TO THE CHARGING OF SPHERE IN A EHD GASFLOW
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The interaction between conducting sphere and ions has been investigated in a presence of external electric field and
electrohydrodynamic (EHD) gas flow. Gas is considered as weakly ionized under atmospheric pressure. Diffusion is
assumed to be weak and the trgjectory assumption istaken into consideration. lon currents are obtained analytically and
investigated numerically for the collinear eectric field and gas flow vectors. It is shown, that sphere charging regimes
depend on the key parameter ¢, - the relation of ion drift velocity far away from sphere to gas velocity. So, the cases
|&| < 1 and |&| > 1 yield to different charging regimes. For the potentia flow, the ion current has been found

analytically in continuous &, -parameter space.
PACS: 92.60.Pw, 92.60.Mt, 52.40.Kh

TASK FORMULATION

A conducting sphere moves through the weakly
ionized gas with a fixed terminal velocity U,. Externa
electric fidd is collinear over sphere motion vector. All
ions which attach sphere surface recombinate on it. The
selectivity properties of the sphere surface are discarded.
The equation for ion trajectoriesin a spherical coordinates
may be written as
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where V. = ¥.cosa + ¥y assuming a = O for direct flow
or o =z for contrary one,
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where r is the radial spherical coordinate normalized on
particle radius R, @ is the azimuth, B, = +|B.| are ions
mobilities, E,, is the magnitude of the externa uniform
electric field and is assumed positive. U,, is the magnitude
of the neutral gas velocity far away from the sphere. The
value p, reflects particle polarization, for high static
relative permittivities, ¢ ? 1, pe —1, as for ided
conducting sphere, for "transparent” particle we have
p.=1.

ION TRAJECTORIES AND SPECIAL POINTS

Steady states for ions are defined from the equations:
Vi = Vi = 0. For the neutral particle, only ions which are
being resisted by the external dectric field have stationary
points with V = 0. In direct flow, o = 0O, that is negative
ions. The limiting trgjectories form a separatrix envelope -
sphere with a radius Rs for |£| < 1, which is determined
from the equation V,- =0:
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The same envelope forms and for positiveionsin contrary
flow, a = 7. We need to substitute —¢&, except & in (4) to
determine Rs. Both saddle points, back (r = Rg) and front
(r = Rg) lie on the sphere r = Rg, but have different
azimuths: 6 = z is for front saddle point, 8 = 0 isfor back

one. When sphere acquires the charge then the separating
sphere r = R disintegrates on two independent separatrix
surfaces, each is connected with a corresponded saddle
point.
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Fig. 1. Negativeionstracks (potential flow), & =—1.0145,
n-=-1

One important exclusion concernsthe case of potential
flow with |&| — —1. Let us consider negative ions first.
Then RoRg — and Ry > Rg Ry < Ry, where Rs isthe
spherical separatrix radius with the same & but with
n-= 0. And in the range |&| > 1, no any stationary points
exist for the Stokes flow. But for the potential flow the
saddle point Ry; moves to the limit vaue Ry = —3/-
when & — —1 while Ry, tends to infinity. When & turns
through the point & = -1, the saddle point Ry returns
from infinity but from the opposite direction, 6 = z, see
Fig.1.

This state with two saddles with the same azimuth

m = 7 contracts to one saddle ring under n =y, & = &y for
positive particle charge (ym < 0):

i = 5oz (1 6m) V3(26m — )%

At this special point, r = Ry, = 3(2&, — 1)/2 we have
Vx = 0V,/0r = 0, where “+” isfor o = 0 and “-* is for
a = . The bifurcation in this point, (&n, 7m), givesrise the
saddle ring, see Fig. 2, and in the bifurcation point we
have: Rg = Ro = Ra:.
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Fig. 2. Negative ions tracks (potential flow), & =-1.05,
n-=-1

Coordinates of the saddle rings (Rs:, 0s), for the
negative ions and direct flow, a = 0, and for the positive
ions in opposite flow, a = z, are defined from the system
Vie =Vp =0

3 261 £1 2ny
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When electric field became large, |&| 2 1 and the sphere
charge is fixed then the saddle ring (Rs., 6s) turns to
sphere equator (1, #/2) asymptotically. The transition of
the point (Rs, 65) through equator occurs when particle
charge has become postive (for negative ions). Positive
ions have the same tacks structure in the contrary flow,
a = & and the bifurcation point (&, 7m) is determined by
expression (5) with substituting —¢&, against &, As it will
be showed below, the didocation of saddle ring has an
influence on charging ion flux.

