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The influence of rotation on flute instability is studied in the frame of one-fluid magnetohydrodynamics. We consider
the simplest model of gravitating cylindrical plasma in the straight nonuniform magnetic field to simulate plasma behavior
in mirrors. Using linear stability analysis, we derive dispersion equation and integral expression for the increment of
instability. In virtue of this expression, it is shown that rotation itself appears to be destabilizing factor due to centrifugal
effect; we prove the corresponding theorem in general. Eigenmode structure and the dependence of the threshold on the
frequency of rotation are calculated for linear radial profile of the angular velocity.
PACS: 52.35.Py

1. INTRODUCTION

A popular paradigm appeared in view of phenomenon
of transport barriers is that sheared plasma rotation pro-
vides a stabilizing effect and is able to reduce turbulence
[1]. However, the role of rotation can be also negative, e.g.,
due to specific hydrodynamic instabilities. In this report,
we investigate how rotation affects the flute plasma insta-
bility – one of the most well known phenomena typical
for magnetic confinement systems. We solve the eigenvalue
equation for small flute perturbations without using the
energetic principle.

2. BASIC EQUATIONS AND DISPERSION
RELATION

Consider a cylindrical plasma in a straight magnetic
field with gravity (g = ger simulates effectively a role of
the curvature of magnetic force lines); plasma rotates in
azimuthal direction. In equilibrium

B0 = B0ez, (1)

V0 = rΩeϕ,
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where pressure p0, magnetic field B0, density ρ0 and angu-
lar frequency of rotation Ω – functions of radius r. MHD
equation in terms of displacement of liquid element ξ(t, r)
has well known view [2]:

ρ0ξ̈ + 2ρ0(V0 ·∇)ξ̇ − F(ξ) = 0, where (2)
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– force operator consisted from perturbed values,

δρ = −∇ · (ρ0ξ),

δV = (V0 ·∇)ξ − (ξ ·∇)V0,

δB = ∇× (ξ ×B0).

For flute modes, the perturbation of magnetic field is ab-
sent,

δB = 0. (3)

Eq.(3) makes the system Eq.(2) secluded so the specifica-
tion of perturbed pressure δp is unnecessary.

Applying Fourier transformation f(r, ϕ, t) = f(r) ·
exp(−iωt + imϕ) and solving of Eq.(2), Eq.(3) we can ar-
rive at eigenmode equation:
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ξ̄r = 0, (4)

where ξ̄r = ξrB0, ξr – normalized radial displacement of
plasma, $ = ω − mΩ – Doppler-shifted frequency. Last
term in Eq.(4) is proportional to the total force acting
on element of liquid volume – gravitation, centrifugal and
Coriolis forces. Due to Eq.(4), in the absence of rotation
(Ω → 0), the reducing with r profile of ρ0/B0 is unstable
when g > 0 and stable when g < 0 – that corresponds to
well known result for static stability [3].

3. INCREMENT OF INSTABILITY AND
DESTABILIZATION BY ROTATION

Integration of Eq.4 over the full volume filled with plasma
gives integral expression for the increment of instability,
γ = Im(ω):
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In our case, the instability condition γ2 > 0 results in
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Let’s put g = 0 to exclude the influence of magnetic field’s
curvature. Put also

∫
d(ρ0/B0)/dr|ξ̄r|2r2dr = 0, A = 0

and enter
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We see that condition of instability (6) is equivalent to the
famous inequality by Cauchy-Bunyakovsky
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It is identically valid for every X, Y 6= 0
(
∫

d(ρ0/B0)/dr|ξ̄r|2r2dr 6= 0, A 6= 0 just strengthen
the inequality). So in our problem, rotation is destabilizing
factor and could be compensated only by confining gravi-
tationl field, g = −|g|er.

4. NUMERICAL CALCULATIONS

Second-order equation on eigenvalues, Eq.(4), with zero
boundary conditions has been solved numerically by the al-
gorithm similar to the algorithm used in [4] for calculation
of magnetorotational instability. The firm of calculations is
provided by double verification: by shooting method and
by control of eigenvalues from integral expressions.

