ИССЛЕДОВАНИЕ СТРУКТУРЫ Ti_{0.8}V_{0.2}C_{0.62}H_x

М.Ю. Ташметов

Институт ядерной физики АН РУ, г. Ташкент, 702132, Улугбек, Узбекистан; E-mail: mannab@rambler.ru

Рентгенографическим и нейтронографическим методами проведены исследования структуры и упорядочения в $Ti_{0.8}V_{0.2}C_{0.62}H_{0.11}$ и $Ti_{0.8}V_{0.2}C_{0.62}H_{0.08}$, приготовленные методом самораспространяющегося высокотемпературного синтеза. Установлено, что замещение части атомов титана атомами ванадия не стабилизирует сохранения исходной кубической фазы, и в $Ti_{0.8}V_{0.2}C_{0.62}H_x$ обнаружен распад образцов на кубическую упорядоченную (пр.гр.Fd3m) и на гексагональную (пр.гр.P $\overline{3}$ m1) фазы. Количество выделенной гексагональной (пр.гр.P $\overline{3}$ m1) фазы в $Ti_{0.8}V_{0.2}C_{0.62}H_x$ с увеличением содержания водорода в образцах растет.

ВВЕДЕНИЕ

В нестехиометрическом карбиде титана TiC_x упорядочение атомов углерода происходит в широком интервале концентраций: $0,52 \le x \le 0,71$. При этом существуют кубическая (пространственная группа R $\overline{3}$ m) [1] моноклинная структуры упорядочения [2]. Параметр дальнего порядка η , характеризирующий степень упорядочения атомов углерода, меньше максимального значения ($\eta_{max} = 1$) и в $TiC_{0,62}$ $\eta = 0,84$ [3]. Позднее в [4] было показано, что введение водорода в карбид титана увеличивает η и в $TiC_{0,68}H_{0,32}$ $\eta = 1$ [5]. В карбогидридах титана при $x \ge 0,55$ существует только кубическая структура упорядочения (пр.гр. Fd3m) [4].

Упорядочение атомов внедрения происходит не только в бинарных системах, но и в сложных карбидах, в которых металлическая подрешетка состоит из атомов разных сортов [6]. Если размеры атомов металлов сильно различаются, при понижении температуры можно ожидать упорядоченное расположение атомов металлов разного сорта [7-10]. В системе Ti-V-C [6] обнаружены упорядоченная фаза с длиннопериодной орторомбической структурой, а также новые соединения — упорядоченные фазы различных типов, которые не наблюдаются ни в одной из бинарных систем Ti-C и V-C. Эти упорядоченные фазы являются тройными соединениями.

Надо отметить, что четверные системы, в которых часть атомов металла и часть атомов металлоида замещены другими атомами, на предмет упорядочения не изучены. Исследование структур такой системы представляет интерес с научной точки зрения, так как она является испорченной решеткой Изинга, и упорядочение (если оно имеет место) происходит в энергетической неэквивалентной системе.

Целью настоящей работы является исследование структуры четверной системы Me^I-C-H, а также определение влияния "второго" металла и водорода на структурные характеристики нестехиометрического карбида титана.

В качестве объектов исследования выбрано $Ti_{0,8}V_{0,2}C_{0,62}H_x$. Выбор $Ti_{0,8}V_{0,2}C_{0,62}H_x$ обусловлен тем, что до настоящего времени упорядочение в четверной системе $Ti_{0,8}V_{0,2}C_{0,62}H_x$ не исследовано в связи со сложностью приготовления однофазного образца, отсутствием данных о наиболее благоприятном интервале температуры синтеза и т.д.

