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of linear operators {A1, A2, A3}
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Abstract. Functional models are constructed for a non-Abelian nilpo-

tent Lie algebra of linear operators acting in the Hilbert space H.

The algebra generators {A1, A2, A3} satisfy the relations [A1, A3] = 0,

[A2, A3] = 0, [A1, A2] = iA3, where A1x1 + A2x2 + A3x3 is not dissi-

pative for all x = (x1, x2, x3) ∈ R
3, and the space of non-Hermiticity

G = span {(Ak − A∗

k)h, k = 1, 2, 3, h ∈ H} has dimension three.
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Introduction

Functional models of contracting (dissipative) operators first con-
structed by B. Sz.-Nagy and C. Foiaš [5] represent the operators of mul-
tiplication by an independent variable in the special spaces of functions.
Construction of these models is associated with the Fourier transforma-
tion. For the non-dissipative operators, the construction of similar models
is based on the study of the Branges transformation [1, p. 152] [8, p. 126].

The characteristic function is the main analytic object, in terms of
which the functional models are constructed. L. L. Vaksman [7] showed
that if the structure constants of the Lie algebras of linear nonself-adjoint
operators are the same, and the corresponding characteristic functions
coincide, then these algebras are unitarily equivalent. Thus, the model
representations of a Lie algebra with assigned structure components built
by the characteristic function are unitarily isomorphic.

For the Lie algebra of linear operators {A1, A2} [A1, A2] = iA1 [6,
p. 10], the construction of functional models in the case where the oper-
ator A1, for example, is dissipative is also based on the Fourier transfor-
mation.
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In [3, pp. 54–60], the functional models for an arbitrary commutative
system of linear operators {A1, A2} were constructed, and the functional
models for an arbitrary Lie algebra of linear operators {A1, A2} were con-
structed in [4, pp. 176–185] without the assumption about the dissipative
property of the operators A1, A2. In this paper, we construct functional
models for the Lie algebra of linear operators {A1, A2, A3} satisfying the
relations [A1, A3] = 0, [A2, A3] = 0, [A1, A2] = iA3 in the case where
dimG = 3 [G = span{(Ak − A∗

k)h, k = 1, 2, 3, h ∈ H}] without the
assumption that the system contains dissipative operators.

1. Preliminary information

I. Consider a linear bounded operator A acting in a Hilbert space H.
We recall that the family

∆ = (A,H,ϕ,E, J) (1.1)

is said to be the local colligation [2, p. 11], [8, p. 18] if the relation

A−A∗ = iϕ∗Jϕ (1.2)

holds, where E is a Hilbert space, and ϕ, J are operators such that
ϕ : H → E, J : E → E; moreover, J = J∗ = J−1.

The function
S(λ) = I − iϕ(A− λI)−1ϕ∗J (1.3)

is said to be the characteristic function [8, p. 24] of a colligation ∆ (1.1).
Consider the case where dimE = 3, and J is given by

J =




1 0 0
0 −1 0
0 0 −1


 ; (1.4)

moreover, the spectrum of the operator A is real. Then it is well known
[8, p. 66], [2, p. 71] that S(λ) has the multiplicative representation

S(λ) = Sl(λ), Sx(λ) =

x

x∫

0

exp

{
iJdFt

λ− αt

}
, (1.5)

where αx is a real bounded function non-decreasing on [0, l], 0 < l <
∞, and Ft is a matrix-valued (3 × 3) non-decreasing function such that
trFx = x. Suppose that

dFx = ax dx, (1.6)
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where the matrix ax is such that ax ≥ 0, trax = 1,

ax =




a11(x) a12(x) a13(x)
a21(x) a22(x) a23(x)
a31(x) a32(x) a33(x)


 , aij = aji, (1.7)

and aij(x), i, j = 1, 3, are functions on [0, l].
Consider the following integral equation for the matrix-function

Mx(z):

Mx(z) + iz

x∫

0

Mt(z) dFtJ = I, (1.8)

where x ∈ [0, l], z ∈ C. It is easy to see that Mx(z) can be represented
by

Mx(z) = JS∗
x(z̄−1)J. (1.9)

Define the row-vector Lx(z) =
[
L1

x(z), L2
x(z), L3

x(z)
]

as a solution of
the integral equation

Lx(z) + iz

x∫

0

Lt(z) dFtJ = (1, 1, 0) = Lx(0), (1.10)

where z ∈ C. It is obvious that

Lx(z) = (1, 1, 0)Mx(z) = (1, 1, 0)JS∗
x(z̄−1)J. (1.11)

Consider the Hilbert space L2
3, l(Ft) [8, pp. 66–67]

L2
3, l(Fx) =

{
fx ∈ E3;

l∫

0

ft dFt f
∗
t <∞

}
(1.12)

assuming that the proper factorization by the metric kernel is already
carried out.

