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A new type of chaotic billiards is introduced. Unlike the known ones, it contains scattering as well as focusing 

regions of the boundary and has no neutral components. The dumbbell-like from polymorphous billiards family is 
proposed. Its characteristic phase dynamics (at control parameter changes) is studied and Lyapunov exponent as 
well as invariant reflections density on the boundary are calculated. The chaotic behavior of the beams and their 
uniform stationary distribution are proved.  
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1. INTRODUCTION 

Billiards, i.e. systems with elastic or mirror reflec-
tions, occupy the central position in the deterministic 
chaos theory and have numerous physical applica-
tions. Chaotic billiards, in which the dynamics of all 
beams is chaotic, have gained a special popularity in 
deterministic chaos theory. In them, similar trajecto-
ries exponentially diverge in phase space, which 
causes stirring and ergodicity. Among chaotic billiards 
scattering Sinai billiards [1-3] and defocusing Buni-
movich billiards [4-6] are distinguished. A distinctive 
geometric feature of scattering billiards is that all their 
boundary consists only of scattering components with 
negative curvature . The reflection from scatter-
ing components is always accompanied by angle wid-
ening of the bundle of initially close trajectories. This, 
eventually, leads to their chaotization. The boundary 
of defocusing billiards includes components with non-
negative curvature . In these billiards, chaotiza-
tion is assured by defocusing of the beams, which are 
first focused at reflection from convex components of 
billiard boundary. Defocusing mechanism is an alter-
native to scattering mechanism. Absolute chaos in 
billiards with only concave components ( ) is 
found only in case their absolute defocusing [6]. In 
smooth convex billiards this condition is not true. For 
defocusing mechanism, boundary singularities, such 
like return points, are needed. In stadiums with con-
vex boundary, defocusing works due to the existence 
of rectilinear regions with zero curvature .  
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Chaotic billiards with mixed scattering character, 

i.e. billiards, whose boundary includes components of 
positive as well as of negative curvature, have never 
been considered before. It is obvious that beams scat-
tering and (de)focusing are contrary by their nature. In 
general case, they will compete. So full chaos should 
be expected from billiards of only special type, in 
which these mechanisms are not in each other’s way, 
but supplement each other. Such chaotic billiards, 
whose boundary includes components with curvature 
of different sign, really exist. Among them are poly-
morphous billiards, introduced below. 

2. POLYMORPHOUS AND DUMBBELL-
LIKE BILLIARS 

Let us smoothly join (so that the tangent has no dis-
continuities) an even number of arcs taken from one 
circle to get a closed curve. We shall call the billiard 
limited by such a curve polymorphous billiards. Its 
boundary is formed by the arcs of the same circle and 
has everywhere constant curvature to sign. Some exam-
ples of such billiards one can see in Fig. 1.  

 
Fig. 1.  Geometry of polymorphous billiards: sym-

metric and asymmetric; 6(on the left) and 8 (on the 
right) orders 

For closed boundary of polymorphous billiard it is 
necessary that initial number of circles arches should be 
even and not less than four. The distinctive feature of 
their boundary is that its curvature alternately changes 
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its sign, i.e. , where (?). If radiuses of 
all the discs and circles which limit them are equal to 
one, then . The curvature here is constant 
by its absolute value. The leap in the contact points of 
neighboring components affects only the vector of nor-
mal, unlike the everywhere continuous tangent field. 
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The simplest polymorphous billiard is a dumbbell-
like billiard, the boundary of which is formed by arcs of 
four circles (Fig. 2). A smaller number of arcs is impos-
sible, otherwise the smoothness of the boundary ob-
tained would have been broken. 

 

 
Fig. 2.  Geometrical portrait of family of dumbbell-

like billiards. It is shown the typical billiard trajectories 

To study the “dumbbell” dynamics, we use geometric-
dynamical approach [7-10], in which beams dynamics is 
described in a special symmetric phase space. Let us chose 
angle  between the axis, connecting the centers of the 
convex components of the border and the beam, drawn to 
the point of contact between the convex and concave 
components as the control parameter of the dynamic sys-
tem. This angle  corresponds to the width of the middle 
of the dumbbell. It is changed from 

χ

χ
2π  to 6π . At 

2χ π=  there is no narrow middle and we have a billiard 
in a circle instead of the dumbbell one. At 3χ π=  the 
circles corresponding to the convex parts of dumbbell 
boundary, contact (inside of the billiard). At 2χ π=  we 
have the most symmetric configuration. At 6χ π=  the 
middle reaches its maximum and billiard falls into two 
ones. 

3. CHAOTIC DYNAMICS OF “DUMBBELL” 
The phase portrait gives us important information 

that billiard in a dumbbell has developed chaos. Fig. 3 
shows changes in “dumbbell” phase portrait at changes 
of control parameter [ ]6, 2χ π π∈ . At [0, 6χ π∈ ]  
the dumbbell falls into a pair of symmetric billiards in 

the form of “drops” with the identical phase portrait 
(Fig. 4). 

