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The currents for the interaction of the massive high-spin boson ( ) with two spinless particles are derived. 

These currents obey the theorem on currents and fields as well as the theorem on current asymptotics. In one-loop 
approximation the contributions of high-spin boson to the self-energy operator for a spinless particle are calculated. 
It is shown that in one loop approximation the high-spin boson contributions for any spin  and mass lead to finite 
self-energy operators of spinless-particle. 
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1. INTRODUCTION 
The improvement of the accuracy for the calcula-

tions of the hadron reaction amplitudes at low and in-
termediate energies demands taking into consideration 
of the high-spin particle contributions. Such investiga-
tions are performing more than forty years. In the 
amplitude calculations the Feynman rules, the 
propagators and the vertex functions related to the 
interactions current are used for high-spin particles like 
to these ones for the 0 and 1 -spin particles. We name 
the approaches used for these calculations as the 
common approaches. Unfortunately the common 
approaches have the defects such as: 1) the 
inconsistency of the equations; 2) the power 
divergences or energy increasing; 3) the ambiguities in 
the vertex functions; 4) the contradictions to the experi-
mental data. 
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1.1. INCONSISTENSY OF EQUATIONS 
Assume that the interactions of the high-spin parti-

cles are described by the non-homogeneous Klein –
Gordon or Dirac equations. For the integer spin  
we have  

lJ =

( ) ( )
ll

xjxUM µµµµ ......
2

11
)( =+ , (1) 

where  and  are the symmetrical 

field and current tensors, respectively,  is the parti-
cle mass. It is known that the field tensors for the high-
spin boson (HSB) obey the auxiliary conditions: 

( )
l

xU µµ ...1
( )

l
xj µµ ...1

M

( ) 0...1
=∂

lk
xU µµµ ; (2) 

( ) 0...1
=

lki
xUg µµµµ , (3) 


where . In the common approaches the 
current tensors obey the symmetric condition only. 
Therefore the equation systems are inconsistent. To see 
this we consider the Fourier components of the field and 
the current tensors. Then the system of the partial dif-
ferential equations (1) for the Fourier components is the 
system of the linear algebraic equations. This system is 
inconsistent as the conditions like to (2), (3) are only for 
left hand of (1). 

lki ,...,2,1, =

1.2. POWER DIVERGENCES 
The substitutions of the propagators and the vertex 

functions for the high-spin particles in the reaction am-
plitudes instead of the propagators and the vertex func-

tions of the 0– and 
2
1 -spin particles lead to the power 

divergences for the amplitudes corresponding to the 
loop diagrams and the energy increasing for the ampli-
tudes corresponding to the tree diagrams. The common 
approaches have two sources of the power divergences. 

1.2.1. PROPAGATORS 
As is known (for example in [1-3]) the propagator of 

spin-1 particle include term , where  is 

the particle momentum. For  the propagator in-
clude term 

2/ Mpp νµ

lJ =

p

( )222

......
11
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pppp
l

ll
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⋅ ννµµ . (4) 

Therefore the scale dimension of the particle propa-
gator is equal to 2 . The HSB momentum can be 
the integration momentum for the loop-diagram ampli-
tudes and this give the power divergences. For the tree-
diagram amplitudes the HSB momentum is expressed 
through the external particle moments and this leads to 
the energy increasing at high energies. 
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1.2.2. CURRENTS 
For the HSB interaction  the 

currents in the common approach can be written in three 
forms: 
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We see that the current tensors (5)-(7) include the prod-
ucts of the particle moments additional to the spinless 
particle current. These moments can be expressed 
through the integration moments or the external particle 
moments. This leads also to the power divergences or 
the energy increasing. 
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1.3. AMBIGUITIES 
The using of the current tensors (5)-(7), including 
 or  or (  for  gives different 

expressions for the amplitudes and even the different 
powers of the divergences. The question is: what cur-
rent is correct? We can say: all these currents are 
wrong. 