Define the kernel

Kx(z, w) =
i

π(z − w̄)
Lx(z)JL∗

x(w̄). (1.13)

It is obvious that

Kx(z, w) =
i

π(z − w̄)

(
L1

x(z)L1
x(w)−L2

x(z)L2
x(w)−L3

x(z)L3
x(w)

)
. (1.14)

The following theorem [8, pp. 118–119] takes place.
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Theorem 1.1. The row-vector Lx(z) =
[
L1

x(z), L2
x(z), L3

x(z)
]
, which is

a non-trivial solution (Lx(z) 6= (1, 1, 0)) of the integral equation (1.10),
is such that

1) Lx(z) ∈ L2
3,a(Ft) for all a ∈ [0, l] and z ∈ C;

2) for all z ∈ C and x ∈ [0, l]

∣∣L1
x(z)

∣∣−
∣∣L2

x(z)
∣∣−
∣∣L3

3(z)
∣∣ =





≥ 0, Im z > 0
= 0, Im z = 0
≤ 0, Im z < 0



 (1.15)

is true.

II. Consider the following basis {ek}
3
1 in E3 :

e1 = (1, 1, 0);

e2 = (1, 0, 1); (1.16)

e3 = (5, 4, 3).

Similarly to (1.10), we define the vector-functions Nx(z) = [N1
x(z),

N2
x(z), N3

x(z)] and Rx(z) =
[
R1

x(z), R2
x(z), R3

x(z)
]

as solutions of the in-
tegral equations

Nx(z) + iz

x∫

0

Nt(z) dFtJ = (1, 0, 1) = Nx(0), (1.17)

Rx(z) + iz

x∫

0

Rt(z) dFtJ = (5, 4, 3) = Rx(0) (1.18)

when z ∈ C and x ∈ [0, l]. For Nx(z) and Rx(z), the relations

Nx(z) = (1, 0, 1)Mx(z) = (1, 0, 1)JS∗
x

(
z̄−1
)
J, (1.19)

Rx(z) = (5, 4, 3)Mx(z) = (5, 4, 3)JS∗
x

(
z̄−1
)
J (1.20)

hold, as well as (1.11).

For the functions Nx(z) and Rx(z), the analog of Theorem 1.1 is true.
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Definition 1.1. Denote, by B(L(z)), the linear space of the entire func-

tions F (z), z ∈ C, such that

A)

F (z) = BLft =
1

π

l∫

0

ft dFt L
∗
t (z̄), (1.21)

where BL is the Branges transform [8, p. 125] of the function ft ∈
L2

3,l(Ft);

B) and let

‖F (z)‖B(L(z)) = ‖ft‖L2

3,l
(Ft). (1.22)

Theorem 1.2 ([1, p. 152], [8, pp. 126–127]). Consider the family

of Hilbert spaces B(La(z)), where Lx(z) is the vector-function which is

a solution of the integral equation (1.10) on the interval [0, l] for some

matrix-valued measure Ft. Match every function ht =
(
h1(t), h2(t), h3(t)

)

from L2
3,l(Ft) with the function given by

F (z) =
1

π

a∫

0

ht dFt L
∗
t (z̄), (1.23)

where a is the inner point of the interval [0, l], 0 < a < l. Then F (z) ∈
B (La(z)) .

Definition 1.2. The transform F (z) (1.21) of the function ht ∈ L2
3,l(Ft)

is said to be the Branges transform of the function ht by the measure Ft.