1. СИНТЕЗ И АТТЕСТАЦИЯ ОБРАЗЦОВ

В карбогидридах титана с большим содержанием водорода исходные однофазные образцы в процессе различных отжигов распадаются на кубическую упорядоченную (пр.гр.Fd3m) и гексагональную (пр.гр. \overline{P} 3 m1) фазы [4]. Поэтому для того, чтобы выяснить возможности стимулирования однофазной области вторым металлом (V) в TiC_xH_y , были приготовлены из $Ti_{0,8}V_{0,2}C_{0,62}H_{0,16}$ образцы: $Ti_{0,8}V_{0,2}C_{0,62}H_{0,11}$. Долговременные отжиги образцов при разных температурах были выполнены в откачанных и запаянных кварцевых ампулах с последующей закалкой в воде. Рентгенографические исследования проводились на установке MO3X-HF (Япония), нейтронографические - на HRPD [12].

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТА-ТЫ И ИХ ОБСУЖДЕНИЕ

Образцы были приготовлены методом самораспространяющегося высокотемпературного синтеза (СВС), и исходные образцы были однофазными с кубической структурой типа NaCl (пр.гр.Fm3m). Для получения равновесного - гомогенного, а также упорядоченного состояния исходные образцы были отожжены от 1100 до 600° С. На нейтронограммах образцов $Ti_{0.8}V_{0.2}C_{0.62}H_{0.08}$ и $Ti_{0.8}V_{0.2}C_{0.62}H_{0.11}$ (рис.1) кроме отражений, аналогичных наблюдающимся в $TiC_{0.62}$ (пр.гр.Fd3m), присутствовали дополнительные отражения. Анализ нейтронограмм, проведенных на основе фазовой диаграммы Ti-V-C и моделей [13], показал сосуществование двух фаз: кубической (пр.гр.Fd3m) и гексагональной (пр.гр.P $\overline{3}$ m1). В пространственной группе (пр.гр.Fd3m) существуют

атомы металлов в 32(e) позициях, а атомы металлоидов - в октаэдрических позициях внедрения 16(c) и 16(d), причем преимущественно заполнена позиция 16(c). В гексагональной плотноупакованной структуре (пр.гр. $P\bar{3}$ m1) атомы металлов в 2(d), атомы уг-

лерода в октаэдрических позициях 1(a) и 1(b), атомы водорода в тетраэдрических позициях внедрения 2(d) с Z_1 и Z_2 .

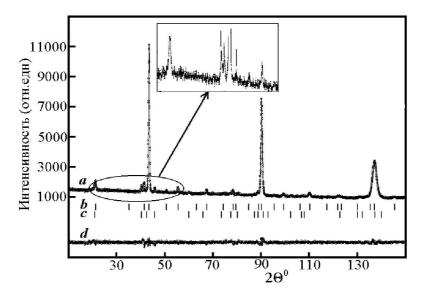
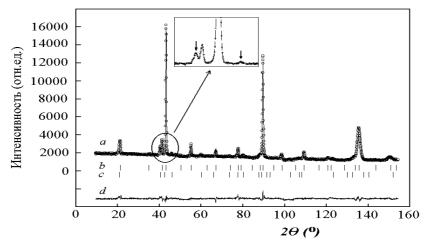


Рис. 1. Нейтронограмма образца $Ti_{0,8}V_{0,2}C_{0,62}H_{0,11}$:

а - экспериментальные и расчетные данные; b - брегговские отражения, соответствующие кубической структуре (пр.гр.Fd3m); с - брегговские отражения, соответствующие гексагональной структуре (пр.гр.P $\overline{3}$ m1); d - разностная кривая между экспериментальными и расчетными данными. Выделен участок нейтронограммы, где отражения, соответствующие гексагональной фазе, указаны стрелками

