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The recent synthesis of strictly twodimensional atomic crystals (monolayers of carbon atoms) is promising a
wealth of new phenomena and possible applications in technology and industry. Such materials are characterized by
the Dirac-type spectrum of quasiparticle excitations, yielding a unique example of the truly twodimensional “rela-
tivistic” electronic system which, in the presence of disclinations, possesses rather unusual properties. We consider
the influence of disclinations on densities of states and induced vacuum quantum numbers in graphene.
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1. INTRODUCTION

Carbon nanostructures are intensively studied both
experimentally and theoretically, in view of their ex-
pected important implications for the development of
electronic devices, flat panel displays, nanoswitches,
etc. (see, e.g. Ref. [1]). The observation of anomalous
transport properties, and, most exciting, the recent dis-
covery of substantial field effect and magnetism at room
temperature allows one to envisage graphene
(monolayer of graphite) as a reasonable replacement of
nanotubes in electronic applications [2, 3].

In the case of isolated graphene, the electronic states
near the Fermi level can be described in a simple man-
ner. By symmetry, the lower and upper bands touch at
the corners of the hexagonal Brillouin zone. In the vi-
cinity of these points, the dispersion relation is isotropic
and linear, and the density of states at the Fermi level is
strictly zero, rising linearly in energy. An effective long
wavelength description of these electronic states can be
written in terms of a continuum model which is based
on the massless Dirac equation in 2+1-dimensional
space-time [4, 5]. Due to the vanishing density of states
at the Fermi level, the long-range Coulomb interaction
is marginal, scaling to zero at low energies or long
wavelengths. Incidentally, short-range interactions re-
sponsible for ferromagnetic effects are irrelevant in this
context. On the contrary, peculiarities of electronic
states which are due to topological defects are essential
and have been observed in different kinds of nanoparti-
cles by scanning tunneling microscopy.

2. TOPOLOGICAL DEFECTS
IN GRAPHENE

Topological defects in graphene are disclinations in
the honeycomb lattice, resulting from the substitution of
a hexagon by, say, a pentagon or a heptagon; such a
disclination warps the grapheme sheet. More generally,
a hexagon can be substituted by an » -sided ring with-
out affecting the threefold coordination of the carbon
atoms. Rings with n <6 (n> 6) induce locally positive

(negative) curvature, whereas the graphene sheet is flat
away from the defect, as is the conical surface away
from the apex. In the case of nanocones with n <6,
apex angle « isrelatedto n:
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Certainly, defects with n<5 and n>7 are mathe-
matical abstractions, as are cones with a pointlike apex.
In reality, the defect are smoothed: 2 pentagons instead
of n=4,3 pentagons instead of n=3,4 pentagons

instead of n=2,5 pentagons instead of n=1; such

nanocones were observed experimentally. Theory pre-
dicts an infinite series of the saddle-like nanocones with
defects: 1 heptagon (n =7), 2 heptagons (instead of
n =8), 3 heptagons (instead of n=9), etc.

In the continuum limit a disclination is presented by
a vortex with a fixed flux at the apex of a conical sur-
face with a fixed deficit angle. Electronic excitations are
described by four-components spinors which are com-
posed from two-component spinors of two sublattices
corresponding to two inequivalent Fermi points. These
spinors interact with the background in the form of a
vortex and curvature accumulated at the apex of the
conical surface.

Apex angle is related to deficit angle
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Defining @ =6 /27, and using Eq. (1), one gets
n
Dy =1-—. 3
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Defining ® =¢/2x , where ¢ is the vortex flux, one
gets

D=-

n
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Thus, a general disclination with n >0 is characterized
by vortex flux 27® and deficit angle 27D , where @

and @ are given by Eqgs. (4) and (3), respectively.
In the standard representation of y -matrices, 7/5 -

matrix (;/5 =—i7/0)/17/27/3) is

s (0 -1
y:zlo. ®)]

When a hexagon is substituted by a pentagon (disclina-
tion with n=5), the deficit angle is 7 /3, two sublat-
tices are exchanged after completing a rotation around
the apex, and a spinor wave function satisfies condition

0 -1 -ir* 2
vo(rp+2m)=|  fwo(np)=e  2y(re). (6)
where =0 corresponds to the location of the apex.
Condition (6) is generalized to the case of arbitrary
n>0:

5
vo(r o +21) =™ PPy (r, 0), @)
where @ is given by Eq. (4). Performing gauge trans-
formation,

w=e%), Q=y"0p, )
one obtains the single-valued spinor wave function
y(r,p+2m)=y(r, ). ®

While the initial spinor obeys free Dirac equation,

(i0y +iy "7 -VIwg =0, (10)
the final spinor obeys Dirac equation in the vortex back-
ground