Remark 1.1. Similarly, the Hilbert spaces B(N(z)) and B(R(z)) are
defined. The Branges transformation of the function ht ∈ L2

3,l(Ft) in the
space B(N(z)) is given by

Φ1(z) = BNht =
1

π

l∫

0

ht dFtN
∗
t (z) (1.24)

and the Branges transformation of the function ht ∈ L2
3,l(Ft) in the space

B(R(z)), correspondingly, is

Φ2(z) = BRht =
1

π

l∫

0

ht dFtR
∗
t (z), (1.25)

where z ∈ C.
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III. Consider the matrix T1

T1 =




1 −1 0
0 1 1
0 0 1


 . (1.26)

Apply T1 from the right to Eq. (1.10),

LxT1 + iz

x∫

0

Lt(z) dFt JT1 = Lx(0)T1.

Since Lx(0)T1 = Nx(0), this relation can be rewritten as

Lx(z)T1 + iz

x∫

0

Lt(z)T1T
−1
1 dFt JT1 = Nx(0). (1.27)

Obviously, T−1
1 exists and is equal

T−1
1 =




1 1 −1
0 1 −1
0 0 1


 .

It is easy to see that
JT1 = T̃1J, (1.28)

where

T̃1 =




1 1 0
0 1 1
0 0 1


 , (1.29)

therefore

Lx(z)T1 + iz

x∫

0

Lt(z)T1T
−1
1 atT̃1J dt = Nx(0). (1.30)

Suppose
atT̃1 = T1at. (1.31)

Then relation (1.30) implies that Lx(z)T1 satisfies Eq. (1.17), and this
signifies in view of the uniqueness of the solution of (1.17) that

Lx(z)T1 = Nx(z), (1.32)

for all x ∈ [0, l], z ∈ C.
Consider Φ1(z) = BNft.
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BNft =
1

π

l∫

0

ftat dtN
∗
t (z) =

1

π

l∫

0

ftat dt T̃
∗
1L

∗
1(z)

=
1

π

l∫

0

ftT̃
∗
1 at dtL

∗
t (z̄) = BL(ftT̃

∗
1 )

by virtue of (1.31).

Thus,

BNft = BL(ftT̃
∗
1 ). (1.33)

Denote, by ϕ1(t), the function

ϕ1(t) = ftT̃
∗
1 =

(
f1(t), f2(t), f3(t)

)
T̃ ∗

1 . (1.34)

It is obvious that ϕ1(t) belongs to the space L2
3,l (Ft), if ft ∈ L2

3,l(Ft). So,

Φ1(z) = BNft = BL(ftT̃
∗
1 ) = BLϕ1(t). (1.35)

Therefore, there exists the transformation ψ1 : B(L(z)) → B(N(z)),
given by the formula

(ψ1G)(z) = G1(z). (1.36)

Here, G(z) ∈ B(L(z)), and G1(z) ∈ B(N(z)), i.e. G(z) = BLft, where
ft ∈ L

2
3,l(Ft) and ψ1G(z) = ψ1BLft = G1(z). Since G1(z) ∈ B(N(z)),

we have G1(z) = BNft, where ft ∈ L2
3,l(Ft), ψ1BLft = BNft. Thus, by

virtue of (1.33),

ψ1BLft = BLT̃
∗
1 ft, (1.37)

i.e., ψ1BL = BLT̃
∗
1 and

ψ1 = BLT̃
∗
1 B−1

L . (1.38)

Definition 1.3. The transformation B−1
L is said to be inverse to the

Branges transformation BL for the function ft ∈ L2
3,l(Ft).

Consider ψ−1
1 : B(N(z)) → B(L(z)) and ψ−1

1 = BLT̃
∗−1
1 B−1

L , i.e.,

(
ψ−1

1 Φ1

)
(z) = ψ−1

1 BNft = ψ−1
1 BLT̃

∗
1 ft

= BLT̃
∗−1
1 B−1

L BLT̃
∗
1 ft = BLft = F̂1(z)

takes place for all functions Φ1(z) ∈ B(N(z)), where F̂1(z) ∈ B(L(z)).
Thus, there exists ĥt from L2

3,l(Ft) such that
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F̂1(z) =
1

π

l∫

0

ĥt dFt L
∗
t (z), (1.39)

F̂1(z) = BLĥt. (1.40)

IV. Similar considerations can be carried out for the space B(R(z)).
Namely, there exists the matrix T2 given by

T2 =




2 3 0
3 1 3
0 0 1


 . (1.41)