 
Fig. 3.  Phase portrait of family of dumbbell-like 

billiards in symmetric phase space at 6 2π χ π< <  
 

 
Fig. 4.  Geometrical and phase portrait of family of 

dumbbell-like billiards at 0 χ π< < 6 . By arrows it is 
noted the typical trajectories in symmetric phase space 

 
At 6π χ π< < 2  there are two lacunas in the 

dumbbell phase space. So the billiard has  topologi-
cal type (sphere, stuck up with 6 Moebius loops). At 

6N

0 < < 6χ π  there is only one return lacuna. So topo-
logical type of “drop” is .  decreasing, the phase 
volume of “dumbbell” lacunas increases, but one of the 
“drop” lacuna decreases. Phase trajectories never get 
inside the lacunas. At intermediate 

4N χ

4χ π= , lacunas 
overlap. Instead of a pair of isolated lacunas, in the 
symmetric phase space, there is one common region of 
classically illegal movement. 

Trajectories dynamics at 2χ π≠  is always chaotic. 
In the symmetric phase space of the dumbbell there are 
no traces of any elliptic (intregrable) movement compo-
nent. Regular trajectories like “whispering galleries” are 
ruined by lacunas, that appear at any “bottleneck”, how-
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ever small. As a result, there is one common ergodic 
movement component with stirring. The phase transition 
from integrable billiard in a circle to chaotic billiard in a 
dumbbell takes place by the scenario of coarse bifurca-
tion. Arbitrarily small perturbance, defined by the pa-
rameter 2ε π χ= −

079 χ =

ε

, leads to global reconstruction of 
the phase portrait – all the neutral cycles of the billiard 
become unstable, and quasi-periodic orbits become cha-
otic. 

( )1 2,3 2

The phase portrait corresponds to the billiard dy-
namic in the asymptotic limit at arbitrarily great number 
of iterations. The dumbbell dynamics studies on finite 
time intervals shows that at very small  
(see Fig. 3 at the control parameter change from 

 to ) phase trajectories stay for 
a long time in intermediate rationally commensurable 
layers between the ruined invariant curves. For homo-
geneous filling of all the phase space, they need essen-
tially larger number of iteration of the order 10  
and more than at . This lets us conclude that 
the chaotization of the dumbbell starts by the scenario 
of forming cantori at ruining invariant curves near non-
perturbed periodic orbits. Phase trajectories slowly ooze 
through these cantori. Invariant curves ruin the quickest 
near the periodic orbits with 2 period, joining the con-
cave components of the dumbbell, i.e. near the phase 
points 

3 410 10ε − −∝ ÷

9 10…

1.57χ = 1.56879

110−∝

 and (3 2,

110−∝

4 510…

)1 2 . This corresponds to 
more filled (dark) zones on the phase portrait. Let us 
note that the appearance of irregular invariant sets in the 
phase space of the dumbbell is connected with the 
breaks of involution and of its derivatives. The phase 
cascade rapidly multiplies these breaks, so non-
perturbed KAM-tori (invariant curves) of the circle bil-
liard turn into the fractal cantori of the dumbbell. De-
formation parameter ε  increasing, apparent Cantor-
structure collapses. It is changed by a structure of lacu-
nas, connected with the geometric shadow for the bil-
liard beams. At ε  any phase trajectory fills the 
available phase space rather quickly during the time of 
the order about 10  iterations. 

12

4. LYAPUNOV EXPONENT 
The phase portrait of the “dumbbell” apparently 

demonstrates that this is a chaotic billiard with static 
properties of phase trajectories. One of the main nu-
meric characteristics of the deterministic chaos is 
Lyapunov index, i.e. the index of exponential diver-
gence of the phase trajectories for the dynamic system. 
The positivity of Lyapunov index, λ > , is the most 
frequently used as a chaoticity criterion of a dynamic 
systems, including billiards, see. [11] etc. 

0

Numeric dependence of the “dumbbell’s” Lyapunov 
index is shown in Fig. 5. Lyapunov index is always 
strictly positive at any choice of the initial beam (the 
point of the symmetric phase space). In Fig. 5, the mo-
notonous growth of the lacunas full volume, i.e. of 
phase image of the geometric shadow with parameter 

 decrease is also shown. Besides, Fig. 5 shows, in 
double logarithmic scale, the scaling of λ ε  at 
χ

( ) A γε=

2ε π χ= − �1, i.e. in the point of transition form bil-
liard in circle to billiard in the dumbbell with arbitrarily 

small “bottleneck”. This bifurcation can be regarded as 
2nd-tupe phase transition, for which Lyapunov index is 
the order parameter. The numeric values of the con-
stants are  (renormalization constant) and 

 (critical index). 

0.4028A e≈
0.3565γ =

6π χ< < 3π

ε π= −

 
 
 

α α

0n
+∞
==∪ BS

( )

 
Fig. 5.  The dependence of Lyapunov exponent of 

the dumbbell billiards on the control parameter from 
“drop” form to circle form. On the right the Lyapunov 
index scaling for a dumbbell close to a circle billiard is 
shown 

The growth of lacunas phase volume affects the 
dumbbell dynamic in different ways. At 3 2π< <π χ  
it strengthens the chaos, 0Ld dλ µ > , and at 

, inhibits it, 0Ld dλ µ < . The phase 
volume of the lacunas is rather crude (average) charac-
teristic. So one should expect correlation here only for 
some averages of the billiard, e.g., average path length. 