(iao +eiQi;/077-§e_iQ)y/
=[ 2y +iy°7-(V=id) [y =0,
where

A=0Q: A" =0,4% =y 0.
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3. SOLUTION TO THE DIRAC EQUATION
IN GRAPHENE WITH A DISCLINATION

Stationary Dirac equation on a two-dimensional sur-
face which is orthogonal to external magnetic field is

Hy =Ey, (13)
where
H= —iyof()?)[é +%5)()z) - 21()?)} (14)

@ is the spin connection and A is the bundle connec-
tion. In the case of the graphene layer with a disclina-
tion, the metric takes form

ds> =dr* + 2 (1- @ )2 dg?, (DK:I—%. (15)

In the chiral representation with the diagonal ;/5-

matrix,

s (-1 0 (16)
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the Dirac Hamiltonian takes form (see Ref. [6])
H 0
H= ( . j (17
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Solution to Eq. (13) is presented as
o .
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neZ ( (20)
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where ay, and ag, (bg, and bg,) are the fermion

(antifermion) creation and destruction operators satisfy-
ing the anticommutation relations
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Let us restrict ourselves to the range of the most ac-
cessible experimentally disclinations: —-1<®, <1

(1£n<12). An irregular mode appears in the spectrum
of the Dirac Hamiltonian if

ld)K<{[d)I}~<l—lq)K 0<Dg <),
2 2

| | (22)
_E®K<{[®B<l+E®K (-1<Dg <0),

where © =[[®]+{P], [u] is the integer part of u
and {u]} is the fractional part of u, O0<{ul<l1.
Namely, the upper components are:
S )
fn+ _ 1 1_(I)K
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1-F

[ =n—[®]>0,
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Jopo (k)
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-

I'=[®]-n>0,

which are regular, and the following one

o7 1
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(25)

which is irregular; here k=[E|, J,(u) is the Bessel

function of order p , and

1
{@f-=

- 2,1
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F (26)

note that 0 < F <1 due to conditions in Eq. (22). The

f+
" ] are obtained from [ " J by
& &n
substitution FF > 1-F'.

To determine parameter v , one has to implement

lower components [

self-adjoint extension of the partial Hamiltonian with
n=[®]], see Refs.[7-9]. The family of self-adjoint

extensions is parameterized by one real continuous vari-
able O, thus yielding

1-2F T
tanvg =sgn(E) (ﬁ) tan(3+zj,

and the boundary condition for the irregular mode:
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where M is the parameter with dimension of inverse
length.

4. DENSITIES OF STATES

What is the influence of disclinations in graphene on
the density of states? The conventional density of states
is defined as

7(E)=Tr8(H - E), (29)
where Tr is the trace of an integro-differential operator
in the functional space: TrU:szxtr()?|U|)?); tr
denotes the trace over spinor indices only. In the ab-
sence of disclinations, the density of states is propor-
tional to the size of the sample:

r(E)=2V—jZ|E|, (30)

where V, is the twodimensional volume (area) of the

graphene layer; since Eq. (30) is even in energy, the
total charge of the sample,

0= | dEx(Epsen)

—00
is zero. Disclinations do not change this result, due to
the presence of 75 in potential 4. However, disclina-
tions lead to the nontrivial axial density of states,

t5(E)=Try 5(H - E), 31)

which is due to the appearance of the irregular mode,
see Eq. (25),

75(E) = . (32)
2(2F-1) 2(1-2F)
TE IE] tan? 9+£ + IE] cot? 9+£ —2cos(2F )
M 2 4 M 2 4
Near the Fermi level, the axial density of states diverges, unless F :% :
2F
2 M ® 1
—(1-2F)sgn(E)| — Mcot|] —+—|, O0<F<—
P )(|E|j (2 4) 2 .
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—(1-2F)sgn(E)| — Mtan| —+—|, —<F<l
ﬁ( )sgn( )£|EJ (2 4) 5
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Using Eq. (26), we get F =— for the pentagon defect 2
S 6 M )5 0
5 75(E) = —sgn(E)| — | Mcot| —+— (34)
and F :7 for the heptagon defect. Consequently, we E—057 IE| 2 4

get
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2
6 M7 0
75(E) = ——sgn(E)| — | Mtan| —+— 35
s(E) = = san( )[|EJ [2 4j (35)
for the heptagon defect.
Let us consider the spin density of states,
s (E)=TrZ6(H - E)

and the orbital angular momentum density of states

(36)

TA(E)=TrAS(H - E), (37)
where
i 12
Y=— s 38
SV (38)
and
TN | 2 5
A=-i(x0y—x"0))—y @ (39)

are the spin and the orbital angular momentum directed
orthogonally to the grapene sheet. Defining total angu-
lar momentum,