By applying T2 to Eq. (1.10) from the right, we get

Lx(z)T2 + iz

x∫

0

Lt(z)T2T
−1
2 dFtJT2 = Rx(0). (1.42)

Obviously, the matrix T−1
2 exists. It is easy to see that

JT2 = T̃2J, (1.43)

where

T̃2 =




2 −3 0
−3 1 3
0 0 1


 . (1.44)

Therefore, supposing that

atT̃2 = T2at, (1.45)

we obtain that Lx(z)T2 satisfies Eq. (1.18). This signifies in view of the
uniqueness of the solution of (1.18) that

Lx(z)T2 = Px(z), (1.46)

for all x ∈ [0, l], z ∈ C.
In exactly the same way, let us consider the function ϕ2(t) given by

ϕ2(t) = ftT̃2. (1.47)

Similarly,

Φ2(z) = BRft =
1

π

l∫

0

ftat dtR
∗
t (z)
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=
1

π

l∫

0

ftat dt T̃
∗
2L

∗
t (z) =

1

π

l∫

0

ftT̃
∗
2 at dt T1L

∗
t (z);

Φ2(z) = BL(ftT̃
∗
2 ), (1.48)

by virtue of (1.45).

That is, BRft = BLftT̃2 or BRft = BL(ftT̃
∗
2 ) = BLϕ2(t). Car-

rying out similar considerations, we obtain that there exists the map
ψ2 : B(R(z)) → B(L(z)) given by the formula

(ψ2G)(z) = G2(z), (1.49)

where G2(z) ∈ B(R(z)), G2(z) = BRft, ft ∈ L2
3,l(Ft) and

Ψ2BLft = BLT̃
∗
2 ft, (1.50)

i.e., ψ2BL = BLT̃
∗
2 и

ψ2 = BLT̃
∗
2 B−1

L . (1.51)

Consider ψ−1
2 : B(R(z)) → B(L(z)) and ψ−1

2 = BLT̃
∗−1
2 B−1

L , i.e.,

(
ψ−1

2 Φ2

)
(z) = ψ−1

2 BRft = ψ−1
2 BLT̃

∗
2 ft

= BLT̃
∗−1
2 (t)B−1

L BLT̃
∗
2 ft = BLft = F̂2(z),

where F̂2(z) ∈ B(L(z)) takes place for every function Φ2(z) ∈ B(R(z)).
Thus,

F̂2(z) =
1

π

l∫

0

ĥt dFt L
∗
t (z), (1.52)

F̂1(z) = BLĥt, (1.53)

where ĥt ∈ L2
3,l(F1).

Definition 1.4. The function ĥt =
(
ĥ1(t), ĥ2(t), ĥ3(t)

)
∈ L2

2,l(Ft) con-

structed by this rule is said to be the dual function to the function ht =(
h1(t), h2(t), h3(t)

)
∈ L2

3,l(Ft).

Remark 1.2.

Φ1(z) = (ψ1F̂1)(z), (1.54)

Φ2(z) = (ψ2F̂2)(z), (1.55)

takes place.
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2. Triangular models of an operator system

V. Consider the commutative system of linear bounded operators
{A1, A2} acting in a Hilbert space H, i.e., the relation

[A1, A2] = A1A2 −A2A1 = 0. (2.1)

holds.
As is well known [2, pp. 11–15], the family

∆ = (A1, A2, H, ϕ,E, σ1, σ2, γ, γ̃) , (2.2)

where E is some Hilbert space, ϕ, σ1, σ2, γ, γ̃ are operators such that
ϕ : H → E, σ1 : E → E, σ2 : E → E, γ : E → E, γ̃ : E → E,
and σk = σ∗k, k = 1, 2, γ = γ∗, γ̃ = γ̃∗, is said to be the commutative

colligation if the relations

1. Ak −A∗
k = iϕ∗σϕ, k = 1, 2

2. γϕ = σ1ϕA
∗
2 − σ2ϕA

∗
1 (γ̃ϕ = σ1ϕA2 − σ2ϕA1)

3. γ − γ̃ = i(σ1ϕϕ
∗σ2 − σ2ϕϕ

∗σ1)

(2.3)

hold.