i
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1.4. CONTRADICTIONS  
TO EXPERREMENTAL DATA 

In the common approaches the reaction amplitudes 
rise with the energy and the spin value by the power 
law. Moreover the quantity of the diverging loop-
diagram amplitudes increases and the powers of the 
divergence in each such amplitude increase too. It con-
tradicts to the experimental data, as in the reality the 
cross-sections decrease with the energy and the spin 
value  at high energies. J

The performed consideration shows that the com-
mon approaches must be modified. To eliminate the 
defects of the common approaches we continue the in-
vestigations, which had been begun in [4,6]. 

2. PROPERTIES OF CURRENTS  
IN CONSISTENT APPROACH 

2.1. THEOREM ON CURRENTS AND FIELDS 
For the consistency of the non-homogeneous partial 

differential equations of Klein-Gordon the current and 
the field tensors must have the same properties, i.e. 
must be  

( ) ( ) 0,0 ...... 11
==

lkilki
pjgxjg µµµµµµµµ , (8) 

( ) ( ) .0.0 ...... 11
==∂

lklk
pjpxj µµµµµµ  (9) 

coordinate      momentum 
representation     representation 

It is easy to see that the conditions (8), (9) must exit 
as the operator of the Klein –Gordon equation is the 
scalar operator. Therefore in the left and right parts of 
the non-homogeneous equations must be the representa-
tions of the same dimension. This gives the same prop-
erties of the field tensors and the current tensors.  

In consequence of the current conservation the con-
tributions of the terms including  in the propa-

gator numerator to the product of the propagator and the 
currents disappear and the momentum dependences of 
the propagator part retained are the same for any l . 

Mp /µ

To construct the current tensor which obey (8), (9) 
we modify the projection operator [7] 
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where  is the Legendre polynomial. At ( )zPl

( ) ( )bbaap ,0
~

,,0~,,0 ==Θ= z cos= . The projection 

operator  can be derived from 

 by the differentiations with respect to the 
vectors  and b . For example for  we have 

[5] 
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One can be shown that the scale dimension of the 
propagators for any spin  equals -2 in our approach, 
whereas in the common approaches it equals . 
Such a way, one source of the divergences disappears in 
consequence of the theorem on currents and fields. 

22 −J

Consider the physical currents , (which 

obey (8), (9) and have  components) and the 
common currents 

xj

1+l
( )x ν lν..1

 (which have 

 components). The physical cur-
rents may be derived as 

( )
ll

x νννµ η..., 1
. (12) 

We consider similar the physical fields U  and 

the common fields . Then the Klein-Gordon 

equations may be written as  

lµ..1

lν

( )
ll

x ννν ϕ ...1
 

lν...1
. (13) 

2.2. THEOREM ON CURRENT ASYMPTOTICS 
For the existence of the physical currents  

their Fourier components must decrease at 

( )
l

x µµ ...1

∞→νp  
such that the double integrals of the modulus for the 
product of these current and the high-spin particle mo-
mentum with respect to these momentum components 
must converge. 

Indeed, the equations have the order 2  and in-
clude the derivatives of the ( )

l
x ννη ..1

 up to order  . In 

[5] it is shown that 2  equations will be for  
physical states if the common currents 

l2

2l

lν

1+
..  (12) 

have the derivatives up to order . Then the physi-
cal currents must have the first derivatives (to obey (9)). 

12 +l

The HSB moves along some direction in the 3-
space. Let HSB moves along the -axis, i.e. 

