АНАЛИЗ ПРОЧНОСТИ ЭЛЕМЕНТОВ ПРЕСС-ФОРМ ИЗ УГЛЕРОД-УГЛЕРОДНЫХ МАТЕРИАЛОВ ДЛЯ ПСЕВДОИЗОСТАТИЧЕСКОГО ПРЕССОВАНИЯ

В.П. Ашихмин, О.В. Бирюков, В.А. Гурин, Б.Б. Затолока, В.В. Колосенко, С.Ю. Саенко Институт физики твердого тела, материаловедения и технологий ННЦ ХФТИ;

Д.В. Лавинский, О.К. Морачковский

Национальный технический университет ХПИ, г. Харьков, Украина

Представлены методы расчета и результаты анализа прочности пресс-форм с наружными цилиндрами из углерод-углеродных композитных материалов (УУКМ), применяемых в ННЦ ХФТИ для прессования изделий методом псевдоизостатического прессования под давлением до 100 МПа и температуре до 1800 °С. Стенка цилиндра пресс-формы моделируется телом вращения из УУКМ под внутренним давлением. Анализ прочности основан на методе конечных элементов (МКЭ) и численном решении на персональном компьютере (ПК) системы разрешающих уравнений МКЭ. Приведены расчетные данные для максимальных значений интенсивности напряжений в зависимости от отношения внутреннего диаметра стенки к наружному (параметр толстостенности d_1/d_2) при разных значениях отношения длины нагруженного участка к длине цилиндра (ℓ /L). По данным расчета можно проектировать пресс-формы заданных размеров.

1. АКТУАЛЬНОСТЬ ПРОБЛЕМЫ

При прессовании изделий давлением 40 МПа и температуре ~1800 °C методом псевдоизостатического прессования в качестве среды, передающей давление, могут использоваться порошки тугоплавких соединений. При давлениях > 40 МПа прессформы могут разрушаться. Для повышения прочности пресс-форм используют поддерживающие цилиндры из УУКМ [1]. Для обоснованного выбора цилиндров, выполненных из УУКМ, необходимы расчетные данные по анализу их прочности при разных относительных размерах: толстостенности d_1/d_2 и отношения длины нагруженного участка цилиндра в конце прессования к общей его длине ℓ/L , где d_1 и d_2 - внутренний и наружный диметры цилиндра из УУКМ, ℓ и L – длина нагруженного участка и общая длина цилиндра.

2. ПОСТАНОВКА ЗАДАЧИ И МЕТОД РЕШЕНИЯ

Общий вид пресс-формы приведен на рис. 1. Элементы пресс-формы включают двухслойный цилиндрический корпус с внутренним цилиндромвкладышем, выполненным из графита (1), и наружным несущим цилиндром, изготовленным из УУКМ, который без зазора одет на внутренний цилиндр (2); верхний и нижний пуансоны из УУКМ (3, 4). Изделия прессуются с помощью порошка (5). Силовые воздействия и геометрические параметры элементов пресс-формы обозначены на рис. 1, где P – осевая сила; p — давление прессования; p_1 , p_2 — радиальные давления на внутренний и наружный цилиндры; L – длина пресс-формы; ℓ – расстояние между пуансонами в конце прессования; h_1 , h_2 – толщины внутреннего цилиндра-вкладыша и наружного цилиндра.

Для расчетов на прочность использовано решение задачи об упругом деформировании толстостенного цилиндра, находящегося под внутренним давлением от вкладыша на участке длиной ℓ . Напряженно-деформированное состояние (НДС) наружного цилиндра при отсутствии объемных сил определяется системой дифференциальных уравнений равновесия [2]:

$$\sigma_{ij,j} = 0, \sigma_{ij}n_j = p_{in}, \forall x \in L_p,$$
 (1)

где L_p – поверхность, на которую действует давление от вкладыша на наружный цилиндр.