Definition 2.1. The matrix-function S(λ1) given by

S(λ1) = I − iϕ (A1 − λ1I)
−1 ϕ∗σ1, (2.4)

is said to be the characteristic function of colligation (2.2) corresponding

to the operator A1. If dim E = 3, and the spectrum of the operator A1

is real, then, for S(λ1) [2, p. 71], the multiplicative representation (1.5)
takes place.

Let σ1 = J, where J (1.4) and σ2 = σ. Then the intertwining condition
[9, p. 117]

(σλ1 + γ)JS(λ1) = S(λ1)(σλ1 + γ̃)J (2.5)

takes place for function (2.4).
Suppose that dF1 = atdt, where the matrix at is given by (1.7) and

is such that at ≥ 0 and trat = 1. Then the following theorem takes
place [9, p. 118].

Theorem 2.1. In order that the intertwining condition

(σλ+ γx)JSx(λ) = Sx(λ)(σλ+ γ̃)J, (2.6)

for the matrix-function Sx(λ) hold, it is necessary and sufficient that

1)
d

dx
γxJ = i[Jax, σJ ]γ0 = γ̃, (2.7)

2) [Jax, (σαx + γx)J ] = 0. (2.8)
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VI. Consider now the system of linear bounded operators {A1, A2,
A3} in H such that

[A1, A3] = 0,

[A2, A3] = 0, (2.9)

[A1, A2] = 0.

The triangular model realization of the Lie algebra (2.9) in the space
L2

3,l(Ft) (1.12) is given by

Â1fx = fxJ(γx,1 + αxσ1) + i

l∫

x

ftat dt σ1,

Â2fx = fxJ(γx,2 + αxσ2) + i

l∫

x

ftat dt σ2, (2.10)

Â3fx = αxfx + i

l∫

x

ftat dt σ3.

In this case, we suppose that

σ3 = J,

σ2 =




0 1 0
1 0 1
0 1 0


 , (2.11)

σ1 =




0 b 0
b 0 b
0 b 0


 ,

γx,1 =




β11(x) β12(x) β13(x)
β̄12(x) β22(x) β23(x)
β̄13(x) β̄23(x) β33(x)


 , (2.12)

where b ∈ R, βij(x) are some functions, and γ0,1 = γ1. In addition,

γx,2 =




d11(x) d12(x) d13(x)
d12(x) d22(x) d23(x)
d13(x) d23(x) d33(x)


 , (2.13)

where dij(x) are some functions, and γ0,2 = γ2. Moreover, the relation

γ2 − γ∗2 = iσ3 (2.14)
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holds for γ2.
In order that the conditions of Theorem 2.1 hold for the commutative

operators {A1, A3} and {A2, A3}, namely, in order that (2.7) and (2.8)
take place and condition (2.9) hold, the matrix ax must be given by

ax =




1 − a2(x) ia1(x) a2(x)
−ia1(x) 1 − 2a2(x) −ia1(x)
a2(x) ia1(x) 3a2(x) − 1


 , (2.15)

and γx,1 and γx,2 must satisfy the relation

γx,1 = bγx,2 + c, (2.16)

where c is a constant matrix given by

c =




−β − ib/2 −i/2 0
i/2 β + ib/2 −i/2
0 i/2 β + ib/2


 . (2.17)

In this case, γ1, γ2 are

γ1 =




−β bα− i/2 0
bᾱ+ i/2 β bα− i/2

0 bᾱ+ i/2 β


 ,

γ2 =




i/2 α 0
ᾱ −i/2 α
0 ᾱ −i/2


 ,

(2.18)

where β ∈ R, α = ik, k ∈ R. The matrix γx,2 is such that

d

dx
γx,2 =




2ia1(x) 2(1 − a2(x)) 0
−2(1 − a2(x)) 4ia1(x) 2(3a2(x) − 1)

0 −2(3a2(x) − 1) −2ia1(x)


 .

(2.19)

3. Functional models of the Lie algebra of

operators {Â1, Â2, Â3}

VII. Consider the operator system {Â1, Â2, Â3} (2.10) acting in
L2

3,l(Ft) (1.12); moreover, {σ1, σ2, σ3} (2.11), γ1, γ2 (2.18) respectively,
γx,1, γx,2 satisfy relation (2.16); moreover, relation (2.19) holds for γx,2.

