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RELAXATION OF A RELATIVISTIC ELECTRON BEAM IN PLASMA IN
THE TRAPPING REGIME
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A model for collective relaxation of high-power relativistic electron beams in plasmas is proposed, which describes
beam-plasma interaction in the regime when amplitudes of unstable waves are large enough to trap beam electrons. The
model predicts profiles of energy release along the plasma column in a good quantitative agreement with experimental
measurements.
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1. INTRODUCTION
The beam-plasma interaction is one of the most

fundamental problems of plasma physics, which is of
great importance for both space and laboratory plasmas.
Due to beam-plasma instabilities, the beam can excite
high-amplitude electric fields in the plasma and lose
significant part of the energy. This property is used to
heat the plasma in mirror traps. This study is motivated by
recent progress in plasma heating at GOL-3 facility [1].

The conventional method to attack the problem of
relativistic electron beam relaxation in a plasma for
typical mirror trap parameters is based on the theory of
weak turbulence (see review [2] and references therein). It
is usually assumed that many unstable modes with
random phases are excited. In the problem of stationary
injection of the beam into the plasma-filled half-space,
these modes grow until their energy is saturated either by
the wave drift out of the relaxation region, or by some
nonlinear processes in plasma (three-wave interaction or
wave scattering on plasma particles). However, the
applicability of the weak turbulence is sometimes
questionable. It turns out that the assumption of random
phases is not always valid. For large amplitudes,
correlation effects should be taken into account. The
correlations are caused by the wave-to-wave interaction
either due to the strong plasma nonlinearity (strong
turbulence), or by means of common resonant particles, if
the beam response to the electric field of the wave is
nonlinear. As shown in numerical simulations of
nonrelativistic beam relaxation [3], the correlation effects
become important if the condition υ∆>Γ k is fulfilled,

where  is the instability growth rate, me /0ϕυ =∆
is the width of the region in velocity space in which beam
electrons (of the charge -e and mass m) are trapped by the
wave potential of the typical amplitude 0ϕ . Under this
condition, waves with close phase velocities, such that the
velocity difference is smaller than υ∆ , form coherent
wave packets. Since the condition of trapping is fulfilled
for typical mirror trap parameters, the goal of this paper is
to propose the model describing the beam relaxation
problem in the trapping regime.

2. EFFECT OF TRAPPING ON EXCITATION
OF RESONANT WAVES

Let us consider the stationary injection of a
monoenergetic electron beam with the relativistic factor

γ , density bn  and initial angular spread 0θ∆  into the
half-space filled by the plasma of the density n . The
beam propagates along the magnetic field B such that

peBe ωω ≈ , where )/(mceBBe =ω  is the electron

cyclotron frequency, mnepe /4 2πω =  is the electron
plasma frequency, and c  is the speed of light. We
develop a one-dimensional model.

Let us distinguish single-mode and multi-mode
regimes of wave excitation. The single-mode regime is
realized for almost monoenergetic beams ( υυ ∆≤∆ b ).
In this case, all beam particles are in resonance with a
single unstable mode, and trapping effects become
essential if the density of the wave energy W  and the
width of the trapping region υ∆  exceed the following
values [5]:
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where υ  is the average velocity of the beam. While at the
beginning of the interaction the beam has a narrow energy
spectrum, at later times it excites different modes, their
number increases with the increase of the velocity spread

bυ∆ , and the regime changes to the multi-mode one.
Since the trapping regime is characterized by the
formation of wave packets with the trapping width υ∆ , it
is natural to divide the wide beam ( υυ ∆>>∆ b ) into

microbeams with the density ( )bbb nn υυ ∆∆≈ /  which
interact with their own wave packets. The expression for
the trapping width in the multimode regime can be found
from the condition υυωυ /∆=∆≈Γ pek  with the

