin( ) =Y X
Y

δ
ε− − 0 , (4) 

( )sin cos( ) = 0Y X∆ .  (5) 
The equation (5) has two types of solutions and, so, 
there appear two sets of fixed points. We shall mark 
their coordinates by indices  and . The fixed points 
form a point system, which is periodical along  axis 
with the period . This means the periodicity of the 
phase portraits for the system (2), (3) along  axis with 
the period  . 

A B
x

2π
x

2π
In case of ,  coordinates of the fixes points are  A x

=
2

X kA
π∗ ± π   (6) 

here . = 0,1, 2,k …
From the equation (5), we can also find coordinates 

of the fixed points  B
=Y nB π∗ ± , (7) 

where . It is natural that only fixed points 
with the coordinates , situated in the part filled 
with liquid, have physical meaning. So, in the case of 

 one should limit oneself with only Y n . 

= 1, 2,n …
> 0y

B =B π∗
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Fig. 1. The position of fixed points  and  along 

 axis at different values of δ  and fixed value of 
. The solid lines on the diagram correspond to 

 type fixed points, and dotted line – to  type points. 
The dotted line corresponds to two  fixed points, be-
cause they have the same  coordinates, but different 

 coordinates. It is easy to see that the change of the 
fixed points number with δ  increase is connected with 
the birth and annihilation of the fixed points 
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The location of the fixed points  along  axis is de-
termined by the equation  

A y

= 1 cos( )YAkYA

δ
α ε ∗−∗ , (8)  

where 
2

= sin( ) = ( 1)k
kkπ

α π± −

A
ε

A
δ ε

. The number of the 

solutions of this equation and, so, the number of fixed 
points  per period, essentially depends on the pa-
rameters  and δ . In Fig. 1 it is shown how the num-
ber of fixed  type points changes with the change of 
parameter  and fixed . In fact, the figure can be 
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regarded as a bifurcational diagram at  changing. The 
bifurcations leading to the change of fixed points num-
ber are the birth or annihilation of fixed point  and  
pairs. Analyzing the equation (8), one can find areas 
with different numbers of  type fixed points in the 
parameter plane. 

δ

A B

B

A

a022

b022

c110

c202

d202

( ,ε δ

A

,AX Y∗

sin(∗ ∗
2Y

A

δ
∆ −

∗
Y

) <Aε
 

 

in(α

∆

B

)

∗ 

2 2os− ) =

Analogously, the equation defining the fixed  
points location and number, has the form  

sin( ) =
n

X nB n

δ π
α

π ε

−∗ , (9) 

where . This equation has solutions at 
fixed  if the following inequality is true: 

= cos( )nnα
n

π

1 /− |nδ π ε≤

B

| . These conditions at different  val-
ues, define the areas on the parameter plane with differ-
ent number of fixed  points on a period of the phase 
portrait. The locations of the fixed points  on Y  axis 
at different values of δ  and fixed , are also shown in 
Fig. 1. 
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Fig. 2. The spaces of parameters , defining the number and type of fixed points in the phase portraits, are 
shown. On the left there are the parameter spaces at , on the right — at . The first digit in the space 
number denotes the number of fixed points  with hyperbolic type, the second one shows the number of elliptic 
fixed points , and the third digit means the number of hyperbolic fixed points  for numbers starting with  and 

 or the number of nodes for numbers starting from  and . Phase portraits with the same numbers, but differ-
ent letters differ one from another with their shift along  axis on a half-period equal to π , for example,  

, c  at π  shift 
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Now let us discuss the types of fixed points. The 
characteristic equation for fixed points  has 

the form 

( )A
∗

.)A
 
  
 

2 = sin( )A k A k
Y

λ α α ε

A

It is easy to 

see that fixed points  can be only elliptic (in case 

sin( ) sin( 02Y Yk A k
YA

δ
α α∗ ∗∆ −

∗    is true) or hyperbolic 

(at sin( ) s ) > 02Y Yk A k A
YA

δ
α ε∗∆ −

∗

 

 

). Parameter  is 

included in these condition trivially, and only its sign 
matters. When the sign of  changes, hyperbolic fixed 
points turn into elliptic ones, and elliptic — into hyper-
bolic without changing their position in the phase space. 