Let us study how the action of each of the operators {Â1, Â2, Â3}
changes after the Branges transformation (1.21)
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πÂ3F (z) =

l∫

0

( l∫

t

fs dFs J

)
dFtL

∗
t (z̄)

=

l∫

0

ft dFt

L∗
t (z̄) − L∗

t (0)

z
= π

F (z) − F (0)

z
.

That is,

Ã3F (z) =
F (z) − F (0)

z
, (3.1)

Ã3F (z) ∈ B(Ll(z)).
We now calculate πÂ1ft (πÂ2ft can be obtained similarly)

πÂ1F (z) =

l∫

0

(A1ft) dFt L
∗
t (z̄) =

l∫

0

ft dFt (A∗
1Lt(z))

∗

=

l∫

0

ft dFt

(
αtLt(z)Jσ1 + Lt(z)Jγt,1 − i

x∫

0

Ls(z) dFs σ1

)∗

.

By virtue of the integral equation (1.10), we obtain

πÂ1F (z) =

l∫

0

ft dFt

(
Lt(z) − Lt(0)

z
Jσ1 + Lt(z)Jγt,1

)∗

=
1

z

l∫

0

ft dFt (Lt(z)J(σ1 + γt,1z) − Lt(0)Jσ1)
∗ .

Remark 3.1. It is easy to see that

Lt(z)J(σ1 + γt,1z)|z=0 = Lt(0)Jσ1. (3.2)

Remark 3.2. It is shown earlier that, for the pair of the operators
{A1, A3} forming the commutative operator system, the conditions of
Theorem 2.1 are true, and, thus, the following intertwining property
takes place, namely:

(σ1λ+ γx,1)JSx(λ) = Sx(λ)(σ1λ+ γ1)J, (3.3)

and setting λ = 1
z

in this relation we obtain

(σ1 + γx,1z)JSx

(
z−1
)

= Sx

(
z−1
)
(σ1 + γ1z)J.
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In view of relations (1.11), (1.17), and (1.18), we obtain

Lx(z)J(σ1 + γx,1z)

= (1, 1, 0)M(z)J(σ1 + γx,1z)

= (1, 1, 0)JS∗
x

(
z̄−1
)
JJ(σ1 + γx,1z)J

= (1, 1, 0)J(σ1 + γ1z)JS
∗
x

(
z̄−1
)
J

= (1, 1, 0)J(σ1 + γ1z)Mx(z).

This relation can be represented in the form

(1, 1, 0)J(σ1 + γ1z)Mx(z) =

3∑

j=1

ζj(z)ejMx(z), (3.4)

where ej (j = 1, 2, 3) are given by (1.16), and ζj(z), (j = 1, 2, 3) are
some functions from z, z ∈ C. Taking relations (1.11), (1.19), and (1.20)
into account, we obtain

3∑

j=1

ζj(z)ejMx(z) = ζ1(z)Lx(z) + ζ2(z)Nx(z) + ζ3(z)Rx(z),

i.e.,

Lx(z)J(σ1 + γx,1z) = ζ1(z)Lx(z) + ζ2(z)Nx(z) + ζ3(z)Rx(z). (3.5)

In the case where σ1 and γ1 are given by formulas (2.11) and (2.18),
ζj(z), (j = 1, 2, 3) are given by

ζ1(z) = pz − b; ζ2(z) = pz + b; ζ3(z) = −idz − b; (3.6)

where p = −β + id, d = (2bk − 1)/2, k : α = ik, k ∈ R. In addition,
ζj(z) (j = 1, 2, 3) at the point z = 0 are equal to

ζ1(0) = −b; ζ2(0) = b; ζ3(0) = −b. (3.7)

Thus,

πÂ1F (z) =
1

z

l∫

0

ft dFt (ζ1(z)Lt(z) − ζ1(0)Lt(0) + ζ2(z)N(z)

− ζ2(0)N(0) + ζ3(z)R(z) − ζ3(0)R(0))∗

=
1

z
{ζ̄1(z)F (z) − ζ̄1(0)F (0) + ζ̄2(z)Φ1(z)
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− ζ̄2(0)Φ1(0) + ζ̄3(z)Φ2(z) − ζ̄3(0)Φ2(0)}.