growth rate Γ  calculated in the hydrodynamic
approximation for each microbeam

( ) 3/1
// nnbpe γω≈Γ . It yields
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In the initial value problem [5], the systematic energy
exchange between beam particles and plasma waves ends
as the trapping effects come into play. In the problem of
steady-state injection, the wave packet energy continues
to grow after it exceeds the trapping threshold, but the
rate of this growth is significantly lower as compared to
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the exponential stage. In the single-mode regime, the
density of the energy flux q transported by the beam
decreases after passage through the wave packet of the
length ( )υυ ∆≈ kl /  by the value υγ ∆≈∆ 23 mcnq b

that corresponds to the average deceleration of beam
electrons by υ∆ . So, we can find the scaling of the pump
power P  (i.e., the rate of packet energy growth) on the
energy density in this packet:

2/12 W
l
q

dt
dWP ∝∆∝

∆
≈= υ .             (3)

Thus, in the regime 0WW >  the pump power weakly
depends on the energy of the wave packet. The influence
of trapping effects on the pump power can be illustrated
by the qualitative dependence )(WP  (Fig.1).

Fig. 1. The dependence of the pump power P on the average
energy density in the packet W (1 - the linear pump,  2 -  the
pump modified by trapping effects, 3 - the nonlinear sink)

3. THE MODEL OF BEAM RELAXATION
The weak energy dependence of the pump power

allows us to simplify the model of beam relaxation, as
compared to the weak turbulence model. Namely, in the
trapping regime we do not need to know the nature of
nonlinear mechanisms responsible for the energy sink out
of the resonant waves. The power of beam energy losses
remains close to 0P  no matter at what level the wave
energy is really saturated (point “A”) by nonlinear processes.

In the trapping regime, beam electrons interact with a
large number of wave packets. Assume that after the
passage through each packet, electrons get a random
change in velocity υαυ ∆=∆ 1 , where υ∆  is  the
trapping width determined by the right-hand side of (2)
and 1≈α  is a numerical coefficient used to improve this
estimate formula. Thus, beam electrons diffuse in the
energy space so that in a time )/(1 1υ∆≈∆ kt  the

change in electron energy is 1
3 υυγε ∆≈∆ m . We can

introduce the diffusion equation
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where bε∆  is the energy spread of the beam. We also
assume that, with the random change in velocity 1υ∆ ,
electrons get a regular deceleration of the same order.
That is why the average “longitudinal” beam energy

2mcγ decreases with the increase in the energy spread:
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Fig. 2. The dependence of the energy fraction lost by the beam in the plasma on the initial angular spread of the beam 0θ∆ :

a) experimental data from [4] (dots) and the model dependence (7) (solid line) for 29.0=α ; b) The profiles of plasma
diamagnetism for different angular spreads (dots, from [4]) and corresponding model profiles (solid lines - the formula (8))

z, m
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Given the z-dependence of the average beam energy (5),
we can derive the power of beam losses along the plasma
column:

( )2)( mcn
dz
dzP bγυ−= .                    (6)

4. THE COMPARISON WITH EXPERIMENTS
The proposed model predicts z-profiles of beam

energy losses and their dependence on different beam and
plasma parameters [6]. The influence of the initial angular
spread of the beam on the relaxation efficiency was
studied in experiments [4] at INAR facility (Fig.2). The
best agreement between experimental measurements and
theoretical prediction for the fraction of total energy lost
by the beam in the plasma column of the length L
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is achieved for the fitting parameter α=0.29 (Fig.2a). We
can also compare the longitudinal profiles of plasma
diamagnetism measured for different initial angular
spreads of the beam. The model prediction is given by the
expression

)(
3
2)( zSPSznT bητ= ,                    (8)

where T is the plasma electron temperature, S is the cross
section of the plasma column, bτ is the duration of beam

injection and η  is the fraction of the lost energy remained
in the plasma. We can take η  from the experiment
(Fig.2a) as the ratio of the total energy content measured
by diamagnetic loops and the total beam energy losses
measured by calorimeter. There is a good quantitative
agreement between the theory and experiments (Fig.2b).
It should be particularly emphasized that this agreement is
achieved without any additional fitting parameters.
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