∆

The type of fixed points  is defined analogously 
by the following characteristic equation 

cos( )( c ( 0X Xn B Bλ α λ ε ε∗ ∗− ∆ − ∆  

the solutions of which have the form: 

cos( )
= [ ( ) (

2

X B
nBλ α ε± ∆ − ± ∆ + ,  

∗
)]ε

whence  and  points have hy-
perbolic type, and in case of  or 

 the fixed points are stable and unstable 
nodes. In this case the influence of  is more essential. 
Summing up the information about the number of fixed 
points on a period and about their types, one can plot 
the parameter spaces for any phase portraits types real-
ized in this mode (see Fig. 2). All the parameter space is 
divided into an infinite number of areas with different 
phase portraits types. A part of these areas, for com-
paratively simple phase portraits, is shown in Fig. 2. 
The choice of spaces is defined by physically sensible 
restrictions  and not too large δ  (for example, 

 ). Plotting all the rest of the spaces and 
their geometric position can be easily continued on all 
the parameter plane. The areas numeration is chosen 
according to the type and number of the fixed points 
existing in the phase portrait at these values of parame-
ters. 

> 0, > 0ε∆

< 0

| | 1ε ≤
| ε≤

< 0, < 0ε∆

∆

< 0, > 0ε∆
> 0,ε∆

|1 /4δ π−
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Let us now describe the modes of vortex movement 
in the moving base. Of course, the complexity of the 
phase portraits and, so, that of the vortex movement 
modes, increases with the increase of fixed points num-
ber on a period. The phase space division with sepa-
ratrices into separate cells is common. The number of 
such cells increases with the increase of fixed points 
number on a period. In this case, only three types of 
behavior can be realized in the cells. These types are 
non-linear oscillations of trapped vortexes with zero 
velocity of movement along  axis, non-linear oscilla-
tions of passing vortexes with nonzero average velocity 
of motion along  axis and nonlinear relaxation into a 
stable node inside the cell. The last behavior type is 
unusual. During the relaxation process, the memory 
about the initial vortex state is entirely lost. Such a be-
havior is typical for dissipative systems. In (Fig.3) sim-
ple examples of phase portraits, characteristic for differ-
ent parameter spaces, are shown. 

x

x

Phase portraits in Fig. 3 on the left, are plotted at 
 and , and on the right – at 
 and ∆ ; they have a certain 

symmetry.  
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Fig. 3. In the left figure (top-down) one can see the 
typical phase portraits for values of parameters belong-
ing to the spaces , ε , ), 

δ , , ), δ , 
, ), δ , , ). 
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It is easy to notice, that they turn into each other in 
case of replacement of hyperbolic points with elliptic 
ones and vice versa. Let us start from the description of 
the phase portraits shown in the left figure. We can see 
that the phase portraits are periodical along  axis with 
period and consist of cells, limited with separatrices 
of hyperbolic fixed points. Inside these cells there are 
elliptic fixed points. The vortex, whose initial coordi-
nates are in such a cell, is trapped and starts nonlinear 
oscillations lengthwise and crosswise near the elliptic 
point. If the initial location of the vortex is higher of 
lower than the cell, then the vortex moves along the 
boundary, making nonlinear oscillations crosswise.  

x
2π

The phase portraits on the right (see Fig. 3) also 
consist of cells. On the two top phase portraits on the 
right such cells are analogous to those on the left, so the 
vortex movement modes are analogous. On the two 
bottom phase portraits on the right, there appear cells of 
a different type. In the vertexes of these cells there are 
hyperbolic fixed points, and on two separatrices, joining 
the vertexes, there are a stable node and an unstable 
one. Such areas can be distinctly seen on the bottom 
phase portrait. The appearance of the nodes means that 
a vortex with the initial conditions, which belong to the 
corresponding cell, will inevitable be drawn into the 
stable node. This is the manifestation of one more vor-
tex movement mode — its trapping by a stable node, 
followed by changing the vortex velocity to zero (in a 
moving base). 