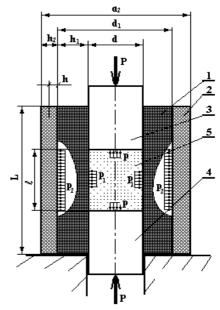


Рис. 1. Пресс-форма для псевдоизостатического прессования

В общем случае для точек, принадлежащих контактной поверхности, условия их сопряжения отвечают неравенствам:

$$u_n^{m-1} + u_n^{m+1} - \delta_{on}^m \le 0, \ \sigma_{nn}^m \le 0,$$
 (2)

где $u_n^{m-1}, u_n^{m+1}, \delta_{on}^m$ — нормальные перемещения точек поверхностей контактируемых областей и начальный натяг (зазор); σ_{nn}^m — нормальные напряжения на контактирующих поверхностях.

Первое условие в соотношениях (2) физически отвечает «не проникновению» контактируемых тел. При выборе зазора между телами возникает контактное давление. Второе условие отвечает сжатию между стенками в пределах области контакта.

Величина радиального давления порошка на внутреннюю стенку вкладыша из графита меньше давления прессования и зависит от физико-механических свойств порошка. Коэффициент бокового давления для порошков типа карбид вольфрама, кобальта, никеля равен 0,3 от осевого давления прессования [3].

Механизмы контактного взаимодействия между соответствующими точками областей контактируемых поверхностей моделировались путем учета влияния внутреннего цилиндра-вкладыша, воспринимающего часть радиальной нагрузки и уменьшающего радиальное давление на наружный цилиндр. Расчет двухслойного толстостенного цилиндра вкладыш-наружный цилиндр, нагруженного внутренним давлением p_1 на длине вкладыша ℓ , показал, что давление на стенку наружного цилиндра р2 меньше давления на вкладыш. Это давление зависит от толщины стенки вкладыша и примерно равно $p_2 = p_1 \frac{d}{d_1}$, что совпадает с рекомендациями работы [4] о редуцировании радиального напряжения в двухслойных пресс-формах. В пределах возможной области контакта этот слой позволяет «внешнюю нелинейность» неравенств (2) свести к «внутренней нелинейности» контактного слоя и рассмотреть взаимодействие тел, разделенных слоем с известными нелинейными свойствами. С помощью описанного выше моделирования можно отразить такие механизмы взаимодействия контактирующих тел, как сцепление, проскальзывание, сухое трение и другие. В расчетах условия фрикционного взаимодействия приняты в форме законов Кулона или Зибеля в зависимости от типа возможного контакта.

Обобщенные уравнения состояния, которые устанавливают связь между напряжениями и деформациями в точках деформирующих тел, представлены тензорно-линейными соотношениями вида:

$$\varepsilon_{ij} = A_{ijkl}\sigma_{kl} + \alpha_{ij}\Delta T$$
(3)

где A_{ijkl} , α_{ij} — компоненты тензоров, отвечающие принятому закону свойств деформирования и температурного расширения-сжатия материалов графита и УУКМ. Величина окружного напряжения в наружном цилиндре от давления вкладыша при нагреве до $1800~^{\circ}$ С невелика: $(\sigma_{\theta})_{T} \sim 3,0~$ МПа и в дальнейших расчетах не учитывается.

В пределах линейной упругости материала соотношение (3) отвечает обобщенному закону Гука.

Для упругопластического деформирования при простом нагружении и при рассмотрении малых пластических деформаций в соотношении (3)

$$A_{ijkl} = \frac{1}{E_*} [(1 + v_*) \delta_{ik} \delta_{jl} - v_* \delta_{ij} \delta_{kl}], \qquad (4)$$

где E_* , ν_* — переменные параметры упругости, которые определяются связью между интенсивностями напряжений σ_i и деформаций соответственно диаграмме деформирования материала.

В этом случае (3), (4) отвечают деформационной теории малых упругопластических деформаций Ильюшина в форме переменных параметров упругости.

Далее в расчетах использован вариационный принцип Лагранжа и конечно-элементная (КЭ) схема матрицы (рис. 2). Базовым КЭ принят четырехузловой изопараметрический элемент с билинейной аппроксимацией перемещений.

