DISPERSION RELATIONS FOR FIELD-ALIGNED CYCLOTRON WAVES
IN THE LABORATORY DIPOLE MAGNETOSPHERIC PLASMAS
WITH ANISOTROPIC TEMPERATURE
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Dispersion relations are derived for field aligned circularly-polarized waves in a laboratory magnetic dipole plasma.
The steady-state bi-maxwellian distribution function is used to model the energetic particles with anisotropic
temperature. The growth rate of cyclotron waves in the laboratory magnetosphere is defined by contribution of the
resonant trapped and untrapped particles to the imaginary part of the transverse permittivity components.

1. INTRODUCTION

Plasma confined in the levitated magnetic dipole [1] is
an alternative configuration for realization of the
controlled thermonuclear fusion and suitable to model
some phenomena in the Earth’s magnetosphere. As well
known, the energetic particles with a non-equilibrium
distribution function can excite a wide class of the wave
instabilities in any magnetized plasma. These instabilities
in the two-dimensional (2D) axisymmetric traps could be
described in the scope of the 2D kinetic wave theory by
solving the Maxwell's equations with a proper ‘kinetic’
dielectric tensor. Moreover, describing the wave-particle
interaction in a laboratory dipole plasma, we should
account that there are two entirely different groups of the
so-called trapped and untrapped particles [2]. In this
paper, we derive the dispersion relations of the field-
aligned waves in the Levitated Dipole eXperiment (LDX)
plasma having the energetic particles, e.g. electrons under
the electron cyclotron resonance heating [3], with
anisotropic temperature. To simplify a problem the
Vlasov equation is solved neglecting the drift effects, the
finite Larmor radius corrections and the finite orbit widths
of the trapped and untrapped particles in the LDX plasma.

2. REDUCED VLASOV EQUATION
To describe a 2D axisymmetric LDX-like plasma we
use the quasi-toroidal coordinates (r,6,¢) connected with
cylindrical ones (p,4,z) as p=a+rcos@, z=-rsind,
¢=¢. In this case, the cylindrical components of the

stationary magnetic field, H, = (#,,,0,H,,) , are
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where a is the current ring radius, / is the ring current, c is
the speed of light; K(x), E(x) and x=4a(a+rcosf)/
(r* +4a” +4arcos@) are the complete elliptic integrals

of the first and second kind and their argument,
respectively.

Introducing the variables (v, u, L ) instead of (v,v,,r)
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the linearized Vlasov equation for the first harmonics of
the perturbed distribution function,
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in the zero-order of a magnetization parameter can be
reduced to the set of the first order differential equations
with respect to a single @-variable:
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where F is the bi-maxwellian distribution function of
particles with density N, mass M, charge e, parallel and
transverse temperatures 7, and 7', ; Q, is the minimal
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cyclotron frequency of plasma particles at the considered

(by L) magnetic field line; H, =1[H§p+H§Z . Here,

E, =E, *tiE, describe the transverse electric field

components with the left- and right-hand polarization,
where E,, E and E| are the normal, binormal and parallel
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perturbed E-field components with respect to H,. By
s=%1 we distinguish the particles with positive and
negative parallel velocity relatively Hy:

V) = svy/l—ub(L,0) .

Since LDX plasma is a configuration with one
minimum of Hj, the plasma particles should be separated
in the two populations of the trapped and untrapped
particles: 1) 0<u<py,, -z<60<x for untrapped
particles, where u, =1/b(L,x) is the inverse mirror ratio
of the given (by L) magnetic field line, and 2) g, < 4 <1,
-0, <0 <0, for trapped particles, where +6,(u,L) are
the reflection points (or stop points, or mirror points) of
the trapped particles, which are defined by the zeros of
parallel velocity: v, (v, u, L,£6,) = 0.

3. DISPERSION RELATIONS

After solving Eq. (4), the 2D transverse (with respect
to Hy) current density components, j,,, can be found as

fiawdp
1= ub(L,0)
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where the indexes u and ¢ correspond to the untrapped and
trapped particles, respectively. To describe the bounce-
periodic motion of the trapped and untrapped particles
along the Hy-field line, it is convenient to introduce the
new time-like variable 7 instead of the poloidal angle &,

r(a):f L)y, (7)
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taking into account that the transit-time and bounce-
period of the u- and t-particles are proportional to
,,=27(m) and 7,,=417(6), respectively. After this, the
distribution functions of u- and ¢-particles can be defined
by the corresponding Fourier series (f=u,7):
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cyclotron frequencies of untrapped (£ =u) and trapped
(B =t) particles; Q_, and Q_, are the bounce-averaged

cyclotron frequencies of u- and z-particles:
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To evaluate the dielectric tensor elements we use the
Fourier expansions of the 2D perturbed electric field and
current density components over the variable 4 varying

along the Ho-field line: 1(9) = jfé(L,r])dn . In this case
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where A, = A(7), so that Lad, is the half-length of the
given (by L) magnetic field line. As a result,
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Here & and ¢ are the contribution of u- and r-

particles to the transverse permittivity elements:
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Note that Egs. (13,14) describe the contribution of any
kind of the u- and t-particles to & =& +¢&;" . The



corresponding expressions for plasma electrons and ions
can be obtained from Eqgs. (13,14) by replacing the
temperatures 7, T, density N, mass M, charge e by the

electron 7, T,, Ny M, e

lle>

7,,, N, m,, e and ion T,

li»
parameters, respectively.

