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A model for collective relaxation of high-power relativistic electron beams in plasmas is proposed, which describes
beam-plasma interaction in the regime when amplitudes of unstable waves are large enough to trap beam electrons. The
model predicts profiles of energy release aong the plasma column in a good quantitative agreement with experimental

measurements.
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1. INTRODUCTION

The beam-plasma interaction is one of the most
fundamental problems of plasma physics, which is of
great importance for both space and laboratory plasmas.
Due to beam-plasma instabilities, the beam can excite
high-amplitude electric fields in the plasma and lose
significant part of the energy. This property is used to
heat the plasmain mirror traps. This study is motivated by
recent progress in plasmaheating at GOL-3 facility [1].

The conventional method to attack the problem of
relativistic electron beam relaxation in a plasma for
typica mirror trap parameters is based on the theory of
weak turbulence (see review [2] and references therein). It
is usualy assumed that many unstable modes with
random phases are excited. In the problem of stationary
injection of the beam into the plasmafilled haf-space,
these modes grow until their energy is saturated either by
the wave drift out of the relaxation region, or by some
nonlinear processes in plasma (three-wave interaction or
wave scattering on plasma particles). However, the
applicability of the weak turbulence is sometimes
questionable. It turns out that the assumption of random
phases is not aways valid. For large amplitudes,
correlation effects should be taken into account. The
correlations are caused by the wave-to-wave interaction
either due to the strong plasma nonlinearity (strong
turbulence), or by means of common resonant particles, if
the beam response to the dectric field of the wave is
nonlinear. As shown in numerical simulations of
nonrelativistic beam relaxation [3], the correlation effects

become important if the condition C > kDu is fulfilled,

where T is the ingtability growth rate, Du =,/g ,/m

is the width of the region in velocity space in which beam
electrons (of the charge -e and mass m) are trapped by the

wave potential of the typical amplitude j ,. Under this

condition, waves with close phase velocities, such that the
velocity difference is smaler thanDu , form coherent
wave packets. Since the condition of trapping is fulfilled
for typical mirror trap parameters, the goal of this paper is
to propose the modd describing the beam relaxation
problem in the trapping regime.

2. EFFECT OF TRAPPING ON EXCITATION
OF RESONANT WAVES

Let us consider the dationary injection of a
monoenergetic electron beam with the relativistic factor

g, density N, and initiadl angular spread Dq, into the
half-space filled by the plasma of the density Nn. The
beam propagates aong the magnetic field B such that

Wge »W ., where Wg, =€B/(mc) is the electron

cyclotron frequency, Wpe = A/ 4pean m is the eectron

plasma frequency, and C is the speed of light. We
develop a one-dimensional model.

Let us distinguish singlemode and multi-mode
regimes of wave excitation. The single-mode regime is

realized for almost monoenergetic beams (Du, £ Du ).

In this case, all beam particles are in resonance with a
single unstable mode, and trapping effects become
essentid if the density of the wave energy W and the
width of the trapping region Du exceed the following
values[5]:

W, » g2nmu?(n, /n)"*bu »u/g(n, /n}®,
where U isthe average velocity of the beam. While at the
beginning of the interaction the beam has a narrow energy
spectrum, at later times it excites different modes, their
number increases with the increase of the velocity spread

Du,, and the regime changes to the multi-mode one.
Since the trapping regime is characterized by the
formation of wave packets with the trapping width Du , it

is natural to divide the wide beem (Du, >>Du) into

microbeams with the density Ny » nb(Du / Dub) which

interact with their own wave packets. The expression for
the trapping width in the multimode regime can be found

from the condition G» kDu =w_ Du/u with the

growth rate C caculated in
approximation for each

Grw . /g(ny/n) ityields

Du»ug?b/ge’n%llz(u/Dub)l/Z. @)

In the initial value problem [5], the systematic energy
exchange between beam particles and plasma waves ends
as the trapping effects come into play. In the problem of
steady-state injection, the wave packet energy continues
to grow after it exceeds the trapping threshold, but the
rate of this growth is significantly lower as compared to

the hydrodynamic
microbeam
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the exponential stage. In the single-mode regime, the
density of the energy flux Q transported by the beam
decreases after passage through the wave packet of the
length | »u /(kDu) by the value Dg » g°n,mc?Du
that corresponds to the average deceleration of beam
electronsby Du . So, we can find the scaling of the pump
power P (i.e, the rate of packet energy growth) on the
energy density in this packet:

dw D

P:—»—ql.l Du?pu WYz, ®))

dt I
Thus, in the regime W >W[ the pump power weskly
depends on the energy of the wave packet. The influence
of trapping effects on the pump power can be illustrated
by the qualitative dependence P(W) (Fig.1).
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3. THE MODEL OF BEAM RELAXATION

