VERTEX CLOTHING IN QUANTUM FIELD THEORY

V.Yu. Korda and 1.V. Yeletskikh

Institute of Electrophysics and Radiation Technologies NAS of Ukraine, Kharkov, Ukraine;
e-mail: kvyu@kipt.kharkov.ua

The problem of the vertex renormalization in quantum field theory is tackled via the implementation of the uni-
tary clothing transformation method. In the model of charged spinless nucleon and scalar meson fields coupled by
the Yukawa-type three-linear interaction the expression for the charge correction in the first non-vanishing (third)
order in the coupling constant is derived. Being the off-energy-shell quantity, the expression can be brought to the
explicitly covariant form on the energy shell, providing the momentum independence of the charge renormalization.
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1. INTRODUCTION

The unitary clothing transformation method pro-
posed by Greenberg and Schweber [1] relying upon the
penetrating analyses of the problems of quantum field
theory performed by Van Hove [2,3] allows to over-
come in a natural way some difficulties one faces in the
few-body physics (see, e.g., [4]). Namely, e.g., the pri-
mary interaction vertex usually include particles which
do not stay simultaneously on their mass shells, there-
fore the energies of intermediate states in some process
can take on arbitrary values. That is why the account for
the relativistic effects off the energy shell becomes of
high importance while interpreting experimental data
for the few-nucleon systems in wide range of energies,
including bound states (see, e.g., [5]).

The clothing procedure carried out via the unitary
transformation provides the transition from the repre-
sentation of the initial “bare” particles and interactions
towards the representation of the “clothed” particles
with observable properties and physical (observed) in-
teractions between them. As the byproducts of clothing,
the mass and vertex renormalization programs are per-
formed alongside the construction of the operators of
relativistic interactions being Hermitian, energy inde-
pendent and containing off-energy-shell structures in a
natural way.

2. UNITARY CLOTHING
TRANSFORMATION

The starting point of our consideration is the repre-
sentation of bare particles with physical masses [6]:

H(og)=Hp(ag)+H (o)
=Hp (0g)+V (0tg)+ Moy (00)+Ven (20) . (1)
where H, is the free part of Hamiltonian, V' is the pri-
and V,

e are the usual

mary interaction operator, M,,,

mass and vertex renormalization counterterms. Symbol
a, denotes the set of creation/destruction operators of

bare particles with physical masses.
By definition, the one-bare-particle states ‘ocg Q>
which are generated from the vacuum state Q by bare

creation operators o/ are the eigenstates of the free part
of Hamiltonian: However, due to the presence of inter-

action, the same one-particle states are not the eigen-
states of the total Hamiltonian:

It is natural to question whether it is possible to find
a new set of creation/destruction operators o, in terms

of which both free and total Hamiltonians would satisfy
the requirements:

Hp (o) O(IQ>=E

HC (ac )

The set of operators o, called clothed corresponds

alQ); @

oc:fQ>:E

an> . 3)

to particles supposed to have observable properties.
Here we assume subscript “c” for the Hamiltonian in
terms of clothed particles to emphasize different de-
pendence of the same Hamiltonian on particle opera-
tors:

H(ag)=H,(a,). @)

In order to keep observables unchanged (i.e., the S-
operator intact) Greenberg and Schweber assumed the
transformation which would carry out the transition to-
wards the representation of “clothed” particles to be one
of a unitary kind:

ag =W (ap)o W (o), wwt =wiw =1,
W (o) =€), R, )=—R" (o). 5)

The transition between bare and clothed particle rep-
resentations for an arbitrary operator O having polyno-
mial dependence on the creation/destruction operators is
fulfilled in the following manner:

O(arg) =W (o, ) O(ae )W (ap ) = eR(aC)O(aC )e—R((x(,)

~0(a.)+ ¥+ R(oe):0(ac) ] ©)

k=1""

where we adopt the denotation for the multiple commu-
tator:

[R,O]kz[ R,[ R,...[R ,0 }ﬂ )

Applying the transition recipe (6) to the total Hamil-
tonian operator (1), we find:
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Hc( c) HF( c)+V(ac)+Mren( )+Vren( c)
R o)+ V) M+ )] ®

If it is supposed that total Hamiltonian (8) satisfies
the requirements (2) and (3) the generator R has to be
chosen in such a way that the former does not contain
terms, called “bad”, which simultaneously do not con-
serve the number of particles (e.g., M, ) and prevent

the one-particle states to be the eigenstates of the total
Hamiltonian (e.g., V).

Extracting, collecting and removing bad terms of the
increasing orders in g, we automatically derive the mass
and charge shifts and construct the operators of relativ-
istic interactions being Hermitian, energy independent
and containing off-energy-shell structures in a natural
way.

3. MASS AND VERTEX
RENORMALIZATION PROGRAM

To be more specific, we are going to consider the
bad terms elimination procedure in the few lowest or-
ders in g. To make the following derivations more
transparent, it is convenient to separate several types of
operators appearing in H, (occ) . We shall call “transi-

tion” the operators, denoted as 0,(:;) and OI(Z) of the

g" order, which consist of more than three crea-

[TP1)

tion/destruction operators of any kind. Subscripts “g

and “b” mark “good” operators which refer to the phy51-

cal processes and “bad” operators which prevent the

one-particle states to be the ecigenstates of the total
(n)

0,, and

r

Hamiltonian, respectively. The notations

OI(/n) will be used for the “mass-*“ and “vertex-like” op

f
erators of the g” order which replicate the structures of
and 7,

the mass and vertex counterterms M en o

ren
spectively. Assuming the latter being expanded in or-

zMren > ren Z re2nk+1 >

expect the mass and charge corrections to have the same
expansions.
For example, in the model of interacting nucleons

and mesons, in which 5" (b) and d'(d) are the nu-

cleon and antinucleon creation (destruction) operators

ders of g M,,,

while a'(a) state for the mesonic creation (destruc-
Tal is the
bad transition operator, bTdTbd is of the good transi-

tion) operators respectively, the term b'ba’a

tion type, b’ and d'da’ are the mass- and vertex-like
operators respectively.

Taking explicitly few first terms from Hamiltonian
(8), we have:

Hc (OL ):HF (ac)+[R’HF]+V(ac)
+M o )+[RV]

ren (

g (1 c)+%[R,V] R Mgy |+ ©)

The Hamiltonian operator (9) is expected to contain
bad terms of all orders in g. Thus, the generator R of the
unitary clothing transformation, which is aimed at

eliminating them, is supposed to be expanded
R= Z R(k) in orders of g and to have the same struc-
k=1

tures as “bad” terms contained in Hamiltonian.
In the wide class of field-theoretical models the pri-

mary interaction operator ¥ consists totally of the g'
order bad terms H, ,(f)

the generator R"Y in the following way:
H£1)+[R(l),HF]:O. (10)

Under this requirement, leaving terms up to the third
order in g and baring in mind the notation (7), we find:

H, (o )=Hp (occ)+[R(2),HFJ+%[R(1) V}Mﬁe,}
[0,y T TR0 T o[ RO, o) .

. Therefore, we are going to define

(1)

To proceed in defining R generator, it is necessary
now to collect all of good and bad terms of the g* or-

der. The g’ order commutator [R(l),V} contains the

transition good part the operators of which are respon-
sible for the physical (observable) interactions between
physical particles in the second order [4] and the mass-
like good part the operators of which replicate struc-

£e2 Besides, this commuta-

tures of the good part of M
tor contains the transition bad part and the mass-like
bad part which replicates structures of the bad part of

2
MG).
Collecting good mass-like operators, we assume the

following equation from which the g® mass corrections

(contained in the M (2)

ren,g ) ¢an be obtained:

1

2) 1] R0 _
M +2[R ,V}M”g 0. (12)

ren,g

At the same time, applying the result for the mass
shifts to the bad mass-like operators (in g° order), we
find, that in general it appears:

2 1T a
M( ) _|:R( )’V:lM b EMren,b,rest 7&0’ (13)

ren,b + 2

ro

see Ref. [6,7] Using the outcome of the first step of
mass renormalization (12) and (13), we can rewrite
Hamiltonian (11) in the form containing only those bad

operators of the g” order which are intended to be
eliminated via the second clothing:

H, (o) =Hp (ac)+%[R(1), Vl

4
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+[R(2),HFJ+1[R(1),V1 ) +m?)

2 ren,b,rest
() Lo P o [R0 3@
+[R ,HF]+3[R ,V] +[R m}rV . (14)
The R generator can be defined now in the simi-

lar way as RV
2 2
H )J{R( ),HF}:O,

where Hl()z) :%[R(l),l/}

(15)

+M()

b ren,b,rest *

Thus, after

the second clothing the total Hamiltonian reaches the
form which contains only good transition operators in

the g* order:

Helo ) e[ #7] 1 | R0
t,g
R 0]+

where operators of the fourth order in g are extracted:

F4) :%[ R(l)ﬁ %{ K0 [ R(I)’Vl,J

H’(ac)z

c

[ R ),HF]+M$6,2+T(4)+..., (16)

+%[R(2),H£2)} +%[R(l),M£3,2 T +|:R(1)9Vr(e3n):| (17)

To define the generator R we have to collect op-
erators of the third order in g. The commutator

[R(l),V]2 can be expanded as: [R(l),V]2 :[R(l),VJ2

1,8
+[R(1),VT

t,b

+[R(l),V12/r while [R(l),M(z)J is assumed

to have only the vertex-like part. The charge shift in the
g’ order can be obtained via collecting vertex-like op-
erators:

i i

After renormalizing the charge, we are allowed to
of the bad terms ’

3
+ Vr(en) = Vr(en),rest #0.(18)

r

extract all order

H = %[R(l), VT )

ren,rest >
t.b

s +[R(3),HF} -0. (19)

Contrary to the Dyson-Feynman approach, the illus-
trated clothing procedure has a recursive character. It
means that the structure of Hamiltonian in some n-th
order in g can not be specified until all the corrections
of physical constants of n lower orders are fixed and all
the bad operators of all n lower orders are removed.
Thus, depending on how we determine the operators to
remove (those are “bad” after Ref. [1] in our case) and
choose the primary interaction, the operators corre-
sponding to physical (observed) processes can acquire
quite different forms.

in the g

and define the R® :

4. FIELD THEORETICAL MODEL

Let us implement the developed technique in the
simple model of quantum field theory including scalar
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mesons and spinless charged nucleons. The interaction
operator is chosen in the form of the Yukawa-type
three-linear interaction. In this model the explicit de-
pendencies of the operators entering the total Hamilto-
nian on the creation/destruction operators are as fol-
lows:

Hp = [dqEy Y FiTF}+ [dkoya)a ; (20)
i=—1,1
g dpdqdk i
V= 3/2I 1/25(p'q+k)zFéTquakT,
(2n) (ngEqu) i ;21)
+H.c.
ren = Mren,mes + Mren,nucl 5 (22)
Su? cdk [+
ren, mes :%I_(ak'ak +akTa—kT)+H'C' ;(23)
Ok
Sm? ¢ d o
M,en,nud:TjE—q Y FEj+He:; (24
qi,j=—1,1
5 d(p-q+k
Vien == g3/2jdpdqdk ( 132
(2n) (8, Eqox )
x Y FR'Flaf+He, (25)

i,j=—1,1

where Suz = ug - uz states for the mesonic mass shift
with p as the physical (observable) mass and p, as

2 is the nucleonic

the bare (trial) one; dm? = mé —-m
mass shift, m and m, are the physical (observable)

and bare (trial) nucleonic masses, respectively;
dg=gy—g is the charge shift depending on the

physical and the trial

E, =\lm2 +p2 is the energy of a nucleon with the

momentum p, o :\/u2+k2 is the energy of a
meson with the momentum k .

