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A new type of chaotic billiards is introduced. Unlike the known ones, it contains scattering as well as focusing
regions of the boundary and has no neutral components. The dumbbell-like from polymorphous billiards family is
proposed. Its characteristic phase dynamics (at control parameter changes) is studied and Lyapunov exponent as
well as invariant reflections density on the boundary are calculated. The chaotic behavior of the beams and their

uniform stationary distribution are proved.
PACS: 05.45.-a

1. INTRODUCTION

Billiards, i.e. systems with elastic or mirror reflec-
tions, occupy the central position in the deterministic
chaos theory and have numerous physical applica-
tions. Chaotic billiards, in which the dynamics of all
beams is chaotic, have gained a special popularity in
deterministic chaos theory. In them, similar trajecto-
ries exponentially diverge in phase space, which
causes stirring and ergodicity. Among chaotic billiards
scattering Sinai billiards [1-3] and defocusing Buni-
movich billiards [4-6] are distinguished. A distinctive
geometric feature of scattering billiards is that all their
boundary consists only of scattering components with
negative curvature K < 0. The reflection from scatter-
ing components is always accompanied by angle wid-
ening of the bundle of initially close trajectories. This,
eventually, leads to their chaotization. The boundary
of defocusing billiards includes components with non-
negative curvature K > 0. In these billiards, chaotiza-
tion is assured by defocusing of the beams, which are
first focused at reflection from convex components of
billiard boundary. Defocusing mechanism is an alter-
native to scattering mechanism. Absolute chaos in
billiards with only concave components (K >0) is
found only in case their absolute defocusing [6]. In
smooth convex billiards this condition is not true. For
defocusing mechanism, boundary singularities, such
like return points, are needed. In stadiums with con-
vex boundary, defocusing works due to the existence
of rectilinear regions with zero curvature K =0.

Chaotic billiards with mixed scattering character,
i.e. billiards, whose boundary includes components of
positive as well as of negative curvature, have never
been considered before. It is obvious that beams scat-
tering and (de)focusing are contrary by their nature. In
general case, they will compete. So full chaos should
be expected from billiards of only special type, in
which these mechanisms are not in each other’s way,
but supplement each other. Such chaotic billiards,
whose boundary includes components with curvature
of different sign, really exist. Among them are poly-
morphous billiards, introduced below.
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2. POLYMORPHOUS AND DUMBBELL-
LIKE BILLIARS

Let us smoothly join (so that the tangent has no dis-
continuities) an even number of arcs taken from one
circle to get a closed curve. We shall call the billiard
limited by such a curve polymorphous billiards. Its
boundary is formed by the arcs of the same circle and
has everywhere constant curvature to sign. Some exam-
ples of such billiards one can see in Fig. 1.
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Fig. 1. Geometry of polymorphous billiards: sym-

metric and asymmetric; 6(on the left) and 8 (on the
right) orders

For closed boundary of polymorphous billiard it is
necessary that initial number of circles arches should be
even and not less than four. The distinctive feature of
their boundary is that its curvature alternately changes
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its sign, i.e. sgnk, =(=1)"", where (?). If radiuses of
all the discs and circles which limit them are equal to
one, then K = (—1)"+1 . The curvature here is constant

by its absolute value. The leap in the contact points of
neighboring components affects only the vector of nor-
mal, unlike the everywhere continuous tangent field.

The simplest polymorphous billiard is a dumbbell-
like billiard, the boundary of which is formed by arcs of
four circles (Fig. 2). A smaller number of arcs is impos-
sible, otherwise the smoothness of the boundary ob-
tained would have been broken.

r=73

Fig. 2. Geometrical portrait of family of dumbbell-
like billiards. It is shown the typical billiard trajectories

To study the “dumbbell” dynamics, we use geometric-
dynamical approach [7-10], in which beams dynamics is
described in a special symmetric phase space. Let us chose
angle y between the axis, connecting the centers of the

convex components of the border and the beam, drawn to
the point of contact between the convex and concave
components as the control parameter of the dynamic sys-
tem. This angle y corresponds to the width of the middle

of the dumbbell. It is changed from n/2 to n/6. At
x =7 /2 there is no narrow middle and we have a billiard
in a circle instead of the dumbbell one. At x =7 /3 the

circles corresponding to the convex parts of dumbbell
boundary, contact (inside of the billiard). At y =n/2 we

have the most symmetric configuration. At y =7n/6 the

middle reaches its maximum and billiard falls into two
ones.

