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Singular part of the Green’s function of unbounded space is singled out in explicit form and contains all singularities,

including a delta-shaped singularity. The problem of construction of Green’s function for a field is solved, as a

problem for diffraction of potential and rotational components electric field intensity of a point current source on the

circular waveguide walls. The singling out of the electric field intensity singularity in an explicit form about a source

enables to develop an effective algorithm of Green’s function calculation at any distance between the source point

and observation point in a circular waveguide.

PACS: 29.17 + w, 02.30.Rs, 84.40.Sr

1. INTRODUCTION

Singular and hypersingular integral equations [1]
with a kernel in the form of Green’s function are a
highly efficient apparatus of mathematical physics.
These equations are applied in problems of the mi-
crowave electronics and accelerating engineering, for
example, for calculation of electromagnetic fields in
a coaxial girotron [2], an accelerating structure of H-
type [3] and a bunch accumulator of the charged par-
ticles [4] (p.80).

Advantages of singular and hypersingular equa-
tions are connected with the use of well stipulated
matrixes providing a high accuracy and stability of
calculations. However, then the Green’s function is
to be calculated at short distances between the source
points and the observation points.

Let the accelerating structure is a system of metal
radio-frequency (rf) electrodes in a circular waveg-
uide. Then the integral equations use the electric
Green’s function of a circular waveguide for the field
G(k,r ") relative to the surface density of the force
of the electric current which flows only on the elec-
trode surface. Upon expansion using the system TE
and TH waves, G.(k,r,7’) is described by double se-
ries which diverge. This is because @e(k, r,7’) in an
implicit form includes the electric Green’s function of
unbounded space for a field G2 (k, r, ') which has sin-
gularities 1/|7 — 7|, 1/|F — v |2,1/|F — r|3, 6(F — 7).

The problem of construction of Green’s function
for a field is solved, as a problem for diffraction of po-
tential and rotational components of a tensor spheri-
cal wave of the electric field intensity of the point cur-
rent source (a current point source is delta-shaped lo-
cation current) on the circular waveguide walls. Thus
the singularity of electric field intensity was singled

out in an explicit form about a current source that
allowed us to create an effective algorithm of electric
Green’s function calculation at any electric length of
nonhomogeneities in the circular waveguide.

The use of the Green’s function G.(k,r,r’) with
an explicit singularity enables the numerical solution
of two-dimensional hypersingular integral equations
instead of the three-dimensional equations. Hyper-
singularity and two-dimensionality of the equations
can provide an increased accuracy and reduced time

of calculations respectively.
2. THE BASIC PART
2.1. ANALYTICAL RELATIONS

The Green’s electric function for a field is defined
by the formula of [5],[6]

éf(k’,r, r') = (f + klzgrad(r)div(r)> @E(kz,r, '),
(1)

where G (k, 7, r’) is the Green’s function for a vector
potential.
_ In case of a circular waveguide the function
Ge(k,r,r") is constructed by the system TE and TH
waves in [7].

The Green’s function of a circular waveguide for
a field is obtained in the form of TE and TH waves
and in the form of superpositions

Ge(k,r,r") = GP(k,r, ") + GL(k,r,1'),
Ge(k,r,r") = GS(k,r,0") + GE(k,r,r"),
where
ag(la rr') = ézp(la rr') + @fp(l@ rr'),
Gr(k,rr') = G (k') + GE (7,0,
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GS (k') = G5 (k,r,r') + G5 (k,r,r"),  (6)
GE(k,r,r") = GEP(k,ror') + GE (k,r,r"). (7)

Here G'\’e’(k7 r,r') and ég(k, r,r’) are, respectively, the
potential and rotational components of the electric
field intensity of the point current source in the cir-
cular waveguide, G2 (k,r, ') and GE(k,r,r') are, re-
spectively, the intensity of the electric field in the un-
bounded space and of the field reflected from the walls
of the circular waveguide of the point current source;
G5 (k,r,7") and G27(k,r,7") are, respectively, the
potential and rotational components of the electric
field intensity of the point current source in the un-
bounded space; GEP(k,r,7") and GE" (k,r,r') are, re-
spectively, the potential and rotational components
of the intensities of the electric field of the point cur-
rent source reflected from the waveguide walls. The
potential and rotational components of the electric
field intensity are stipulated by the scalar and vec-
tor potentials, respectively or by the distributions of
charges and currents in the source point.

