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It is shown, that the dynamic chaos is inherent for quantum systems not only in semi-classical approximation. As an
example the especially quantum three-level system is considered. The value of external perturbation is analytically
found, at which the regimes with dynamic chaos is realized. The possible consequences of regimes with dynamic chaos

in quantum systems are discussed.
PACS: 05.45.Mt

1. INTRODUCTION

Now there is paradigm in which have been formulated
in an obvious kind, that the evolutionary operator
describing dynamics systems with a regime with dynamic
chaos, should have two indisputable properties: 1) To be
stretching. 2) To be nonlinear. Certainly, these two features
are necessary for realization of dynamic chaos. However
concerning the second property (to be nonlinear) it is
necessary to give some explanations. Really, for example,
it is known, that the equations of the quantum mechanics
and Maxwell equations are the linear equations. However
at transition from the quantum equations to the classical
equations, and also at transition from the Maxwell equation
to the equations of geometrical optics we have got systems
of the nonlinear equations. Such equations can describe
regimes with dynamic chaos. Thus, now are known at least
two examples, when in linear systems at the certain
meanings of their parameters (which allow to pass to
classical consideration) the regimes with dynamic chaos are
possible. In work [1] is shown, that this situation is
considerably more widespread, that the regimes with
dynamic chaos is internally inherent in huge number of
linear systems. The results of the analysis of these features
for the quantum systems are presented in this article.

2. STATEMENT OF A PROBLEM.

THE BASIC EQUATIONS
Let's consider quantum system, which is described by
Hamiltonian:
H=Ho+Hit). (1)

Second item in the right part describes perturbation. The
wave function of system (1) obey to the Schrdédinger
equation which decision we shall search as a series of
own functions of the unperturbed task for:

y(®)=2 A 1)@, expliot), 2

where o, =E,/7; iha(;" :ﬂogon =E,-0,.

Let's substitute (2) in the equation Schrédinger and in the
ordinary way we shall get system of the connected
equations for finding of complex amplitudes:

in-A =3 U0 A, . (3)
where U, = [, -Hi(t)-@, -expli-t-(E, —E,)/A]-dg.
Let's consider the most simple case of harmonic

H 1(t) =U -exp(iQt). Then the matrix
elements of interaction will get the following expression:

perturbation:

U,, =V, expfi-t-[(E,—E,)/h+Q]},

Vo = [0;-U - 0,dg 4)
Let's consider dynamics of three-level system
(|O>, |1>,|2>) (see Fig.1). We'll consider that frequency of
external perturbation and the own meanings of energy of
these levels satisfy to the ratio:
m=1L,n=0, #nQ=E -E, m=2,n=0,
nQ+6)=E,-E,, [o]<<Q. 5)

These ratios show on that fact, that the frequency of
external perturbation is resonant for transitions between
zero and first levels, and the energy of the third level is
slightly differs from energy second one. Using these ratios
in system (3), it is possible to left only three equations:

i~h-A,:V01A1+V02A2~exp(i-5-t); i'h'Alzvlopb;

i-h-A =V, A exp(=i-5-t). ©6)

Let matrix elements of interaction for direct and opposite

transitions are equal (V,, =V,;, (i =1;2)). Then from (6)

we find the following connection between squares of
complex amplitudes A, :

d .

TA A=A =2 AAsin(57), ()
0=0/Q, =2V, /h-Q.From this
ratio follows, that if the third level coincides with second
(two-level system, 6 =0 ), the system (6) has only one
degree of freedom. The development of dynamic chaos in
such system is impossible. Below we shall see, that this
difference in energy between second and third levels
(76) define the distance between nonlinear resonances.

where 7=Q-t,

For further analysis of dynamics of complex amplitudes
A(z) itis convenient present them as:

A(7) =a;(7)exp(ip(7)) . @®)
Here @, , ¢, - real amplitudes and real phases. Substituting

(8) in (6) for a finding of the real amplitudes and phases,
we shall get the following system of the equations:

a, =49, -sin(CD)+ﬂ2 -8, ~sin(q)l),
a4 =—4-a, ~Sin((D), a,=—4,"8, 'Sin(q)l) >

0 22 eos(@) [ & Jos(0). O

a 4 8,

a2 aO 0

d)l =—u, [&_&jcos(cbl)-i-‘ul [%jcos(®)+5,
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where D=9, —¢,, D, =0, — @, +07.
From first three equations of this system follows such
a;+a’+aj =const. The system of the

equations (9) is nonlinear. In general, dynamics of such
system can be chaotic.

integral:

3. CRITERION OF DYNAMIC CHAOS
OCCURENCE
It is significant to find analytical conditions, at which
fulfilled the dynamics of quantum system (9) will be
chaotic. For this purpose in the beginning we shall
assume, that there are only two levels - zero and first.
Third level is absent (A, =0). In this case from system

(9) it is possible to get the following equation for the

phase @ :

. 2| (a2 +a2) +(a2-a?)