. According to the Weierstrass test for 
uniform convergence the existence of the derivatives for 
the current in the coordinate representation are provided 
by the convergence of the integrals for the Fourier com-
ponents of the physical currents 

ν , (14) 

and for the common currents 

30
30
mm p , (15) 
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where ; . The integrals 
(15) must converge for all these  and . Therefore 
the currents (15) must include the functions (form-
factors) which provide the convergence of the integrals 
(14) and (15). 

mmm =+ 30 12,...,1,0 += lm

0m 3m

3. CONSISTENT MODEL  
FOR INTERACTION OF MASSIVE  

HIGH-SPIN BOSON WITH TWO SPINLESS 
PARTICLES 

In our approach the physical currents for 
 - transition are given by  ( ) ( ) ( )21 kOkOpJ +↔
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where ,  is the coupling 
constant. Then the integral (15) written as  

2121 , kkpkkq +=−= g
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must converge. The function  is such that: ( qpf , )
)

) )

)

1)  exists for any values of the moment  and 
; 2) we choose , as the integrands in (15), 

(17) include the modulus of the ; 3) s 
the relativistic scalar and depends on the relativistic 

invariants ; 

( qpf , p

( qp

2q

q ( ) 0, >qpf

2
3

2
0 ,, ppp −

( qpf ,

00qp −=

f ,  i

3 ,q( ) 3
2 pqp =

 4)  can be the rational fraction, as for such 
function the integrals (14), (15), (17) for low  can 
converge but for large  can diverge. The theorem on 
current asymptotics allows the discontinuities in the 
derivatives of the common currents for the order more 
than . 
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some  and . Now we consider function  0m 3m

( ) ( )[ ]
( )( ) ,/2

,
1

42222

142

2
2

11

−

−





 +−×

⋅+=

nn

nn

bpqpq

apqqpf
, (18) 

where  and  are positive constants and  are 
the positive integer number. This function gives the 
convergent integrals (14), (15), (17) at 
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. These integrals diverge logarithmi-
cally at . We can make the convergent 
integrals (14), (15), (17) for all the vectors  if we shall 

consider the function (18) multiplied by , where 

 is the positive integer number. But at new function 
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The logarithmic divergence of the integrals (14), 
(15), (17) for  may be compared with 
the quadratic divergence of similar integral for the su-

perrenormalized  - theory. 
Using the function (18) we shown that the physical 

currents at  behave as  

. (19) 

Therefore we expect that in our approach the con-
vergence for the HSB interactions will be better than in 

the -theory. 
Note that in our approach the currents for the HSB 

and two spinless particle interactions have no the ambi-
guities presented in Ch.1.3. Indeed the products of the 
projection operator derived from the contracted projec-
tion operator  (10) and momentum compo-
nents  or  vanish, as follow from (2). 

Then we have  

2...,... 1 ill
k νννµ  (20) 

Therefore in our approach the physical currents for 
three forms of the common currents (5)-(7) have the 
same momentum dependence. 

4. PRODUCTS OF CURRENTS  
AND PROPAGATORS 

In consequence of the conditions (2), (3) the physical 
fields  are the implicit functions of the discrete 

variable (the spin projection ). Besides the physical 
fields  and the currents  we consider 

other physical fields U  and the currents  
by analogy with the helicity formalism. The components 
of the tensor U  can be expressed through the 

 fields (the helicity states) by means of the 
Clebsh-Gordan coefficients.  

lµµ ..1

( )zJxj , ,

The Lagrangian can be written in the terms of the 
fields  by the sum of the states with the defi-
nite : 

( )

( ]., z

z

Jx

J

)
 (21) 

The Lagrangian can be expressed through the fields 
 as  
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The Lagrange factors  and  are the ten-

sors. The tensor  has the rank  and has no 

index . The tensor  has the rank l  and has 

no the indices . The Euler-Lagrange equations 
for the Lagrangian (22) give the equations (1) and the 
conditions (2), (3). Similarly using the Lagrangian (21) 
we can derive the non-homogeneous Klein-Gordon 
equations for the fields U . By analogy with the 
spinless particle we can write the expansions of the 
physical field operators through the creation and the 
annihilation operators. Using these expansions and the 
commutators for the creation and the annihilation opera-
tors (similar to ones for spinless fields) we can derive 
the commutators and T -products of the free HSB op-
erators. In [4] it is shown that the products of the HSB 
propagator numerators and the physical currents do not 
include the HSB-momentum components. 
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the common currents. Using (12) and property 
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These products are similar to ones in the common 
approaches. But in (23) the projection operator is di-
mensionless. For the currents (16) of the 