The tensor function G (k, r, ') in an explicit form
describes singularities of intensity of an electric field
of a current point source. It is found 9 components
of G.(k,r,r") in the form of TE and TH waves of a
waveguide and in the form of (2)- (7).

In particular,, by the system of TE and TH waves
of a circular waveguide, G, (k,r,1") is

éeu,krr ZOO Z

m=—00 N=—0o0

(kr}}zn)Q / h / h /
2
mn ! Br nmijm kS
fmn(2,2") + B, (ke V2pp/ (K p) %
T (K Vlimn (2, 2)) 5 (8)
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Ko =
mn R ?
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Ymns tmn are the roots of the equations J,,(z) = 0
and J) (z) = 0, respectively, and R is the waveguide
radius.

It is shown, that

(9)

div(rL)éE(kﬁm,rbrl; 2,2') =0,
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i. e. TE or TH waves in the circular waveguide are ro-
tational waves relative to the transverse coordinates.
(kv T T/)v
(kyryr'), GET, (k,r,1") are described in the form
of (2-7) by the formulas

(10)

(11)
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The potential Gfﬁ/ (k,r,r") and rotational
e, (k,r,7") components of the regular Green’s func-
tion of a circular waveguide are in the form of (2)-(7)
P X :
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GZ:, (k,r, ") = —% Z eim(e—¢')
Ry T ity H ) R)

_4 e m(v(n)p) m(V(n)p)m+
m? W HY (v(n)R)
VTpp,Jm(V(n)p)Jm(V(n)p)de. (19)

Notice, that the problem of construction of the
Green’s function for a field is solved, as a problem
of diffraction of the potential and rotational com-
ponents of the intensity of electric field divergent
spherical wave of a point current source on the circu-
lar waveguide walls. As this takes place, the potential
and rotational components correspond to the scalar
and vector potentials, respectively. We used the
representation of a spherical wave in the form of a
spectrum of non-uniform cylindrical waves diverging
in two opposite directions along the radius, i.e. the
sourcewise representation of a spherical wave in the
radial direction of [8](p.42)

2.2. NUMERICAL RESULTS

Re G,/

Fig.1. Rotational component of Green’s function
ReGg (k,r,1") of a circular waveguide

(k=1256m~'; R =0.0755m; |7 — 7| /A = 0,02)

The algorithm of calculation of G (k,r,r’) in the
form of TE and TH waves of a circular waveguide
and in the form of (2)- (7) is developed. Singulari-
ties of the tensor Green’s function are singled out in
an explicit form for representation of (2)- (7). The
efficiency of calculations of G (k,r,7') in the form of
(2)- (7) is illustrated by the plots in Fig.1-4.

The real part of the rotational component
ReGg ,(k,r,r") of the Green’s function and its
derivative dReGY |, (k,r,r')/0x' (z' is the radial
coordinate) for the cutoff circular waveguide ver-
sus the number of an azimuthal harmonic m is
shown in Fig.l1 and Fig.3 for & = 12.56m™';
R = 0.0755m; p = 0.07Tm; p = 0,08m; z = 2/;
© = ¢'; |[F—7|/Xx = 0,02, and in Fig.2 and Fig.4
for & = 12,56m~'; R = 0,0755m; p = 0.07m;
P =008m; z=250p=¢ +m |[F—7|/X = 0.26.

04}
02t 2
00}

04}

Re G,

-06

-0,8

Fig.2. Rotational component of Green’s function

ReG{ ,(k,r,1") of a circular waveguide

(k =12.56m~'; R =0.0755m; |F — #|/A = 0,26)
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Fig.3. Rotational component of Green’s function
RedGy |, (k,r,1") /0" of a circular waveg-
uide (k = 12.56m~1; R = 0.0755m; |7 —
7/A=0,2)
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Fig.4. Rotational component of Green’s function
RedGy ,(k,r,7")/dx" of a circular waveg-
uide (k = 12.56m~1; R = 0.0755m; |7 —
7|/A=0,26)