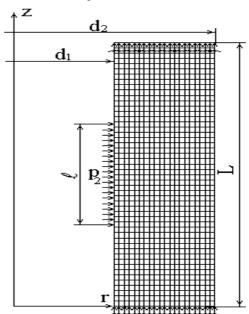


Рис. 2. КЭ схема наружного цилиндра

Методика решения задач о деформировании стенки наружного цилиндра принята отвечающей единой итерационной схеме. С этой целью в расчетах принято пошаговое приложение давления с итерационной схемой поиска неизвестных узловых перемещений, аналогичной методике переменных параметров упругости для решения задач упруго-пластического деформирования. На каждом шаге линеаризованная система уравнений МКЭ имела вид:

$$[K_{N-1}]\{U_N\} = \{F\} - \{F_{N-1}^{\text{TEMII}}\},$$
 (5)

где N — номер итерации; [K] — глобальная матрица жесткости K Э модели; $\{U\}$ — вектор узловых перемещений K Э модели; $\{F\}$ — вектор внешних сил, приведенных к узлам K Э сетки; $\{F^{\text{темп}}\}$ — вектор температурных нагрузок, приведенных к узлам K Э сетки.

Итерационный процесс по определению зон контакта и пластичности продолжается до тех пор, пока не достигается наперед заданная точность выполнения условий

(2). Предложенный метод реализован в программном модуле для программного комплекса SPACE-T [5].

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ НА ПРОЧНОСТЬ НАРУЖНОГО ЦИЛИНДРА

Расчеты на прочность стенок вкладыша и матрицы выполнены при следующих данных о свойствах материала при температуре \sim 1800 $^{\circ}$ C.

Вкладыш — графит марки APB—1 [6]. Предел прочности на растяжение 15 МПа; на сжатие 51,5 МПа; модуль упругости $1,05\cdot10^4$ МПа; коэффициент Пуассона 0,2; коэффициент температурного расширения $6\cdot10^{-6}1/{}^{0}$ С.

Матрица из УУКМ [1]. Предел прочности на растяжение 110 МПа; предел прочности на сжатие 100 МПа; модуль упругости $1,8\cdot10^4$ МПа; коэффициент Пуассона 0,19; коэффициент температурного расширения $3,5\cdot10^{-6}1/$ °C.

Данные расчетов напряженно-деформированного состояния матрицы приведены на рис. 3–5.

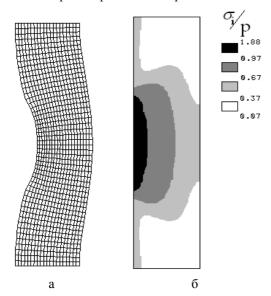


Рис. 3. Деформированная форма (a) и распределение интенсивностей напряжений по сечению стенки (б) наружного цилиндра

Деформированная форма наружного цилиндра показана на рис. 3,а. По данным об искажении сетки КЭ модели можно судить о деформировании стенки, причем, как можно заметить, область максимальных деформаций наблюдается в зоне нагруженного участка наружного цилиндра. Анализ напряженно-деформированного состояния позволил установить распределение интенсивностей напряжений по меридиональному сечению стенки наружного цилиндра (см. рис. 3,б).

Закономерности в распределениях интенсивностей напряжений по толщине стенки в наиболее нагруженном сечении и внутренней поверхности наружного цилиндра устанавливаются по данным на рис. 4 и 5. Здесь приведены распределение интенсивностей напряжений по толщине стенки в опасном сечении (см. рис. 4) и максимальные значения интенсивностей напряжений на внутренней поверхности наружного цилиндра (см. рис. 5) с $d_1/d_2 = 0.5$ и $\ell/L = 0.4$ вдоль ее длины L.

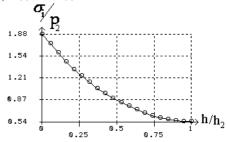


Рис. 4. Распределение интенсивностей напряжений по толщине стенки в опасном сечении

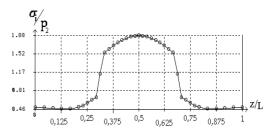


Рис. 5. Максимальные значения интенсивностей напряжений на внутренней поверхности наружного цилиндра вдоль его длины

Для обоснованного выбора размеров пресс-формы из новых материалов необходимы расчетные данные анализа ее прочности при разных отношениях внутреннего и наружного диаметров вкладыша d/d_1 , наружного цилиндра d_1/d_2 и относительной длины нагруженного участка к общей длине наружного цилиндра ℓ/L при действии радиального давления p_2 . Результаты расчетов интенсивности напряжений в наружном цилиндре приведены в таблице.