In Egs. (20)—(25) we adopt the denotations:

b;; izl, i bq lzla
Fqg=y 4 ,
d i:_l, d—q l:_L

charge ¢ one g.

it _
Fg' = (26)
where b:lr (bq) and d; (dq) are the creation (destruc-

tion) operators of nucleon and antinucleon with the
momentum q. Operators F,' and F, satisfy the fol-

lowing commutation relations:
e
[F;,qu J: i85 (p-q), i j

which follow from the usual commutation relations for
the creation/destruction operators of bosons:

[bp,b:;]:S(p-q) and [dp,dﬂzé(p-q). ali (ak)

is the creation (destruction) operator of a meson with
the momentum Kk :

[ak,alt,}zﬁ (k-K').

= 1,_1, (27)

(28)



5. CHARGE CORRECTION

With help of Eq. (10) the R" generator acquires
the following form replicating the structure of H ,(,l) :

2
Calculating the commutators [R(l),V } and

[R('),M Sn)] in our model and separating their vertex-

R(]) g .[ dpdqdk 5 (p qa+k) like parts which enter the Eq. (18), we can derive the
- 3/2 1/2 ) i ifti 3 .
(271 ) (8 EyEqoy ) expression for the charge shift in the g° order:
1 -
x Y —— FiF/af-He (29)
. . P “q“k
i j=1-1 zE]J —]Eq + o |
3 '
503 - __& dk
& 923 E ou
8(2n) p-k'£q-k'®k
1,-1 1,-1 1,-1 1,-1 -1,-1 -1,-1
APy PhabaacicDpatpe |+ A(-Padaue Poiac Dok )
1,1 ~11 1,1 1,-1 ~1,-1 1,1
A -Dque Dpitaacso Pyl )+ APy Paiane Pplisanicn )
1,1 ~11 -1,-1 1,1 -1,1 1,1
A (D Pt P )+ A (Db Dyt g Dignc )} : (30)

. i i 1
where we adopt the denotations: Dll;{l K =———
b lEp + ]Eq + oy

and A(a,b,c) :%£L+i—£j

ab bc ac

Each of the items in Eq. (30) corresponds to one of the six mechanisms responsible for the charge renormaliza-

tion in the third order in g (see Fig.).

Six mechanisms responsible for the charge renormalization in the third order in g

Namely, the first item refers to the diagram a, the
second item refers to the diagram b, etc. The directions
of arrows on these graphs differ particles from antipar-
ticles.

Each of the non-covariant propagators DI’)’{] | COr-

responds to the vertex on the respective diagram where
the energy conservation is not assumed. Thus, the
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charge shift, which is determined via the cancellation of
the vertex-like operators being the off-energy-shell
quantities, appears off the energy shell too.

Therefore, it is important to note that the expression
for the charge shift can be presented as the following
decomposition:

(3) _5,0)

_ ()
6g =3 gFeynmanflike +8 gofffenergyfshell > € l)l

() -

where the “off-energy-shell” part goes to zero on the
energy shell.

The “Feynman-like” part can be brought to the ex-
plicitly covariant form on the energy shell, providing
the momentum independence of the charge shift derived
and giving another representation for that shift obtained
within the Dyson-Feynman approach:

1 g | !
Sgngnmun—Iike D) (n )3 |:J- Ep/ [(Hz —Zp'k)(}lz —om? _2p;p>]

_Ii:{{(uz+2kb*p?+2kb)]+f

where ¢g= (Eq,q) , p= (Ep,p) , p'= (Ep,,p’) , k=(0,.k),
k'=(w,.k') . The momentum conservation for that vertex
has the form q=p+Kk.