3. CHAOTIC DYNAMICS OF “DUMBBELL”

The phase portrait gives us important information
that billiard in a dumbbell has developed chaos. Fig. 3
shows changes in “dumbbell” phase portrait at changes

of control parameter y €[n/6,m/2]. At y €[0,n/6]

the dumbbell falls into a pair of symmetric billiards in
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the form of “drops” with the identical phase portrait
(Fig. 4).
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Fig. 3. Phase portrait of family of dumbbell-like
billiards in symmetric phase space at ©/6 <y <m/2

Fig. 4. Geometrical and phase portrait of family of
dumbbell-like billiards at 0 <y <m/6. By arrows it is

noted the typical trajectories in symmetric phase space

At n/6<y <m/2 there are two lacunas in the
dumbbell phase space. So the billiard has N, topologi-

cal type (sphere, stuck up with 6 Moebius loops). At
0<y <m/6 there is only one return lacuna. So topo-

logical type of “drop” is N,. x decreasing, the phase

volume of “dumbbell” lacunas increases, but one of the
“drop” lacuna decreases. Phase trajectories never get
inside the lacunas. At intermediate y =m/4, lacunas

overlap. Instead of a pair of isolated lacunas, in the
symmetric phase space, there is one common region of
classically illegal movement.

Trajectories dynamics at y #mn/2 is always chaotic.

In the symmetric phase space of the dumbbell there are
no traces of any elliptic (intregrable) movement compo-
nent. Regular trajectories like “whispering galleries” are
ruined by lacunas, that appear at any “bottleneck”, how-



ever small. As a result, there is one common ergodic
movement component with stirring. The phase transition
from integrable billiard in a circle to chaotic billiard in a
dumbbell takes place by the scenario of coarse bifurca-
tion. Arbitrarily small perturbance, defined by the pa-
rameter € =n/2—y , leads to global reconstruction of

the phase portrait — all the neutral cycles of the billiard
become unstable, and quasi-periodic orbits become cha-
otic.

The phase portrait corresponds to the billiard dy-
namic in the asymptotic limit at arbitrarily great number
of iterations. The dumbbell dynamics studies on finite
time intervals shows that at very small & oc 107 =10
(see Fig.3 at the control parameter change from
x =1.57079 to y =1.56879 ) phase trajectories stay for

a long time in intermediate rationally commensurable
layers between the ruined invariant curves. For homo-
geneous filling of all the phase space, they need essen-
tially larger number of iteration of the order 10°...10"
and more than at £ oc 10”" . This lets us conclude that
the chaotization of the dumbbell starts by the scenario
of forming cantori at ruining invariant curves near non-
perturbed periodic orbits. Phase trajectories slowly ooze
through these cantori. Invariant curves ruin the quickest
near the periodic orbits with 2 period, joining the con-
cave components of the dumbbell, i.e. near the phase

points (1/2,3/2) and (3/2,1/2). This corresponds to

more filled (dark) zones on the phase portrait. Let us
note that the appearance of irregular invariant sets in the
phase space of the dumbbell is connected with the
breaks of involution and of its derivatives. The phase
cascade rapidly multiplies these breaks, so non-
perturbed KAM-tori (invariant curves) of the circle bil-
liard turn into the fractal cantori of the dumbbell. De-
formation parameter & increasing, apparent Cantor-
structure collapses. It is changed by a structure of lacu-
nas, connected with the geometric shadow for the bil-
liard beams. At & oc 10™" any phase trajectory fills the
available phase space rather quickly during the time of
the order about 10*...10° iterations.

4. LYAPUNOV EXPONENT

The phase portrait of the “dumbbell” apparently
demonstrates that this is a chaotic billiard with static
properties of phase trajectories. One of the main nu-
meric characteristics of the deterministic chaos is
Lyapunov index, i.e. the index of exponential diver-
gence of the phase trajectories for the dynamic system.
The positivity of Lyapunov index, A >0, is the most
frequently used as a chaoticity criterion of a dynamic
systems, including billiards, see. [11] etc.

Numeric dependence of the “dumbbell’s” Lyapunov
index is shown in Fig. 5. Lyapunov index is always
strictly positive at any choice of the initial beam (the
point of the symmetric phase space). In Fig. 5, the mo-
notonous growth of the lacunas full volume, i.e. of
phase image of the geometric shadow with parameter
x decrease is also shown. Besides, Fig. 5 shows, in

double logarithmic scale, the scaling of A (g)=de’ at

g =n/2—y <1, i.e. in the point of transition form bil-
liard in circle to billiard in the dumbbell with arbitrarily

small “bottleneck”. This bifurcation can be regarded as
2"_tupe phase transition, for which Lyapunov index is
the order parameter. The numeric values of the con-
stants are A4 ~e"* (renormalization constant) and
vy =0.3565 (critical index).
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Fig. 5. The dependence of Lyapunov exponent of
the dumbbell billiards on the control parameter from
“drop” form to circle form. On the right the Lyapunov
index scaling for a dumbbell close to a circle billiard is
shown

The growth of lacunas phase volume affects the
dumbbell dynamic in different ways. At n/3 <y <m/2
it strengthens the chaos, dA/dp, >0, and at
n/6 <y <m/3, inhibits it, d\A/dp, <0. The phase
volume of the lacunas is rather crude (average) charac-

teristic. So one should expect correlation here only for
some averages of the billiard, e.g., average path length.