In calculations we have chosen a parabolic profile for
the density and a linear profile for angular velocity of ro-
tation:
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Ω = Ω|r=0 +
dΩ

dr
r,

dΩ

dr
= const.

Typical spectrum of unstable modes is presented in Fig. 1;
the structure of the modes in the case g = 0 is given in
Fig. 2.
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Fig.1. Typical spectrum in case m = 2, Ω|r=0 = 1,
dΩ/dr = 0; Points – g = 0, stars – g = −0.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

|ξ
r|

1

3 2

Fig.2. Eigenmode structure in case g = 0

The mode with minimal number of nodes (line 1) has max-
imal increment. In case of differential rotation, the nodes
on the radial mode’s profile can be smoothed. Values of in-
crements decrease a bit in comparison with solid rotation
due to reduction of averaged Ω2.

Presence of stabilizing gravitational field (g < 0) re-
duces increments of instability and the number of unstable
modes. System stabilized when g ≤ gc = −|gc| – threshold
of instability. At the threshold, the real part of all unsta-
ble modes tend to Doppler resonanse, which takes place on
the border for chosen profile of density Eq.(9). The value
of the threshold is determined by centrifugal acceleration
on the border and doesn’t depend on the azimuthal mode’s
number:

|gc| = rΩ2
|r=1. (10)

The values of increments grow with growing frequency of
rotation, but aren’t determined by it’s value at the border.
They depend on both Ω|r=0 and dΩ/dr, and also grow with
m.

While coming to the threshold, the eigenfunctions lose
their individual features. All modes tend to δ-functions in-
dependently on azimuthal number and on the profile of
rotation. Also we studied piecewise linear profile of angu-
lar velocity. Increment has a minimum as a function of the
peak of trigonal Ω profile for all modes, except m = 1.
Increment of first mode goes down to constant while peak



of rotation grows. By the way it’s not correct to associate
this reducing of increment with stabilizing action of rota-
tion with trigonal profile, because the value of threshold
reduces too.

Reduction of increment could be explained by changes
in the mode’s structure. In Fig. 3, it is shown that pertur-
bation aspires to escape from the area of fastest rotation.
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Fig. 3. Deformation of eigenfunction m = 1, g = 2 by
trigonal profiled rotation with peak Ωmax = 11

CONCLUSION

It is shown that rotation of cylindrical gravitating plasma
in a straight magnetic field appears to be destabilizing fac-
tor due to centrifugal effect – it reduces the threshold of
flute instability. For the instability, eigenvalues and eigen-
functions are calculated. At the instability threshold, the
eigenmodes are shown to have singularities in hydrody-
namic resonance points. Also we demonstrate that the spe-
cial profiling of the rotation ( which forms a sheared layer
in the area of the mode localization) could affect the mode
structure and slightly reduce the increment of instability.
Nevertheless, since the rotation reduces the threshold, a
possible favorable effect of rotation associates with non-
linear self-organization of the resulting turbulence rather
then with a suppression of linear instability.
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ЖЕЛОБКОВАЯ НЕУСТОЙЧИВОСТЬ ВРАЩАЮЩЕЙСЯ ПЛАЗМЫ

В.И.Ильгисонис, В.П.Лахин, Е.А.Сорокина

В рамках одножидкостной магнитной гидродинамики исследуется влияние вращения на желобковую неустой-
чивость. Предполагается простейшая модель цилиндрической гравитирующей плазмы в прямом неоднородном
магнитном поле для моделирования поведения плазмы в зеркальных ловушках. С помощью линейного анализа
получено дисперсионное уравнение и интегральное выражение для инкремента неустойчивости. Показано, что в
данной постановке задачи вращение из-за центробежного эффекта является сугубо дестабилизирующим фактором;
в общем случае доказывается соответствующая теорема. Для линейного радиального профиля угловой скорости
вращения рассчитана структура собственных мод и зависимость порога неустойчивости от частоты вращения.