6. CONCLUSION

The charge shift in the third order in the coupling con-
stant g is obtained as the byproduct of the clothing proce-
dure by means of collecting operators off the energy shell.
Six mechanisms of the charge renormalization in the third
order are generated by the products of non-covariant
propagators, typical of the old-fashioned perturbation the-
ory, forming the expression for the charge correction.
Each of these propagators marks the vertex on the respec-
tive diagram in which the energy conservation is not as-
sumed.

Being an object off the energy shell, the expression
for the charge shift acquires the explicitly covariant
form on the energy shell, giving another representation
to the respective Dyson-Feynman result and providing
the momentum independence of the charge shift.

Having a recursive feature, the clothing procedure
gives an expectation that the account for operators off
the energy shell in the Hamiltonian could lead to new
physical results in higher orders in the coupling con-
stant, just to mention the problem of calculating the
nNN form-factors in nuclear physics.

d’p' 1
E, (p2+2p’k)(u2—2m2+2p'q) ’

(32
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OJIEBAHUE BEPIIIMHBI B KBAHTOBOM TEOPUU MOJIA
B.IO. Kopoa, H.B. Eneyxux

C moMoIIbI0 METO]a YHUTAPHOTO OJEBAIONIET0 NIPeoOpa3oBaHus U3ydyeHa IpodiaeMa IepeHOPMHUPOBKH BEPIIH-
HBI B KBAaHTOBOHM TEOpHH NoJst. B Mozenu, onuceiBaromei 3apsskeHHOe OeCCIIMHOBOE HYKJIOHHOE W CKaJIIPHOE Me-
30HHOE ITOJIsI, B3aMMOJICHCTBYIOIINE TTOCPEICTBOM TPHIMHEHHON cBsi3u THia FOKaBbl, MOMYyYEHO BBIPRKEHHE IS
C/BHTA 3apsi/ia B TPETHEM MOPSAKE MO0 KOHCTaHTE CBSI3U. byIydW BeIMYMHON BHE SHEPreTHYEecKoi 000I09KH, Haii-
JICHHOE BBIpa)KEHHE MOXET OBbITh NPE/ICTABIICHO B SBHO KOBapUaHTHOH (popMe Ha sHepreTHueckoii odbomouke, obec-
Ne4YHBasi HE3aBUCUMOCTb NEPEHOPMUPOBKH 3apsaa OT UMITYIbCOB YACTHII.

OJISITAHHS BEPIIIMHU B KBAHTOBII TEOPII TOJISI
B.IO. Kopoa, 1.B. €Eneyvkux

3a TOMOMOTOK0 METOAY YHITAPHOTO OJSTAI0YOro MEPEeTBOPEHHS NOCIHIKEHO MpobiieMy MepeHOPMYBaHHS Bep-
IIFMHY B KBAHTOBIH Teopii moist. Y MoJeri, sika OMUCYe 3apsapKkeHe 0e3CIiHOBEe HyKIIOHHE 1 CKAIIPHE ME30HHE OIS,
110 B3a€MOJIIOTh Yepe3 TPUIIiHIHHMUI 3B’ 130K TuIy FOKaBH, 3Hal€HO BUpa3 JIst 3CYBY 3apsily B TPETbOMY MOPSIKY
3a KOHCTaHTOIO 3B’s13Ky. Po3paxoBaHuil BUpa3 BU3HAUYEHO 11032 EHEPIreTHYHOI0 000JIOHKOIO, IPOTE HOTO MO>KHA I10-
JaTH B SIBHO KOBapiaHTHIN (OpMi Ha eHEpreTHYHIH 00OJOHII, MO 3a0e3reuye He3aNeKHICTh IIePCHOPMYBAaHHS 3a-
psAAy BiX IMITyJIbCIB YACTHHOK.
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