ION CURRENT, é.<1

The solution of the equation (1), with boundary
conditions at infinity,

rsinéle..r... — hbeasfollowing:
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It is supposed that |&| < 1, otherwise thelimit 6 — =
will be valid only for positive ions, for negative one it
might be & — 0. To find the cross-section, we have to
choose those ions from the flow, which are collected by
the sphere: W.(1) = (2pe + 1)¢&.. With this, we obtain an
expression connecting the impact angle 8,. with the shoot
parameter h.:

1+&s

cosbiy = —qF \/(1 -§q)? - him, (8)

where sign “+” is for the positive ions flow while “—" for
the negative ions, 8§ = g/qy , where gy is the maximum
charge acquired by the isolated ideal conducting spherein
the unipolar ions environment in the electric field,
Qu= (2pe + 1)E.R, see [1]. Let us consider, firgt,
positive ions. With varying h, from 0 to hy the impact
angle @, varies from z to 6,, = arccos(— ¢ ) .

So, the threshold shoot distance hy, is obtained from
the (8) with cos 6. = — ¢ :
AT e L
i+ £ + 1+£+
If § > 0 then BLE(1, ) > 0 for any @ and, as
consequence, al positive ions will be repelled from the
aerosol surface and 3. = 0, see (10). Oppositely, if
@i < —1 then B,E/(1, 6) < O for any azimuths # and all
ions in the vicinity of aerosol particle will be attracted by
it and \%+ = —47g. The corresponding collison cross-
section is: 7h? = —4m/(1 + &). Negative ions are
resisted by the external electric field for a = 0, and it

gives income to the current if only g > 0. Then negative
ions bend around the particle and impact the surface at the
range 6 | [0, A.], where cos(f,) = 1 — 2§, as it
follows from the (8). It defines the ring at the particle
surface which is connected by the separatrix paths with
the front saddle point (rs, x). lons from the maximum
distance h.- move to the back saddle point and attach the
sphere surface with - = 0. As it follows from the
equation (8) the cross-section be as:

mho = 4w /(1+ ).
So, the expressions for h. determine positive and

negative charging current. The dimensional current, J.,
may be expressed through the collision cross-section

7rh[2+:
Jy =jamhi R?, ji = Us(l + £4)nore, (10)
or
Jy=Jpdox, Joxr =quvir (1)

where Jy. is the maximum charging current. Summarizing
theresults, the expressions for the currents be as:

_4(}‘1 §< —1; ~
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After the similar arguments as in the case o = 0 charging
currents for o = = may be expressed as:

.. 0, qg<—1;
= —4 0;, - " - '
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U s 4, i>1

The formulae (12), (13) are the same as obtained in [2] by
ancther way. Actually, the method of integration over the
sphere surface (to sum all ions tracks and deduce the
current) was used in [3] for fast ions |&| >1. Following
this assumption and integrating the value 3¢ cos 0 + 7
over the sphere surfacefrom 8 = 0till 6 = 6, we have:
Jo=(1Fq?% [ke| > 1, |d| <1 @4
But, as we will find in the next paragraph, that is
correct only for |&| 2 1 - it's not for the genera case.

For | 81| > 1 integration should be performed over the dll
sphere surface that gives 3. = 0and § = 4§ for
§>1 3, =—4qand J_ =0for & <-1.

ION CURRENT, &, =21

The new results are presented below for the "fast" ions.

177



Potential flow with |&| > 1 has stationary points as it is
shown in Fig. 1,2 and has closed ion paths. Let us
consider the parameter space (¢, #-) for negativeions and
let o« = 0. When |&]l  [1, |&4]] the current is determined
by formula (12), right side. But for |£| > &, we have to
find the attachment azimuth which is not equal to the old
value 0, = arccos(1-28) for ¢ > O (postive net
charge, negative ions).

