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TWO-DIMENSIONAL MODELING OF PLASMA CONFINEMENT
IN A TOROIDAL ELECTROMAGNETIC TRAP
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 Two-dimensional modeling of plasma confinement in a toroidal electromagnetic trap with transverse magnetic slits
is carried out. The spatial distributions of electrons and ions density, magnetic and electrostatic potentials are obtained.
Diamagnetic currents of electrons and ions, responsible for shielding of a vacuum magnetic field in plasma, and borders
of the superseded vacuum magnetic field are determined.
PACS: 52.55.-s, 52.65.-y

ALGORITHM OF TWO-DIMENTIONAL
MODELING

The magnetic configuration of a toroidal electro-
magnetic trap with transverse magnetic slits is created by
eight twin coils located in a toroidal vacuum chamber.
The sizes of coils: radius R0 = 0.35 m, cross section –
0.1 x 0.2 m2, ampere conductors – I0 = 1 MA, radius of a
toroidal chamber along the axis line – R = 1.6 m.

Two-dimensional modeling was made on a base of
solution of Vlasov’s stationary equation. The method
described in the paper [1] was used.

The integrals of motion of charged particle with
energy  and angular momentum l  in the cylindrical
coordinate system r, , z is given by the following
expression:
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where mk and qk are mass and charge of particle,  is an
electrostatic potential,  is a constituent of the magnetic
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The stationary equation for electrostatic potential is:
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and for magnetic potential:
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The integration is carried out in the velocity space
∞<<∞− rv , ∞<<∞− ϕv , ∞<<∞− zv ,
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The solution of the equations (3) and (4) is realized
using the method of grids.

By virtue of symmetry, it is enough to choose the area
consisting of a quarter of the space between the neighbour
magnetic slits of the toroidal electromagnetic trap, Fig. 1.

Fig. 1. Area of integration

The initial condition for magnetic potential is the
vacuum magnetic field, produced by the coils of magnetic
system of the toroidal trap:

                            0(r,z).                                  (7)
The boundary conditions:
            (0,z) =  (z,0) = 0,
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The initial condition for electrostatic potential:
       (r,z) = 0.                                                           (9)
The boundary conditions =0 at an outermost

magnetic surface supporting on the anode diaphragm in
the magnetic slit:

  rA = (rA ) at r = 21.5 cm, z = 0.2 cm,                 (10)
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The equations for electrostatic and magnetic potentials
that are brought in through the finite differences:

A (r,z)

rA  = (rA )|r =21.5 z = 0.2
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with the boundary conditions:
        (r,k) =  (r,-k);  (r, 5.5+k) = (r, 5.5-k);

(r,k) = (r,-k);   (r, 5.5+k) = (r, 5.5-k).    (14)

The uncertainty on the axis r = 0,
0
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The electrostatic potential on the axis r = 0:
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The equations (12) and (13) were found by the method
of iterations for magnetic field in the magnetic slit

 = 5 kGs, density of plasma ne,i =  1010-1011 m-3,
electron temperature  = 5 keV, ion temperature

i = 1.5 keV. In Fig. 2 the spatial distribution of potential
in a toroidal trap is shown.

Fig. 2. Electrostatic channel (r,z),   ne0 = 1011 m-3,
ni0= 108 m-3,   = 1000 eV,  i = 300 eV

The plasma is confined within the limits of the
boundary magnetic surface with a sharp decrease of
density of electrons and ions in the frontier area, Fig. 3.

The density of plasma grows to the centre, to axis r=0.

Fig. 3. Density of plasma ne,i(r,z),  = 5000 eV,
i = 1500 eV

The plasma supersedes out a vacuum magnetic field
from the centre of the trap up to the border determined by
balance of magnetic and gas-dynamic pressures, Fig. 4.

a

b
Fig. 4.  Magnetic potential (r,z), Te = 5000 eV,

i = 1500 eV;
) ne0 = 0,  ni0 = 0,

b) ne0 = 5⋅1011  m-3, ni0 =5⋅108 m-3
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Fig. 5. Currents of charge particles: Ie – electron current,
Ii – ion current

Together with a vacuum magnetic field the plasma
currents are superseded out to the surface of plasma: both
the electron and ion currents, Fig. 5.

These diamagnetic currents are responsible for the
screening of a vacuum magnetic field in the plasma.

CONCLUSION

Two-dimensional modeling based on the solution of
the Vlasov’s stationary equation has allowed to find
spatial distribution of plasma density, electrostatic and
magnetic potentials, to determine borders of the
superseded vacuum magnetic field - cross sizes of the
electrostatic channel for capture and accumulation of ions
in an ion ring.
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