 ( O ) –
transitions the product (23) can be expressed through 
the contracted projection operator (10): 
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The -matrix for the HSB interactions can be de-
rived similarly to the -matrix for the 0-and-1/2-
particle interactions [1-3] (by means of the T -product 
of the exponent for the interaction Lagrangian). 

S
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5. TEST OF CONVERGENCE IN ONE-LOOP 
APPROXIMATION 

Consider the contribution of HSB to the self-energy 
operator of the spinless particle in the one-loop ap-
proximation. In this approximation the interaction cur-
rents (16) include the vector q . Then the 
product (24), as  and  in (12), is given by 
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Now we derive for the HSB contribution to the self-
energy operator using (25): 
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where  is the mass of the virtual spinless particle. To 
simplify the calculations we use the dispersion relations 
induced by the Lehman representation: 
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We calculate  in (26) by means of changes like 

to . Using the 
function  (18) we derive the exact expression 
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The integral (28) converges as 2
2

,32 21 +≥+≥
lnln . 

It can be shown that  decreases at least as 
t . Such a way, the convergence for HSB 

contribution is better than in the -theory for 
spinless particles, as is known that  diverges loga-
rithmically for the contribution of two spinless virtual 
particles. 
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3λϕ
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6. CONCLUSIONS 
1. The physical currents of the HSB interactions 

must be conserved (theorem on currents and fields). 
2. The physical currents of HSB interactions must 

include the functions, which provide the convergence of 
the integrals for the module of these currents multiplied 
by the HSB momentum with respect these momentum 
components (theorem on current asymptotics). 

3. The investigations of the HSB contribution (at 
any spin  and any mass ) to the self-energy 
operator for the spinless particle show that in our con-
sistent model this self-energy operator is finite and de-
creases with  at least as 1 . 

1≥J

s

M

s/
4. We expect that the currents of HSB interactions, 

which obey to the theorem on currents and fields as 
well as the theorem on current asymptotics lead to better 
convergence than the -theory. 3λϕ
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УСТРАНЕНИЕ СТЕПЕННЫХ РАСХОДИМОСТЕЙ В НЕПРОТИВОРЕЧИВОЙ МОДЕЛИ 
ВЗАИМОДЕЙСТВИЙ ВЫСОКОСПИНОВОЙ ЧАСТИЦЫ С БЕССПИНОВЫМИ 

Ю.В. Кулиш, Е.В. Рыбачук 

Получены токи взаимодействия массивного высокоспинового бозона  с двумя бесспиновыми час-
тицами. Эти токи удовлетворяют теореме о полях и токах, а также теореме об асимптотике токов. В одно-
петлевом приближении показано, что вклады высокоспинового бозона при любых массе и спине дают ко-
нечный оператор собственной энергии бесспиновой частицы. 

( 1≥J )

)

 
 

УСУНЕННЯ СТЕПЕНЕВИХ РОЗБІЖНОСТЕЙ У НЕСУПЕРЕЧЛИВІЙ МОДЕЛІ ВЗАЄМОДІЙ 
ВИСОКОСПІНОВОЇ ЧАСТИНКИ З БЕЗСПІНОВИМИ 

Ю.В. Куліш, О.В. Рибачук 

Одержано струми взаємодій масивних високоспінових бозонів  з двома безспіновими частинками. 
Ці струми задовольняють теоремі про поля та струми, а також теоремі про асимптотику струмів. В однопет-
льовому наближенні показано, що внески високоспінових бозонів при довільних спіні  і масі дають скін-
чений оператор власної енергії безспінової частинки. 
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