At the end of this part, we shall consider the 
parameter space, in which it is easy to prove the inte-
grability of the vortex movement equations. Equations 
system (2), (3) can be reduced to a quasi-Hamiltonian 
form  

=
dX H

dt Y

∂
∆

∂
, (10) 

=
dY H

dt X
ε

∂
−
∂

. (11) 

The part of Hamiltonian  is played by the function 
. In case of pa-

rameters , the equations system (10),(11) be-
comes Hamiltonian, and its Hamiltonian does not de-
pend on time. So, according to Liouville theorem about 
the integrability of Hamiltonian systems, this system is 
integrated in quadratures. Let us note that under given 
condition  ε  the integrable systems belong to the 
parameter spaces (  and 

. In the general case, the initial 
equations system cannot be reduced to Hamiltonian 
form. It is easy to understand, taking into account the 
presence of modes with fixed points such as nodes, 
which cannot appear in Hamiltonian systems. 

H
si∆= ln( ) n( ) sin(H Y Y Yδ ε∆ − ∆ −

= ε∆

= ∆
> 0, > 0,ε δ

( < 0, > 0, < 0)ε δ ∆

)X

> 0)∆

4. CONCLUSION 
In summary, we shall discuss the main qualitative 

changes in vortex evolution influenced by a potential 
wave. First of all, we shall note that the state of vortex 
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uniform motion with preserved distance to the wall is 
easily broken under the influence of the wave. In this 
case the distance changes as well as lengthwise and 
crosswise (to the wall) velocities. In the moving base, 
even the direction of the vortex movement can change 
to the opposite. Taking into account that a point vortex 
in a real liquid corresponds to a linear extended vortex, 
one can expect horseshoe-shaped and more complicated 
structures to appear due to the interaction of the linear 
vortex with heterogeneous wave packets of sound 
waves. 

Now let us consider the influence of small correc-
tions, appearing due to the potential waves influence 
induced by the vortex movement, on the vortex move-
ment. Basing upon the general properties of dynamic 
systems, one can expect that taking the corrections into 
account should make separatrices to disappear and thin 
stochastic layers to appear about them. This, in its turn, 
means the possibility of vortex wandering about the 
overlapping stochastic layers. In the rest of phase space 
the qualitative picture of vortex behavior should not 
have any qualitative changes. 

It is interesting to note that the modes causing the 
memory loss about the initial state of the vortex, lead to 
vortex component energy changes. This implies that in 
wave–vortex system there can an effect appear, which is 
analogous to collisionless wave attenuation in plasma. 
In other words, the interaction of a potential wave with 
point vortexes in the ideal liquid can lead to the change 
of its amplitude. But the analysis of such effects re-
quires self-consistent description of waves and vortexes 
interaction in the quasilinear theory manner, which is 
beyond the subject of this work. 
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ВЛИЯНИЕ ПАДАЮЩЕЙ И ОТРАЖЕННОЙ ПОТЕНЦИАЛЬНОЙ ВОЛНЫ НА ЭВОЛЮЦИЮ 

ТОЧЕЧНОГО ВИХРЯ У СТЕНКИ 

К.Н. Кулик, А.В. Тур, В.В. Яновский 

Изучено влияние потенциальных мод колебаний на движение точечного вихря вблизи твердой стенки. 
Получены уравнения, описывающие движение точечного вихря в заданном поле потенциальной волны при 
наличии твердой стенки. Показано, что характер движения вихря под влиянием потенциальной волны каче-
ственно меняется. Проанализированы все возможные режимы движения вихря под воздействием потенци-
альной волны. 

 
 
ВПЛИВ ПАДАЮЧОЇ ТА ВІДБИТОЇ ПОТЕНЦІЙНОЇ ХВИЛІ НА EВОЛЮЦІЮ ТОЧКОВОГО 

ВИХОРА БІЛЯ СТІНКИ 

К.М.Кулик, А.В.Тур, В.В.Яновський 

Вивчена дія потенційних мод коливань на рух точкового вихору поблизу твердої стінки. Отримані рів-
няння, які описують рух точкового вихора у заданому полі потенційної хвилі у наявності твердої стінки. 
Показано, що характер руху вихору під дією потенційної хвилі змінюється. Проаналізовані всі можливі ре-
жими руху вихору під дією потенційної хвилі. 
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