5. INVARIANT DISTRIBUTION 
It is convenient to use the stationary reflection den-

sity, introduced in [12], for the description of statistic 
properties. In the symmetric phase space it is easier to 
calculate than full invariant measure. At small “bottle-
neck” of the dumbbell we shall decompose the billiard 
mapping by 2 1χ �  

(1 1 1
1 2

2 2 2

0 1
,

1
oε

ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ ϕα
    

= = +    −    
B  (1) )

∂

ε

where  defines the average inclination of 
involution level; lines in the phase space. We shall limit 
ourselves to the main contribution and cast out the con-
tributions to dynamics from the special set 

 (the full preimage of the trajecto-
ries visiting the lacunas boundary) of the vanishing 
measure, . The equation for one-point 
invariant density will have the following form 

( ) 2ε= >

( )n L−

( ) Oµ =S ( )

( ) ( )
1

0

1 d Oϕ ψ
ρ ϕ ρ ψ ρ ψ ε

α α
+ =  

 ∫ + , (2) 

Solving the equation (2) by the successive iterations 
method, taking into account that α >  (this assures the 
convergence of series), we shall have 

2

( ) ( )1 Oερ ϕ ε= + . (3) 

The solution (3) is coordinated with the normaliza-
tion only under the condition that . For a 
chaotic billiard, due to its stirring, this is the only solu-
tion. The numeric calculation shows that stationary den-
sity  also stays constant at arbitrary ε , see  

( ) 1ερ ϕ =

( )ρ ϕ
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Fig. 6. This is obviously connected with the constancy 
of the absolute curvature in the given billiard.  

 

 
Fig. 6.  Stationary density of reflections on the bil-

liard boundary. The full length of the billiard boundary 
is normalized to one 

So, in asymptotic limit, the beams visit the dumbbell 
boundary with approximately equal frequency. In the 
symmetric phase space, on the contrary, the phase 
points are distributed non-uniformly because of the la-
cunas presence. 

6. CONCLUSIONS 
A new type of polymorphous billiards with chaotic 

dynamics of the beams is proposed. Unlike the known 
chaotic billiards, their boundary includes scattering and 
focusing boundary components at the same time. So the 
chaotization mechanism in such billiards is of mixed 
character. The reconstruction dynamics and phase re-
constructions in one-parametric family of typical poly-
morphous dumbbell-like billiards are studied. The cha-
otic behaviour of the beams and uniform distribution of 
the reflections are proved  

One should expect analogous behavior of the beams 
in polymorphous billiard of arbitrary form. The chaotic 
properties found let one use polymorphous billiard in 
applications. In particular, “dumbbell” form can be used 
for example, in atomic [13], microwave [14] or semi-
conductor billiards [15]. Chaos peculiarities in poly-
morphous billiards can also influence the character of 
light pass in optic nanoceramics microclusters, formed 
due to coagulating of ball-like nanoparticels etc. 
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ПОЛИМОРФНЫЙ БИЛЬЯРД КАК НОВЫЙ ТИП БИЛЬЯРДОВ  

С ХАОТИЧЕСКОЙ ДИНАМИКОЙ ЛУЧЕЙ 

С.В. Найденов, Ю.Н. Масловский, В.В. Яновский  

Введен новый тип хаотических полиморфных бильярдов. В отличие от других хаотических бильярдов они од-
новременно содержат рассеивающие и фокусирующие участки границы, но не содержат нейтральных компонент. 
Предложено семейство полиморфных бильярдов в форме гантели. Изучена их фазовая динамика и определены 
зависимость показателя Ляпунова (от управляющего параметра семейства бильярдов) и инвариантная плотность 
распределения отражений по границе бильярда. Компьютерные вычисления подтверждают наличие полного ди-
намического хаоса и универсальность стационарной функции распределения в таких бильярдах. 

 

ПОЛІМОРФНИЙ БІЛЬЯРД ЯК НОВИЙ ТИП БІЛЬЯРДІВ  
З ХАОТИЧНОЮ ДИНАМІКОЮ ПРОМЕНІВ 

С.В. Найдьонов, Ю.М. Масловський, В.В. Яновський 

Уведений новий тип хаотичних поліморфних більярдів. На відміну від інших хаотичних більярдів вони одно-
часно мають компоненти границі, що розсіюють та фокусують, але не є нейтральними. Запропоновано сімейство 
поліморфних більярдів у формі гантелі. Вивчена їх фазова динаміка та визначені залежність показника Ляпунова 
(від керуючого параметра сімейства більярдів) та інваріантна густина розподілу відбитків від границі більярду. 
Комп’ютерні обчислення доводять наявність повного динамічного хаосу та універсальність стаціонарної функції 
розподілу у таких більярдах. 
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