=-L (2 +ai) . E %) sin(20). (10)
2 a;a;

The equation (10) represents the equation of a
mathematical pendulum. Minimal width of a nonlinear
resonance can be estimated by valueA~ g, . Let's
consider now situation, when the first level is absent
(A =0). Similarly to the previous case, from system (9)
it is possible to get the equation for a phase ®@,. This
equation

also represents the equation of nonlinear oscillator. The
analysis of this equation gives the following estimation of
minimal width of a nonlinear resonance: A, ~ g, . It is

natural to expect, that when the nonlinear resonances will
be overlapped, i.e. when the condition (g + 4, )> & will

be executed, dynamics of system (9) will be chaotic.
Condition of occurrence of local instability is convenient
to rewrite as:

V,, >hoorK =V, /ohn>1. an

We shall assume now, that the conditions for
realization of dynamic chaos are executed. In this case the
investigated system will wander on three power levels. It
is interesting to give estimation for transition time, which
is necessary for the system to pass from one level to
another. For an estimation of time of transition in a
stochastic regime we shall assume, that in this regime any
correlation are absent. Then, for example, for value of an
average square of the real amplitude it is possible to get

the following estimation: <a12 >~ ,uz-<a§>~r. Thus, the
average time of transitions between levels in a stochastic
regime appears about a square of time of transition in a
regular regime: 7, ~ (7,)* ~(7-Q/U,,)’. In a stochastic

regime it is possible diffuse of a quantum system along
energetic levels. Thus the time of diffuse in energy space
on value AE can be estimated by value:

75 ~(AE/hQ)(hQ/UO] )2. Let's note, that the time of

excitation of energy levels from a zero level on levels
with energy in a vicinity E;+AE by manyphoton
excitation will be inverse proportional to a square of a

compound matrix element:z~1/ |H|2. Here H -

compound matrix element, which is equal to the sum of
products of separate matrix elements determining
transitions between intermediate (often virtual) levels.
Each matrix element is small value. Therefore, practically
always the time of transitions caused by stochastic
instability much less of the time of transitions, induced by
manyphoton processes. Thus, as soon as the conditions
for development of stochastic instability are executed, the
processes connected to her, will determine transitions
between levels, when the frequency of external
perturbation is much less than distance between levels
(AE >>hQ).

5. NUMERICAL RESULTS

System of the equations (6) and system of the
equations (9) were investigated numerically. It is
naturally, that dynamics of real and imaginary parts of
complex amplitudes A was regular (system (6)).
Dynamics of the real amplitudes a; and phases® and @,
at performance of conditions for overlapping of nonlinear
resonances was chaotic: the spectra were wide, the
correlation functions quickly fell down, the main
Lyapunov parameters were positive. For an illustration of
chaotic regimes in figures 2-5 are represented:
dependence on time of amplitude a, and phase ® (fig. 2
and fig. 3), correlation function for a phase ® (fig. 4),
and also distribution of the main Lyapunov parameters on
a phase plane (a,, ®). The dependences submitted in
these figures, are received atd=0.1, g, =02, 1, =0.2.
Let's notice that despite of that fact, that dynamics of
functions @; and ¢, are chaotic, the dynamics of function

a,-cos¢, -1isregular.

2

nQ=E, —E,

Fig.1. Three-level system
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Fig.2. Time evolution of amplitude a;
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Fig.3. Time evolution of phase @ ;
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5. CONCLUSIONS
Thus, in quantum systems the regimes with dynamic
chaos can be realized. At that, it is necessary to note, that
the phenomenon of quantum chaos for a long time was
intensively studied (see, for example, [2,3]). But in this
cases, however, all authors have emphasized, that the
quantum chaos is not true chaos, that in quantum chaos

Phase

Amplitude

Fig.5. Main Lyapunov index

those quantum systems are studied, which parameters
allow the semi-classical description and which in a
classical limit have a regimes with dynamic chaos.

For this reason many authors take the name of quantum
chaos in inverted commas. In this work is investigated the
true quantum system. Its parameters are those that do not
allow semi-classical consideration. For this reason it is
possible to name a circle of such phenomena as true
quantum chaos.

The author thanks K.N. Stepanov for useful debates
and discussion of the results.
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MUCTUHHBIA KBAHTOBBINA XAOC
B.A.byy

ITokazaHo, 4TO AMHAMMUYECKHI Xa0C XapaKTepeH AJIs KBAHTOBBIX CUCTEM HE TOJIBKO B KBa3HKJIACCHUYECKOM
npubmmxeHnd. B kauecTBe mpuMepa paccMOTpeHa Cyry0o KBaHTOBAash TPEXypOBHEBAs CHUCTEMa. AHAIUTHYECKH
HaliJilcHa BEJIMYMHA BHEIIHETO BO3MYIIEHHSA, IIPH KOTOPOM pEAIN3yeTCsl PEXHM C AWHAMHUYECKHM XaoCOM.
O06cyx1aroTcsi BO3MOXKHBIE CIIEJICTBUS PEKUMOB C IMHAMHUYECKHM Xa0COM B KBAHTOBBIX CHCTEMaX.

ICTUHHUUN KBAHTOBUM XAOC
B.A.Byy

[oka3aHo, MO NUHAMIYHUI XaoC € XapaKTepHHM [UIi KBAHTOBHX CHCTEM HE TUIBKH B KBa3iKJIACHYHOMY
HaOMDKeHHi. SIK mpUKiIan po3risHyTa cyry0o KBaHTOBA TPHOXPIBHEBA CHCTEMa. AHANTHYHO 3HAWICHA BEIMYHHA
30BHIMIHBOTO 30YPEHHS, MpPU SKOMY PEANi3yETbCA PEKAM 3 AWHAMIYHUM XaocoM. OOroBOPIOIOTHCS MOJKIIHBI
HACJIIKH PEKUMIB 3 ANHAMIYHUM Xa0COM B KBAHTOBUX CHCTEMaXx.
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