Для оценки относительного содержания гексагональной фазы, присутствующей в образцах, были сравнены экспериментальные интенсивности структурного отражения (100), соответствующие гексагональной фазе (пр.гр.Р 3 m1), со структурным отражением (222), которое соответствует кубической структуре упорядочения (пр.гр.Fd3m). При этом имеется ввиду, что атомы ванадия равномерно распределены в обеих фазах. Расчеты показали, что в $Ti_{0,8}V_{0,2}C_{0,62}H_{0,11}\ I_{(100)}/I_{(222)}\approx 2,28\%$ и $I_{(100)}/I_{(222)}\approx 0,60\%$ в $Ti_{0,8}V_{0,2}C_{0,62}H_{0,08}$. Таким образом, в образце $Ti_{0.8}V_{0.2}C_{0.62}H_{0.11}$ доля гексагональной фазы больше, чем в $Ti_{0.8}V_{0.2}C_{0.62}H_{0.08}$. Это свидетельствует о том, что присутствие водорода приводит к выделению гексагональной фазы из однофазного (кубического) образца при обработке в интервале 1100...600°C. С увеличением содержания водорода в $Ti_{0.8}V_{0.2}C_{0.62}H_x$ количество выделяемой гексагональной фазы возрастает.


Для того, чтобы оценить влияния ванадия на фазовые соотношения карбогидрида титана, был выполнен аналогичный отжиг образца $TiC_{0,62}H_{0,12}$ и проведены нейтронодифракционные исследования (рис.2). В образце, так же как и в сложных карбогидридах титана, присутствовали кубическая (пр.гр.Fd3m) и гексагональная (пр.гр.P3m1) фазы.

Отношение интенсивности отражения (100) гексагональной структуры (пр.гр. $P\bar{3}$ m1) к отражению

(222) кубической структуры упорядочения (пр.гр.Fd3m) ($I_{(100)}/I_{(222)}\approx 4,92\%$) показало, что атомы ванадия способствуют стимулированию однофазности образца при "низких" температурах. Для выяснения возможности образования тригональной структуры упорядочения (пр.гр.R $\overline{3}$ m), ранее обнаруженной в карбиде титана [1], образцы $Ti_{0,8}V_{0,2}C_{0,62}H_x$ сначала разупорядочивались при 920 °C, а затем отжигались постепенно до 560 °C (160 ч).

На нейтронограммах образцов отсутствовали отражения, соответствующие гексагональной плотноупакованной структуре. Расчеты нейтронограмм образцов свидетельствуют, что полученные дифрактограммы соответствуют кубической структуре упорядочения (пр.гр.Fd3m), в которой атомы металлов в 32(e), а атомы металлоидов в 16(c) и 16(d) позициях. Следует отметить, что для атомов титана и ванадия значения свободного параметра (X_{Me}) в расчетах принимались одинаковыми. Атомы металлов смещены в направлении от вакансий к атомам металлоида ($X_{\text{Me}} = 0,248$).

Таким образом, в $Ti_{0,8}V_{0,2}C_{0,62}H_x$ (x=0,8; 0,11) существуют двухфазная (с гранецентрированной кубической + гексагональной плотноупакованной структурой) и однофазная (с гранецентрированной кубической структурой) области.

Puc.2. Нейтронограмма образца TiC_{0,62}H_{0,12}:

a - экспериментальные и расчетные данные; b - брегговские отражения, соответствующие кубической структуре (np.rp.Fd3m); c - брегговские отражения, соответствующие гексагональной структуре (np.rp.P $\overline{3}$ m1); d - разностная кривая между экспериментальными и расчетными данными

ЗАКЛЮЧЕНИЕ

Установлено, что увеличение содержания водорода в образцах приведет к увеличению количества гексагональной фазы в двухфазном образце. Установлено, что водород стимулирует образование однофазной гранецентрированной кубической структуры в сложном карбиде при СВС, но также предрасполагает к выделению гексагональной фазы (пр.гр.Р 3 m1) при термообработке в относительно низких температурах (T≤700 °C). В кубической упорядоченной структуре (пр.гр.Fd3m) атомы металлов смещены в направлении от вакансий к атомам металлоида, что свидетельствует о том, что взаимодействие металл-металлоид имеет характер притяжения. Присутствие второго металла не предотвращает распад исходного однофазного кубического образца, однако способствует стимулированию сохранения однофазности образца. Величина степени дальнего порядка в $Ti_{0.8}V_{0.2}C_{0.62}H_x$ ($\eta_{max}=0.7$) меньше, чем в карбогидридах титана.