The weak energy dependence of the pump power
allows us to simplify the model of beam relaxation, as
compared to the weak turbulence model. Namely, in the
trapping regime we do not need to know the nature of
nonlinear mechanisms responsible for the energy sink out
of the resonant waves. The power of beam energy losses

remains close to P, no matter a what level the wave
energy isredly saturated (point “A”) by nonlinear processes.
In the trapping regime, beam electrons interact with a

large number of wave packets. Assume that after the
passage through each packet, electrons get a random

change in velocityDu, =aDu, where Du is the
trapping width determined by the right-hand sde of (2)

and a » 1 isanumerical coefficient used to improve this
estimate formula. Thus, beam éectrons diffuse in the

energy space so that in a time Dt »1/(kDu,) the

change in electron energy is De » g°muDu, . We can

introduce the diffusion equation
312 —6—7

dDe,” _ De? u
b=——=aw, m7/28%9 au . (4
dz Dt eng De
where De, is the energy spread of the beam. We aso
assume that, with the random change in velocity Du,,

electrons get a regular decderation of the same order.
That is why the average “longitudinal” beam energy

u

Wo W gmc? decreases with the increase in the energy spread:
Fig. 1. The dependence of the pump power P ontheaverage ~ 5,_= _, Del(2)- De,(0)
energy density in the packet W (1 - the linear pump, 2- the gmc” =g,mc" - 5 N )
pump modified by trapping effects, 3 - the nonlinear snk)
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Fig. 2. The dependence of the energy fraction lost by the beamin the plasma on theinitial angular spread of the beam D, :

a) experimental data from[4] (dots) and the model dependence (7) (solid line) for a = 0.29 ; b) The profiles of plasma
diamagnetismfor different angular spreads (dots, from[4]) and corresponding mode profiles (solid lines - theformula (8))
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Given the z-dependence of the average beam energy (5),
we can derive the power of beam losses along the plasma
column:

P(2) =- %(anérmz)- ©)

4. THE COMPARISON WITH EXPERIMENTS

The proposed model predicts z-profiles of beam
energy losses and their dependence on different beam and
plasma parameters [6]. The influence of theinitial angular
spread of the beam on the relaxation efficiency was
studied in experiments [4] at INAR facility (Fig.2). The
best agreement between experimental measurements and
theoretical prediction for the fraction of total energy lost
by the beam in the plasma column of the length L

~

is achieved for the fitting parameter a=0.29 (Fig.2a). We
can aso compare the longitudina profiles of plasma
diamagnetism measured for different initial angular
spreads of the beam. The modd prediction is given by the
expression

nT(z)Szght »P(2), (8)

where T is the plasma electron temperature, Sis the cross
section of the plasma column, t  is the duration of beam

injection and h isthe fraction of the lost energy remained
in the plasma. We can take h from the experiment

(Fig.29) as the ratio of the total energy content measured
by diamagnetic loops and the total beam energy losses
measured by calorimeter. There is a good quantitative
agreement between the theory and experiments (Fig.2b).
It should be particularly emphasized that this agreement is
achieved without any additional fitting parameters.
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PEJAKCALUSA PEJSATHBACTCKOI'O EJIEKTPOHHOTI'O ITYYKA B IIJIASME
B PEXKUME 3AXBATA

HU.B. Tumodgpees, K.B. /lomos

Hpe)monceHa MOACIIb KOJUICKTHBHOMH peilakcalui MOINHOT'O PECIATUBHUCTCKOIO 3JICKTPOHHOI'O ITYYKa, OMNMChIBAKOLIAA
B3aHMOZ[GI>’ICTBPI€ nmy4dyka ¢ IUIa3MOM B PEKUMEC, NIpU KOTOPOM OSHEPIrust HGYCTOI\/'I‘H/IBLIX KoJicOaHul OKa3bIBAeTCs
Z[OCTaTO‘IHOﬁ JJIs1 3aXBaTa 2JICKTPOHOB ITyYKa. MOZ[GJ'IL MMpeaACKa3bIBACT HpO(i)I/I.]'II/I OHCProBBIACICHUA ITyYKa B IJIa3M€ 110
JUIMHE YCTaHOBKH, KOTOPBIC HAXOIATCA B XOPOIIEM KOJIMYECCTBEHHOM COIJIACUU C OKCIIEPUMEHTAJIBHBIMU JJTaHHBIMU.

PEJAKCALISA PEJISITUBICTCBKOI'O EJIEKTPOHHOI'O ITYYKA B IIVIA3MI
Y PEXKUMI 3AXOIIJIEHHSA

LB. Tumoghecs, K.B. Jlomos

3anpornoHoOBaHO MOJENb KOJEKTUBHOI pelaKcalii IMOTY)KHOTO PENSITHBICTCHKOTO €JIEKTPOHHOIO Iy4Ka, SKa OIUCYE
B33a€EMOJII0 ITy4Ka 3 IUIA3MOI0 B PEKHMMIi, IPH SIKOMY CSHEpris HECTIMKHX KOJIMBAaHb BUSBIAETHCS JOCTATHBOI JUIs
3aXOIUICHHS EIEeKTPOHIB Imyuka. Mogens mepenbavae mpodidi €HEproBUAIICHHS Iydka B IUIA3Mi 110 JIOBXKHHI
YCTaHOBKH, SIKi 3HAXOATHCS B TAPHIN KUTBKICHIH 3T0/I 3 €KCIIEPUMEHTATHPHUMH TAaHIMH.
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