Значения σ_i/p_2 в зависимости от d_1/d_2 и ℓ/L

	$\mathrm{d}_1/\mathrm{d}_2$							
ℓ/L	0,1	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0,1	0,9 2	0,9 7	1,0	1,1 2	1,3 5	1,6 9	3,3 2	9,02
0,2	1,1 1	1,1 7	1,2 4	1,4 4	1,8 8	2,3 7	4,8 5	11,04
0,3	1,2 4	1,3 2	1,4 1	1,7 0	2,2 7	2,7 8	5,3 9	10,80
0,4	1,3	1,4	1,5 5	1,8 8	2,5 4	3,0 6	5,4 7	10,31
0,5	1,4 1	1,5 2	1,6 6	2,0 2	2,7 0	3,2 7	5,3 6	10,20
0,6	1,4 8	1,6 0	1,7 6	2,1	2,7 7	3,3 6	5,2 2	10,14

Для наружного цилиндра с относительными размерами $d_1/d_2 = 0.6$ и $\ell/L = 0.5$ интенсивность напряжений в опасном сечении (середина нагрузки) наибольшая и по данным таблицы равна 2,7. Согласно критерию прочности Кулона—Мора [2] для хрупких материалов предельная интенсивность напряжений должна быть меньше предела прочности на растяже-

ние: $(\sigma_i)_{\text{max}} < (\sigma_+)_{\text{B}}$. Для наружного цилиндра с такими относительными размерами и $(\sigma_{+})_{B} = 110 \text{ МПа для}$ УУКМ предельное давление на стенку наружного цилиндра $(p_2)_{\text{max}} = (\sigma_+)_B/2, 7 = 40,7 \text{ МПа. Давление на}$ стенку вкладыша больше в результате редуцирования напряжений [4]: $p_1 = p_2 \cdot \frac{d_1}{d_2}$. Для вкладыша с внутренним диаметром d = 120 мм и наружным $d_1 = 200$ мм давление на стенку равно $p_1 = 68$ МПа. Осевое давление на порошок с учетом коэффициента бокового давления [3] $p = p_1/0.3 = 226$ МПа. Это давление создаст продольная сила на пуансон $P = p.0,785d^2 = 225,5$ т. При коэффициенте запаса прочности $n_B = 2.5$, рекомендованном для хрупких материалов [2], допустимое давление на порошок [р] = 90,5 МПа и осевая сила P = 102 т. Вкладыш меняют после каждого прессования, его вынимают вместе с изделием.

4. ВЫВОДЫ

В статье дано расчетное обоснование по использованию углерод-углеродного композитного материала (УУКМ) в наружных цилиндрах пресс-форм, предназначенных для прессования изделий при удельных давлениях до 100 МПа и температурах до 1800 °С с помощью порошков тугоплавких соединений. Приведены математическая постановка и результаты расчетов задачи об упругом деформировании под внутренним давлением двухслойного толстостенного корпуса пресс-формы с внутренним цилиндром-вкладышем из графита и наружным несущим цилиндром из УУКМ с заданными относительными размерами: толстостенностью d_1/d_2 и отношением длины нагруженного участка к общей ее длине ℓ/L .

В основу решения такой задачи положен метод конечных элементов (МКЭ) и метод решения контактной задачи по итерационной схеме метода переменных параметров упругости, хорошо зарекомендовавшим себя при решении задач упругого деформирования многослойных цилиндров. Стенка наружного цилиндра пресс-формы моделировалась телом вращения из изотропного материала, находящегося под внутренним давлением. Анализ прочности основан на МКЭ и численном решении на персональном компьютере (ПК) разрешающих уравнений

МКЭ. Приведены расчетные данные о деформировании стенки наружного цилиндра и значения максимальных интенсивностей напряжений в зависимости от внутреннего давления, толстостенности и относительной длины нагруженного участка.

По приведенным в статье расчетным данным можно обоснованно выполнять проектирование пресс-форм из УУКМ заданных размеров для прессования изделий с помощью порошков тугоплавких соединений при давлении прессования до 100 МПа и температуре до 1800 °С.