The cases when the singularity is singled out and
not singled out are described by curves 1 and 2 re-
spectively. As follows from Fig.1-4 curves of 1 flat-
tens out at m > 20 as for Re Gy ,(k,r, ') and for a
derivative of 8R6G£11/(k,r, r')/0xt., i.e. series con-
verges good at m > 20. Week oscillations take place
for curves of 2 at m > 20 for Re Gy, (k,r,7') , ie.
series converges worse than for curves of 1. A siz-
able oscillations take place for curves of 2 at m > 20
for a derivative of dReGY , (k,r,7')/0x", i.e. series
diverge.
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3. CONCLUSIONS

For the first time the problem of construction of
Green’s function for a field is solved as a problem
of diffraction of potential and rotational parts of the
electric field intensity of a point current source on
circular waveguide walls.

The potential and rotational components of the
electric field intensity are conditioned by the scalar
and vector potentials or distributions of a charge and
a current, respectively, in the source point.

By singling out the singularity of the electric field
intensity in an explicit form about of a source it is
possible to develop the effective algorithm of calcu-
lation of the electric Green’s function at any electric
length of nonhomogeneities in a circular waveguide.
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NCTOKOOBPA3HASA ®YHKIINA 'PUHA KPYIJIOTO BOJIHOBO/JIA
C. /. IIputimenxo, JI.A. Bondapenxo

Cunrynsprast yactb GyHKI ['praa Kpyriaoro BosHoBoga B dopme dyHKImK ['prHa HEOrPAHUIEHHOTO
IIPOCTPAHCTBA BBIIEIEHA B fIBHOM BHJE H COIEPXKUT BCE OCOOEHHOCTHU, BKJIIOUYAs JeJIbTa-00pPa3HyIo O0COOEH-
HOCTB. 3ajada nocrpoenust Gyuxiuu ['puna s mosrst perreHa Kak 3a/1a4da audpakiuyd TOTEeHINAJILHON 1
BHUXPEBON YacTell HAIPSAKEHHOCTH JIEKTPUYECKOT'O II0JIsl TOUEYHOI'0 UCTOYHHKA TOKA Ha CTEHKaX KPYIJIOro
BOJIHOBO/JIa. BbljiesieHre 0COOEHHOCTYH HAIIPSIZKEHHOCTH JIEKTPUYECKOIO II0JIsI B SIBHOM BHJI€ B OKPECTHOCTH
HCTOYHUKA ITO3BOJIMJIO pa3paboTrarh 3PHEKTUBHBIN aJropuTM pacdera djieKTpruydeckoit dynknun ['puna npu
MIPOM3BOJIBHOM PACCTOSHHUY MeK]Iy TOYKAMH UCTOYHUKA M HAOJIIOJEHNs B KPYIVIOM BOJHOBOJE.

J2KEPEJIOIIOAIBHA ®VYHKIIISA I'PIHA KPYIJIOTO XBUJIEBOAY
C./. IIpuiimenxo, JI.0O.Bondapenkxo

Ciarynspaa yactuna yHKIil ['piga kpyrsioro xsuieBogy y dopmi ¢pyukiil I'pina HeoOMexKeHOro mpo-
CTOPY BUJiJIeHa B SIBHOMY BHUIVISJI W MICTHTB BCl OCOOJIMBOCTI, BKJIFOYAIOUN JIEJIBTA-ITONIOHY OCODJIMBICTD.
3amaqda nmobymoBu dyHKIl ['pina s mosis po3B’s3a gK 3a1ada AU@PAaKIl MOTEHIIIHOT it BUXPOBOI YacTUH
HaIPY2KEHOCT] eJIEKTPUIHOrO IOJI KPAIKOBOTO JKEpesia CTPYMYy Ha CTiHKaX KPYIVIOrO XBUJIEBOMY. Bui-
JIEHHSI OCOOJIMBOCTI HAIPY?KEHOCTi €JIEKTPUIHOTO TIOJIST B SBHOMY BUTJISIII B OKOJIHIN JIZKEpEsa JI03BOJIIIO
po3pobuTu edeKTUBHUI aJrOPUTM PO3PaxyHKY ejekTpudHol dyHkiil I'pina npu mosiieHiil Bincrami mix
KpAaIlKaMU JIZKEPEJIa i CIIOCTEPEKEHHST B KPYTJIOMY XBUJIEBOJI.
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