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EXACT PLASMA DISPERSION FUNCTIONS
 FOR COMPLEX FREQUENCIES

S.S. Pavlov1, F. Castejon2, N.B. Dreval1

1Institute of Plasma Physics, NSC “Kharkov Institute of Physics and Technology”,
61108, Kharkov, Ukraine;

2Asociación EURATOM-CIEMAT PARA Fusión, 28040, Madrid, Spain

On the base the theory of Cauchy type integrals is given an analytic continuation of the exact relativistic plasma
dispersion functions from the real axis into the complex region and studied their analytical properties in this region.
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1. INTRODUCTION

The basic to study linear plasma waves in hot enough
plasmas is an evaluation of the relativistic Maxwellian
plasma dielectric tensor [1]. In order to give a recipe of it
for arbitrary plasma and wave parameters the exact
plasma dispersion functions (PDFs) in the form of
Cauchy type integrals with purely real density, defined at
the real axis and tending to zero in the infinite, were
introduced [2-4].  A dielectric tensor has been presented
as a finite Larmor radius expansion in terms of those
PDFs, similarly to cases of non-relativistic and weakly
relativistic approximations, to reduce an evaluation of the
tensor to the PDFs evaluation. The exact PDFs is a
generalization of the weakly relativistic PDFs [5] on the
case of an arbitrary plasma temperature. Two ways
evaluating the exact PDFs in the real frequency region
were given and their main analytical properties were
studied.

The main scope of the present work is an analytic
continuation of the exact PDFs from the real axis to the
complex region. On the base the theory of Cauchy type
integrals we study their analytical properties in this
region.

2. EXACT PDFs IN COMPLEX REGION

Exact  PDFs  of  half-integer index q  ( 2/3≥q ) for
real frequency ω  are defined by Cauchy type integrals
[2-4]
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//N−=β ; ω///// ckN = , cω , 0m ,T  are the
longitudinal refractive index, fundamental electron
cyclotron frequency, rest mass of electron and plasma
temperature; )(1 xI q− , )(1 xKq−  are modified Bessel
function and Macdonald function of half-integer index

1−q ; square root means the positive branch of this
function. If an argument z  takes real values (ω  is real)
both integrals are divergent at the poles zt =  and

zat r −=  (when raz ≤ ), respectively, and must be
understood as the Principal Part of these integrals in the
sense of Cauchy. The contour of integration in that case is
chosen to pass below the pole in the expression (1) and
above the pole in the expression (2).
 For real argument z  those integrals can be evaluated
by means of the next nonsingular integral forms [4]
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 Calculating the exact PDFs on the basis of integrals
(1), (2) and using integrals forms (3), (4) allows one also
to continue analytically those PDFs on total complex
region on the base some facts from the theory of Cauchy
type integrals.
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Fig.1. Module-argument diagram of function
),,(2 12/5 µzaZa   for 1.1// =N  and =iT 100keV

0,04

0,08

0,2

0,7

0,04
0,04

1,4E2

45

45

1,4E2

1,4E2

45
1,4E2

1,4E2

45

45

45

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Y

X

Fig.2. Module-argument diagram of function
),,(2 12/5 µzaZa   for 1.1// =N  and =iT 1000keV

We start from the case 1// >N  which is rather similar
to analytical continuation of the non-relativistic PDF
since in this case the integrand in (1) is also the entire
function at the contour of integration. Then for iyxz +=
in the upper semi-plane those PDFs are defined by the
expressions
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where formula (5) follows from expression (1) by means
of analytical continuation of integrand into upper semi-
plane and formula (6) is obtained from (5) by limit
passing 0→y . Divergent expression (6) can be evaluated
on the base nonsingular integral form (3). Then from (5)
and formulas of Sokhotskii-Plemelj it follows analytical
continuation of functions ),,( µzaZq  from upper semi-
plane into the low one