Автор выражает благодарность С.К. Долуханян за предоставления образца $Ti_{0.8}V_{0.2}C_{0.62}H_{0.36}$.

ЛИТЕРАТУРА

- 1. V.T.Em, M.Yu.Tashmetov //Phys.stat.sol. (b). 1996, v. 198, p. 571-575.
- 2. V.V.Lipatnikov, A.A.Rempel, A.I.Gusev// *Int. Journal of Refractory Metals and Hard Materials.* 1997, v.15, p.61-64

- 3. В.Т.Эм, И.Каримов, В.Ф.Петрунин и др. //Кристаллография. 1975, т.20, №2, с.320-323.
- 4. И.С.Латергаус. Исследование структуры и фазовых превращений соединений системы Ті-С-Н: Автореф. дис. ... канд. физ.-мат. наук. Ташкент: Институт ядерной физики АН УзССР, 1986.
- 5. В.Т.Эм, И.Каримов, В.Ф.Петрунин и др. //Физика металлов и металловедение. 1975, т. 39, №6, с. 1286-1289.
- 6. М.Патиев. Структурные исследования сложных карбидов переходных металлов IV-V групп: Автореф. дис. ... канд. физ.-мат. наук. Ташкент: Институт ядерной физики АН УзССР, 1988, 24 с.
- 7. Я.С.Уманский, В.И.Фадеева //Физика металлов и металловедение. 1965, т.20, №5, с.719-722.
- 8. Я.С. Уманский, В.И. Фадеева //Физика металлов и металловедение. 1965, т.19, N3, с.473-475.
- 9. А.А.Кацнельсон, Т.Б.Горбачева //Физика металлов и металловедение. 1971, т.32, №4, с.742-746.
- 10. W.Stuerer, P.Rogl, H.Boller, B.Kunsch //J. Less-Common Metals. 1980, v.76, N2, p.145-151.
- 11. Л.Тот. Карбиды и нитриды переходных металлов. М.: «Мир», 1974, 294 с.
- 12. Lee C.H. The Status of Neutron Beam Utilization in Korea // Neutron network news (Japan journal). 2000, v.10, N2, p.6.
- 13. E.Parthe and K.Ivon On the Crystal Structure of the Close Packed Transition Metal Carbides. II. A Proposal for the Notation of the Different Crystal Structures. //Acta Cryst. 1970, v.26, p.153.

ДОСЛІДЖЕННЯ СТРУКТУРИ Ті_{0.8}V_{0.2}C_{0.62}H_x

М.Ю. Ташметов

Ренттенографічним і нейтронографічним методами проведені дослідження структури і впорядкування в $T_{108}V_{02}C_{062}H_{0.11}$ і $T_{108}V_{02}C_{062}H_{0.08}$, , приготовані методом високотемпературного синтезу. Встановлено, що заміщення частини атомів титану атомами ванадію не стабілізує збереження вихідної кубічної фази, і в $T_{108}V_{02}C_{062}H_x$ знайдений розпад зразків на кубічну впорядковану і на гексагональну фази. Кількість виділеної гексагональної фази в $T_{108}V_{02}C_{062}H_x$ із збільшенням вмісту водню в зразках зростає.

RESEARCH OF STRUCTURE Ti_{0.8}V_{0.2}C_{0.62}H_x

M. Yu. Tashmetov

By rontgenography and neutronography methods the researches of structure and organization in $Ti_{08}V_{02}C_{062}H_{0,11}$ and $Ti_{08}V_{02}C_{062}H_{0,08}$, prepared by the method of high temperature synthesis, are conducted. It is set, that substitution of part of atoms of titan by the atoms of vanadium does

ot stabilize saving of initial cubic phase and disintegration of specimen on cubic well-organized and on hexagonal phases is found ou the selected hexagonal phase with the increase of maintenance of hydrogen in specimens grows.						