Taking relations (1.54) and (1.55) into consideration, we obtain

Ã1F (z) = b
F (0) − F (z)

z
+ p̄F (z)

+ b

(
Ψ1F̂1

)
(z) −

(
Ψ1F̂1

)
(0)

z
+ p̄

(
Ψ1F̂1

)
(z)

+ b

(
Ψ2F̂2

)
(0) −

(
Ψ2F̂2

)
(z)

z
+ id

(
Ψ2F̂2

)
(z). (3.8)

By carrying on similar considerations for the operator Â2, we get

πÂ2F (z) =

l∫

0

(A2ft) dFt L
∗
t (z̄) =

l∫

0

ft dFt (A∗
1Lt(z))

∗

=

l∫

0

ft dFt

(
αtLt(z)Jσ2 + Lt(z)Jγt,2 − i

x∫

0

Ls(z) dFs σ2

)
.

In this case, the corresponding analogs of Remarks 3.1 and 3.2 are also
valid.

Consider Lt(z)J(σ2 + γt,2z):

Lx(z)J(σ2 + γx,2z) = (1, 1, 0)Mx(z)J(σ2 + γx,2z)

= (1, 1, 0)JS∗
x(z̄−1)JJ(σ2 + γx,2z)

∗J

= (1, 1, 0)J(σ2 + γ2z̄ − iσ3z̄)JS
∗
x(z̄−1)J.

Remark 3.3. (σ2 + γx,2z)
∗ = (σ2 + γ∗x,2z̄) and, consequently, there is γ∗2

in the relations. Since γ2 and γ∗2 satisfy relation (2.14), we have

(σ2 + γ∗2 z̄) = (σ2 + γ2z̄ − iσ3z̄). (3.9)

Taking σ3 from (2.11), we get (σ2 + γ∗2z) = (σ2 + γ2z̄) − iJz̄,

Lx(z)J(σ2 + γx,2z) = (1, 1, 0)J(σ2 + γ2z − iJz)Mx(z). (3.10)

As before, we have

Lx(z)J(σ2 + γx,2z) =

3∑

j=1

ηj(z)ejMx(z), (3.11)



514 Functional models...

where ej (j = 1, 2, 3) are given by (1.16), and ηj(z), (j = 1, 2, 3) are
some functions from z, z ∈ C

Lx(z)J(σ2 + γx,2z) = η1(z)Lx(z) + η2(z)Nx(z) + η3(z)Rx(z). (3.12)

In the case where σ2 and σ3 are defined by (2.11), ηj(z) (j = 1, 2, 3) are
given by

η1(z) = −1−iz (k + 1/2) ; η2(z) = 1+iz (k − 1/2) ; η3(z) = −1−ikz,
(3.13)

where k : α = ik, k ∈ R. Note that, when z = 0,

η1 = −1; η2 = 1; η3 = −1. (3.14)

Thus, similarly to the aforesaid for the operator Â1, we obtain

Ã2F (z) =
F (0) − F (z)

z
+
i

2
(1 + 2k)F (z)

+

(
Ψ1F̂1

)
(z) −

(
Ψ1F̂1

)
(0)

z
+
i

2
(1 − 2k)

(
Ψ1F̂1

)
(z)

+

(
Ψ2F̂2

)
(0) − (Ψ2F̂2)(z)

z
+ ik

(
Ψ2F̂2

)
(z). (3.15)

So, we obtain the following result.

Theorem 3.1. Let {Â1, Â2, Â3} be a system of the model operators

(2.10) acting in the space L2
3,l(Ft) (1.12) (dFt = atdt, (1.31), (1.45) take

place for at) satisfying the commutative relations (2.9); in addition, let

{σ1, σ2, σ3} be given by (2.11) and γ1, γ2, correspondingly, by (2.18); γx,1

and γx,2 satisfy relation (2.16), and let relation (2.19) be true for γx,2.

If F (z) ∈ B(L(z)) is the Branges transform of the function ht from

L2
3,l(Ft), and if F̂1(z) and F̂2(z) are the Branges transforms [by (1.36)

and (1.49), correspondingly] for the dual function ĥt (by Definition 1.4),
then the Branges transform (1.21) establishes the unitary equivalence be-

tween the triangular models {Â1, Â2, Â3} (2.10) and the functional models

{Ã1, Ã2, Â3} (3.14), (3.15), (3.1).
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