),,(2),,(),,( 1 µπµµ zaifzaqZzaqZ +
+

=
+ ∗ , 0<y , (7)

where asterisk denotes complex conjugation. This branch
of ),,( µzaZq  corresponds to Landau rule of passing the
pole. If to start from analytical continuation of (1) first
into the low semi-plane and then into the upper one we
will obtain the second branch ),,(),,( * µµ zaZzaZ qq

∗− =

which has a sense for negative values of //N  [6].
At the Figs. 1,2 there are presented plots of module-

argument diagram for function ),2,(2 12/5 µzaaZa  for
1.1// =N , which corresponds ICR frequency range, and

=iT 200, 2000 keV, respectively, for | 1z |=| )2/( az | ≤
≤ constant, obtained using formulas (5)-(7) (module is
presented in logarithm scale). It can be concluded from
these plots that exact PDFs are loosing module symmetry
which there is in non-relativistic PDF respectively of
imaginary axis. This anti-symmetry becomes more and
more essential with growing of ion plasma temperature.
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Fig.3. Module-argument diagram of function
),,(2 12/5 µzaZa for =eT 2keV and 6.0// =N

For the case 10 // <≤ N  on the same way we will have
next formulas for analytical continuation of formula (2)
for ),,( µzaZq  on the whole complex plane with cutting
along the line raz =Re  ( 0Im <z )
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The cutting line is uniquely defined by PDFs behavior for
the case 1// >N while plasma temperature is increasing
(fig. 1,2). We will call this continuation first branch of the
function ),,( µzaZq  in this case.

If to start from analytical continuation of expression
(2) into low semi-plane and then by similar way into
upper semi-plane we will obtain the function

(5)

(10)

(8)
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),,(),,( * µµ zaZzaZ qq
∗− =  with cutting along the line

raz =Re  ( 0Im >z ). We will call this continuation which
has a sense for negative values of //N  by second branch of
the function ),,( µzaZq  in the case 10 // <≤ N . Obviously,
both those branches are identical for raz >Re .

Thus, we have obtained a double-valued analytical
function defined on the whole complex plane excepting
the points raz =  and ∞=z , since it is known [5] that
function ),,( µzaZq  and its derivatives till ( 2/1−q )th are
continues at the point raz = ,  and  the  ( 2/1−q )th
derivative has a single pole at that point. These branches
are separating when ∞→µ  since +∞→ra  in this case.
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Fig.4. Module-argument diagram of function
),,(2 12/5 µzaZa for =eT 2keV and 06.0// =N

 At the Figs. 3,4 there are presented the same plots as
in Figs. 1,2 for =eT 2 keV and =//N 0.6, 0.06,
respectively, which are relevant to ECR frequency range,
obtained using formulas (8)-(10). It can be conclude from
these plots that exact PDFs are loosing module symmetry
which there is in non-relativistic PDF respectively of
imaginary axis with decreasing of //N . This anti-
symmetry becomes more and more essential (similar to
the case 1// >N  with increasing of T ) with decreasing of

//N . It worth to note that the number of zeroes in region
oz >1Re  in this case is finite and defined by the cutting

line, in difference with the case 1// >N where the number
of such zeroes is infinite.

CONCLUSIONS

The next conclusions can be drawn from this study.
1. On the base the theory of Cauchy type integrals it

was studied analytical properties of exact PDFs in
complex frequency region.

2.  For the case | //N | 1< , relating to the ECR frequency
range, it was shown that every exact PDF is two
branched analytic function for rn az <Re  (one branch
has a sense for 0// >N and second branch for 0// <N )
with cutting line rn az =Re  (these branches coincides
for rn az >Re ).

3.  In the alternative case, | //N | 1> , relating to ICR
frequency range, these branches are separating, as in
non-relativistic approximation.

 These results can be useful to study  the properties of
plasma wave instabilities and collisionless dumping in the
frame of the initial value problem in relativistic regimes.
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