J=A+Z%, (40)
one gets the appropriate density of states
7y (E) =15 (E) + 75 (E). (41)
In the presence of disclination we get
1
E)y=—1(E), 42
5 (E) 2(1—2F)T5( ) (42)
1-2F(1-F)
TANF)=————T"—""75(F 43
)=~ () (43)
and
1
ty(E)= —5(1—2F)r5(E). (44)

In the case of disclinations with n=4 (2 pentagons)

1
and n=8 (2 heptagons) we get F =5, and, conse-

quently,

o) (E)=15(E) =0 (45)
and

r5(E) =~ (E) = ‘;";? (46)

5. VACUUM QUANTUM NUMBERS
INDUCED IN GRAPHENE
BY A DISCLINATION

Spectral asymmetries determine the appropriate
quantum numbers

1 o0
Oy == [ dEzy(E)sgn(E). (47)
-00
Thus we get: axial charge
Qs =—sgng [(1-2F)cos 0], (48)
spin
1 sgng(cos®
Os =—— M’ (49)

2 [1-2F|

orbital angular momentum

_1-2F(1-F)

S cos®); 50
Oa -2 gny(cos ©) (50)
and total angular momentum
0y =%|1—2F|sgn0(cos®). (51)

One can conclude that axial charge and total angular
momentum vanish in the case of disclinations corre-
sponding to either 2 pentagons or 2 heptagons (spin and
orbital angular momentum diverge in this case). In the
case of disclinations corresponding to single pentagon
and single heptagon, we get the following predictions.
Ground state quantum numbers are not induced if

@Z%H’lOdZﬂ'. Otherwise, the values of axial charge

are of the opposite sign:

0 =01 = ~sgny (cos O): 52
the values of spin are negative:

5 7
05 =—=sgng(c0s@), Of =——sgny(cos@);  (53)

the values of orbital angular momentum are positive
exceeding 1:

17 29
O = gsemo(cos®). OF) =T sgno(cos@);  (54)
the values of total angular momentum are positive and
less than 1:

3 3
Q&S) = Bsgno(cos 0), Q57) = ﬁsgno(cos 0). (55)

The possibilities of experimental verification of our
predictions for the ground state quantum numbers in
graphene are under study.
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3JIEKTPOHHBIE CBOMCTBA JUCKJIMHAIIMI B YIVIEPOJIHBIX HAHOCTPYKTYPAX
10.A. Cumenxo, H./]. Baacuii

HenaBHuil cMHTE3 CTPOro JABYMEPHBIX aTOMHBIX KPHCTAIOB yriepoja oOeriaeT M300MIne HOBBIX SBJICHUU U
BO3MOYKHBIE PUIIOKEHHS B TEXHOJIOTHH M MPOMBILUICHHOCTH. Takue MaTepuaibl XapaKTepU3yIOTCsl CIIEKTPOM KBa-
3MYaCTUYHBIX BO30OYKICHUH AUPAKOBCKOTO THUIIA, YTO JACT YHUKAIBHBINA MPUMEP UCTUHHO JBYMEPHBIX «PEIATHBHU-
CTCKHX)» 3JIEKTPOHHBIX CHCTEM, KOTOpPBIE IPY HAIMYNN AUCKIMHALNI 00J1agatoT JOCTATOYHO HEOOBIYHBIMU CBOHCT-
BaMmH. PaccMmarpuBaeTcsi BIUSHUE AUCKIMHALMKA HA TNIOTHOCTH COCTOSIHUM M MUHIyIIMPOBaHHbIE BAKYYMHbIE KBAHTO-
BEIC yHclia rpadyeHa.

EJEKTPOHHI BJJACTUBOCTI JUCKJITHAILIM ¥V BYTJIEHEBUX HAHOCTPYKTYPAX
10.0. Cumenxo, H./l. Baacii

HemonaBHiit cuHTE3 CTPOro JBOBUMIPHHX aTOMHHUX KPHCTAJIB BYIJICLIO 00ilse 6arato HOBUX SIBUII Ta MOKJIH-
Bi 3aCTOCYBaHHS B TEXHOJIOTII 1 mpoMucioBocTi. Taki MaTepiaan XapakTepU3yIOThCS CIEKTPOM KBa3i4aCTHHKOBHX
30yIKEHb AipaKiBCHKOTO THUITY, IO A€ YHIKATBHUHA MPHUKIAA CIOPaBIi TBOBUMIPHUX «PEIATHBICTCHKHAX) EIEKTPO-
HHUX CHCTEM, KOTpPi IpH HASBHOCTI JUCKIIIHAIIA MalOTh TOCUTh HE3BUYHI BIIACTHBOCTI. Po3rmsagaeTscs BILMB auc-
KJTIHAI} Ha TYCTHHU CTaHIB Ta iHJyKOBaHI BaKyyMHi KBaHTOBI 4Kclia rpageHa.