Согласно расчету для пресс-формы с внутренним диаметром вкладыша 120 мм, длиной спрессованного порошка 120 мм и относительными размерами вкладыша $d/d_1 = 0.6$; наружного цилиндра $d_1/d_2 = 0.6$ и $\ell/L = 0.5$ допустимое давление прессования с запасом прочности $n_B = 2.5$ и $(\sigma_{+/B} = 110 \text{ M}\Pi \text{a } p = 90.5 \text{ M}\Pi \text{a }$ при осевой силе на пуансон P = 102 T.

ЛИТЕРАТУРА

- 1. Ю.Г. Бушуев, М.И. Персин, В.А. Соколов. *Углерод-углеродные композиционные материалы:* Справочник. М.: «Металлургия», 1994, 128 с.
- 2. Г.С. Писаренко, А.П. Яковлев, В.В. Матвеев. *Справочник по сопротивлению материалов*. Киев: «Наукова думка», 1988, 735 с.
- 3. А.Н. Николаев. Расчет и конструирование матриц для прессования металлических порошков //Труды Горьковского политехнического института, металловедения и порошковой металлургии. Т. XIX. В.1. Горький, 1963, с. 11–15.
- Д.С. Миранский. Принцип конструирования аппаратов сверхвысокого давления. Принцип редуцирования радиального напряжения //Прикладная механика и механическая физика. 1960, № 2, 165–168 с.
- 5. С.В. Бондарь, С.С. Зубатый, Б.Н. Киркач, В.И. Лавинский. Программный комплекс SPACE-Т для решения термоупргопластических контактных задач //Динамика и прочность машин. 2000, №57, с. 24–34.
- 6. Свойства конструкционных материалов на основе углерода: Справочник /Под ред. В.П. Седова. М.: «Металлургия», 1975, 336 с.

АНАЛІЗ МІЦНОСТІ ЕЛЕМЕНТІВ ПРЕС-ФОРМ З ВУГЛЕЦЬ-ВУГЛЕЦЕВИХ МАТЕРІАЛІВ ДЛЯ ПСЕВДОІЗОСТАТИЧНОГО ПРЕСУВАННЯ

В.П. Ашихмін, О.В. Бірюков, В.О. Гурін, Б.Б. Затолока, В.В. Колосенко, С.Ю. Саєнко Д.В. Лавінський, О.К. Морачковський

Представлено методи розрахунку і результати аналізу міцності прес-форм із зовнішніми циліндрами з вуглець-вуглецевих композитних матеріалів (ВВКМ), застосовуваних у ННЦ ХФТІ для пресування виробів методом псевдоізостатичного пресування під тиском до 100 МПа і температурі до 1800 °С. Стінка циліндра прес-форми моделюється тілом обертання з ВВКМ під внутрішнім тиском. Аналіз міцності заснований на методі скінченних елементів (МСЕ) і чисельному рішенні на персональному комп'ютері (ПК) системи рівнянь, що розв'язують МСЕ. Приведено розрахункові дані для максимальних значень інтенсивності напружень у залежності від відношення внутрішнього діаметра стінки до зовнішнього (параметр товстостінності d1/d2) при різних значеннях відносини довжини навантаженої ділянки до довжини циліндра (ℓ /L). За даними розрахунку можна проектувати прес-форми заданих розмірів.

THE STRENGTH ANALYSIS OF THE MOULDS ELEMENTS FROM CARBONEUM - CARBONIC MATERIALS FOR PSEUDO-ISOSTATIC PRESSING

V.P. Ashihmin, O.V. Biryukov, V.A. Gurin, B.B. Zatoloka, V.V. Kolosenko, S.Yu. Sayenko D.V. Lavinsky, O.K. Morachkovsky

The computational methods and outcomes of the analysis of strength of the moulds elements from carboneum - carbonic composite materials (CCCM), used in NSC "«KhFTI" for pressing items by a method of pseudo-isostatic pressing under pressure up to 100 MPa and temperature up to 1800 $^{\circ}$ C are submitted. The wall of the barrel of a mould is modeled by a body of revolution from CCCM under internal pressure. The strength analysis is based on a finite element method (FEM) and numerical solution on the personal computer (PC) of a system of authorizing equations FEM. The predicted data for maximum ratings of intensity of stresses are adduced depending on relation of a minor diameter of a wall to outside (parameter thick-walled d_1/d_2) at miscellaneous values of relation of length of the loaded segment to barrel length (l/L). Under the data of calculations it is possible to engineer moulds of the given sizes.