Since, the coordinate for saddle ring is known, we can
connect two conjugate points (1, #.) and (1, ¢ ) with
Separatrix ring state (Rs-, fs-). Thus, al these points lie on
the same ion path, see Fig. 2. Solving (1) for closed

separatrix path and using the relation
C0Ha: + COsq .= -2 gives:
cosBy,_ = —q+ \/62 +1+2§cosb,_ — §o_sin®b,_, (15)

where @il s = (Tl(RS_) + lPo(RS_))/:gf_, ¥, ¥, arethe flow
function for potential flow determined by (2). Extending
this expression for the positiveionstoo, ¢ . iswritten as
_ 281 (28 £1)23(e F )R
T 22/3¢,
where (Re:, fs:) are the coordinates of the saddle ring.
Integrating the radia eectric field over the sphere and
using the relation cos 65 = — 8 /4 s the negative ion
current be as:

1 (16)

_ ~ ~2
J_ — (q9—~+ Q)
qa—

At the point (&, 7m) we have 8 s = ¢ and formula (17)

) (17)

yields: J = 44 tha is the same as for al range
|£] < |&nl. From the other side, in the limit |&| 2 1,
current turns to the value (1 +8)% since s — 1.

Finaly, for al & range |&| > 1, a« = 0, negative ions
current is:
0! N 6 < _68—:.
F do + ¢ - -
J_= (%.,7‘;‘), 9] < Ga—; (18)
Ga—
44, G > gs—;

where 8 5 = (1 + 2/¢[)/2|&|Rs. and it is always positive.
If > 1 the current remains a constant for al &. For
positive ions there are no closed tracks if |&] > 1, a = 0.
So, k] + can be obtained by the simple integration over the
sphere with limit azimuth cos 6, = 1— 24 . It gives the
left part of equation (17). Due to the symmetry, currents
3 : for @ = = can be obtained using the following
substitution in (18): 3. — -3 ,c— &, § - -4,

6. — —§ s, andsetting-informulafor s

—4q, q < —ay;

7 (Gor — 9% . -
Jp=—"——, @ <d; (9
Gay ~ _

0, q > Gay;

where 8 s, = (1 + 25)/25Rs., and 3 _ is determined by
the right side of (20). Near the point |&| = 1 we can find
that ¢ < » (L5)*3(dx)’® = 1 where 6¢ = |&|-1. But if
& 2 1then ¢ ~1-1/35% ~ 1. At this limit formulas
(19) and (18) became equivaent. This means that current
does not depend on angle « if |&| ? 1. Thatisright also
for Stokes flow for any |&] > 1, then current will be
expressed by the formula (19) with ¢ s, = 1.
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K 3APAIKE C®EPBI B 3I'/] IOTOKE I'A3A
A.E. Copokun

HccnenoBano B3amMmojeicTBue mpoBomsiiieii cdepbl u anmexrporuapoauaamudeckoro (OI]) ra3oBoro moroka B
NPUCYTCTBHM BHENIHETO JJIEKTpHYeckoro mois. ['a3 mpexamonaraercss crnabo HOHM30BaHHBIM. [nddysueid HOHOB
npeHeOperaeTcs, YYUTBIBACTCS TOJBKO UX Jpei() W MepeHOC MOTOKOM rasa. AHAIHTHYCCKA U YHCICHHO ITOYYCHBI
WOHHBIC TOKU Ha cepy AJIs cilydast IOTSHIMAIBHOro 0O0TEKaHHs ISl TFOOBIX 3HAYCHHH YIPaBISIONIEro napamerpa & -
OTHOILICHHE CKOPOCTH Jpelia MOHOB B OTHOPOIHOM DJIEKTPUYECKOM IOJIE K CKOPOCTH Ta3a BIATH OT HOBEPXHOCTH
cepsl.

100 3APS KN COEPU B EI'1 IOTOLI I'A3A

A.€. Copoxin

JocnikeHo B3aeMOMi0 TPoBigHOI chepu i enekrporimpoaunamiaroro (EIJ]) ra3oBoro moTtoky B NPHUCYTHOCTI
30BHIIIHBOTO €JIEKTPUYHOTO Nos. I'a3 mepenbadaeTsest cabko ioHi30BaHUM. J{udy3is 10HIB HEXTYETHCS, BPAXOBYETHCS
TLTBKY TXHIH apeiid 1 mepeHoc MOTOKOM ra3y. AHAJIITHYHO 1 YUCEINbHO OTPHMAHI I0HHI CTpyMH Ha cdepy A BUIMAIKY
MOTEHIIIHHOr0 OOTiKaHHA ISl OYy/b-SIKMX 3HA4eHb KepYyIO4doro mapaMerpa ¢ - BiHOMIEHHS IMIBUAKOCTI Apeidy 10HIB B
OJHOPITHOMY €JIEKTPUYHOMY TIO0JIi 0 MIBHKOCTI T'a3y YAaJIMHI BiJl TOBEPXHI CEpH.
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