5. INVARIANT DISTRIBUTION

It is convenient to use the stationary reflection den-
sity, introduced in [12], for the description of statistic
properties. In the symmetric phase space it is easier to
calculate than full invariant measure. At small “bottle-
neck” of the dumbbell we shall decompose the billiard
mapping by € =n/2—y <1

@j o [;:) - [—01 ;j@;j”(@b%) (1)

where o =a (8) > 2 defines the average inclination of

involution level; lines in the phase space. We shall limit
ourselves to the main contribution and cast out the con-
tributions to dynamics from the special set

S= U:OSOB*” (OL) (the full preimage of the trajecto-
ries visiting the lacunas boundary) of the vanishing
measure, [1(S)=0(g). The equation for one-point
invariant density will have the following form

o(0)-Lp)p( L fwv +06). @

Solving the equation (2) by the successive iterations
method, taking into account that o > 2 (this assures the
convergence of series), we shall have

ps((p)zl-‘rO(S). 3)
The solution (3) is coordinated with the normaliza-

tion only under the condition that p, (¢)=1. For a

chaotic billiard, due to its stirring, this is the only solu-
tion. The numeric calculation shows that stationary den-

sity p(¢) also stays constant at arbitrary &, see
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So, in asymptotic limit, the beams visit the dumbbell
boundary with approximately equal frequency. In the 7
symmetric phase space, on the contrary, the phase
points are distributed non-uniformly because of the la-
cunas presence. ]

A new type of polymorphous billiards with chaotic
dynamics of the beams is proposed. Unlike the known
chaotic billiards, their boundary includes scattering and
focusing boundary components at the same time. So the
chaotization mechanism in such billiards is of mixed
character. The reconstruction dynamics and phase re-
constructions in one-parametric family of typical poly-
morphous dumbbell-like billiards are studied. The cha-
otic behaviour of the beams and uniform distribution of
the reflections are proved

One should expect analogous behavior of the beams
in polymorphous billiard of arbitrary form. The chaotic
properties found let one use polymorphous billiard in
applications. In particular, “dumbbell” form can be used
for example, in atomic [13], microwave [14] or semi-
conductor billiards [15]. Chaos peculiarities in poly-
morphous billiards can also influence the character of
light pass in optic nanoceramics microclusters, formed
due to coagulating of ball-like nanoparticels etc.
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MOJIMMOP®HbIi BUIbSIP KAK HOBBIV THII BUJIbSIPAOB
C XAOTUYECKOW JUHAMMKOW JIYYEN

C.B. Haiioenos, I0.H. Macnoeéckuii, B.B. Inoeckuii

BBenieH HOBBIH THIT XaOTHYECKHX MOJIUMOPGHBIX OHIIBAPIOB. B OTIIHUME OT APYrUX XaOTUYECKUX OHIIBSPAOB OHU OJI-
HOBPEMEHHO COZIepKaT paccenBaromye 1 (GOoKyCHPYIOIIe yIYacTKH TPaHHIBl, HO HE COAEPKAT HEeUTPaIbHBIX KOMITOHEHT.
[IpemioxkeHo ceMelcTBO MOMMMOP(HBIX OMbIpaoB B opme ranTenu. M3ydeHa ux (azoBas IMHAMUKA U OIpENEIICHBI
3aBUCHMOCTD TOKa3arens JIsmyHoBa (OT yHpaBISIOLIEro ITapaMeTpa ceMeicTBa OMIbIPIOB) U MHBapHAaHTHAs IUIOTHOCTH
pacrpeneneHust OTpakeHUH 1o rpaHule Omibsipaa. KoMmnbloTepHble BBIYUCICHUS TTOATBEPKAAIOT HATHYKE MOJIHOTO M-
HaMHYECKOTO Xa0ca U YHHBEPCAIBHOCT CTAMOHAPHON (YHKIIMHU pactpeNeNieHus] B TAKUX OMIbApIax.

MOJIIMOP®HUI BLIbSIPJI IK HOBUI TUII BLIbSP/IB
3 XAOTUYHOIO JUHAMIKOIO ITPOMEHIB

C.B. Haiiovonos, I0O.M. Macnoecovkuit, B.B. Anoecvkuii

YBeneHuit HOBUH THIT XaOTUYHUX MOJNIMOPQHUX OinbsipAiB. Ha BimMiHy Bill iHIIMX XaOTUYHUX OLTBSP/IB BOHH OJTHO-
YacHO MAlOTh KOMIIOHEHTH TPaHHMII, IO PO3CIIOIOTh Ta (POKYCYIOTh, ajle He € HEUTPaJbHUMU. 3alIPONIOHOBAHO CiIMEHCTBO
nojiMopdHux OinbsapaiB y ¢gopmi ranreni. BuBueHa ix (azoBa AnHaMika Ta BU3HAYCHI 3aJICKHICTh MOKa3HUKa JISmyHOBa
(Biz kepyrodoro napamerpa cimeirictBa OiIbsIpAIiB) Ta iHBapiaHTHa TyCTHHA PO3IMOALTY BIIOWTKIB BiJ TpaHUL OLIbSIpAY.
Komm’toTepHi 004YHCIICHHS TOBOJSATH HASBHICTH MOBHOTO JTUHAMIYHOTO Xa0Cy Ta YHIBEpCAJbHICTh CTAllioHApHOT PyHKIIIT
pO3MOALTY y TaKuX OllbspAax.
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