To have analogy with the linear theory of cyclotron
waves in the straight magnetic field let us assume that the

E}, -harmonic of E-field gives the main contribution to

ju - In this case, for the field-aligned cyclotron waves
(m=0, 0/0L=0, E, =0, H =0), we get the following

dispersion equation from the Maxwell’s equations:
2 .
me e,i],ip ...
=142 gl (L),
[La/loa)j Za: tieo (1)

where o denotes the particle species (electron, proton,
heavy ions), nmc/(Lal,w) 1is the non-dimensional

parallel refractive index. Further, to define the conditions
of the wave instabilities in the LDX-like plasmas with
anisotropic temperature, Eq. (15) should be resolved
numerically for the real and imaginary parts of the wave
frequency, @=Rew+ilm®w. As wusual, the growth
(damping) rate of the cyclotron waves, Imw, is defined
by the contribution of the resonant particles to the
imaginary part of the transverse permittivity elements:
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are the separate contributions of the untrapped and
trapped particles to the bounce resonance terms of

n,n
Ime/ 7, .

4. CONCLUSIONS

In conclusion, let us summarized the main results of
the paper. The contribution of the trapped and untrapped
particles to the transverse permittivity elements in the
LDX plasma with anisotropic temperature are expressed
by summation of the bounce-resonant terms including the
double integration in velocity space, the resonant
denominators, and the corresponding phase coefficients.

Due to two-dimensional Hy-field nonuniformity, the
bounce resonance conditions for trapped and untrapped
particles in the LDX-like plasmas are different from ones
in the straight magnetic field; the whole spectrum of the
electric field is present in the given current density
harmonic; the left-hand and right-hand polarized waves
are coupled in the general case.

The dispersion equations for field-aligned cyclotron
waves in the LDX-like plasma are derived which are
suitable to analyze the instabilities of both the electron-
cyclotron (/=-1) and ion-cyclotron (/=1) waves. As in the
uniform plasma confined in the straight magnetic field,
the growth/damping rates of the cyclotron waves in the
LDX-like plasmas are defined by the contribution of the
resonant particles to the imaginary part of the transverse
permittivity elements.
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JAUCHEPCHOHHBIE YPABHEHUSI HTUKJIOTPOHHBIX BOJIH B1OJIb MA'HUTHOT'O OJIS1 B
JJABOPATOPHOU MATI'HUTOC®EPHOMU IIVIABME C AHU30TPOITHOU TEMIIEPATYPOU

H.U. I'puwanos, H.A. Azapenxos, A.I'. Kosanenko

IlosnydyeHbl AMCIIEPCUOHHBIE YPaBHEHUS UUPKYJSAPHO-IOIAPU3OBAHHBIA BOJIH, PAacCIpPOCTPAHAIOIUXCA BJAOJIb
MarHMTHOTO II0JIsl B J1a0OPAaTOPHOM AUNONSIPHON MarHuToc(epe. B kauecTBe MO/IEIBFHOTO paclpe/eeHUs] SJHEPITHYHbBIX
YacTHIl 110 CKOPOCTSIM HCITOJIb30BaHa OMMAaKCBEIJIOBCKast (DYHKIHMsSI C aHU30TPONHON Temmepartypoil. [lokasano, 4ro
WHKPEMEHT IUKJIOTPOHHBIX BOJH B JIAOOPAaTOPHOH MarHuTocgepe onpeaeiseTcs BKIaaoM Pe30HAHCHBIX MPOJIETHBIX U
3anepThIX YacTUL[ B MHUMYIO 4aCTh IIONEPEUHBIX KOMIOHEHT TEH30pa JUIIEKTPUIECKON MPOHULIAEMOCTH.

JIACTEPCIVHI CINIBBIIHOMIEHHA NUKJIOTPOHHUX XBHUJIb B3I0BK MATHUTHOT'O ITOJIS
B IABOPATOPHINA MATHITOC®EPHIN IIJIA3MI 3 AHU30TPOITHOIO TEMITEPATYPOIO

M.I. I'puwanos, M.O. Azapenkos, O.I. Kosanenko

OtpumaHi JAWCHEpCiiHI CHIBBIIHOMIEHHS NUPKYJISPHO-NOISPU3OBAHNX XBHJb, IO TOIIHUPIOIOTHECA B3I0OBXK
MarHiTHOTO 1oJis y 1abopaTopHii TUIoIIspHii MarHiTocdepi. Y SKOCTI MOJENTBHOTO PO3NOALITY €HEPriiHUX YACTHHOK Y
OpOCTOpPI IIBHIKOCTEH BHUKOPUCTaHA OiMaKCBETIBChbKA (YHKIlSL 3 aHI30TPOIHOK TeMmieparyporo. JloBeaeHo 1o
IHKPEMEHT LUKJIOTPOHHHUX XBWJIb B JIAOOpATOpHii MarHiTocdepi BU3HAYAETHCS BHECKOM PE30HAHCHUX IPOJIITHUX Ta
3aXOIUICHNX YaCTHHOK B ySIBHY YaCTHHY NONEPEYHHX KOMIIOHEHT TEH30pa JieJIeKTPUIHOI MPOHUKHOCTI.
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