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Some problems with homogeneous
boundary conditions for degenerate
nonlinear equations

OLEH M. BUHRII

(Presented by A. E. Shishkov)

Abstract. We consider a boundary-value problem for the nonlinear de-
generate elliptic equation and an initial boundary-value problem for the
nonlinear degenerate parabolic equation with nonstandard growth con-
ditions. The existence theorems for the considered problems are proved.
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Introduction

Our aim is to prove the existence theorems for some nonlinear de-
generate elliptic and parabolic equations. For example, we consider the
initial boundary-value problem

n

™2y = 3 (2, )a, + [l %0 = f(a, 1),
=1
zeQCR, te(0,7), (*)
ulagax(o,r = 0,
u|t=0 = 07

where 7,791, ..., > 2, ¢ : @ — (1,4+00), f: Q x (0,T) — R'. Here,
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we prove that problem (x) has a generalized solution. This solution is a
limit with respect to the weak topology of the sequence of solutions to
the following problem:

n
—e(|uf ) = Y (g, ), A |uf | g
=1
Huf 102 = f(a, 1),
xeQ, te(0,7),

uf|pax 0,1 = 0,

()

uli=0 =0, uglg=r =0, €>0.

Using the Galerkin method, we prove the existence of a generalized solu-
tion to this boundary-value problem. Note that Eqs. (x) and (#x*) contain
the terms such that their degrees are some functions g # const. There-
fore, the solutons to (x) and (*x*) belong to a generalized Lebesgue space
(see [18,22]). If r # 2 and if ¢ # const, then the problems of types (x)
and (xx) were not earlier studied. The mixed problems for other types of
the nonlinear parabolic equation with variable exponents of a nonlinearity
were considered in [12]. The author and S. Lavrenyuk studied various ini-
tial boundary-value problems and problems without initial conditions for
parabolic equations and variational inequalities with the variable expo-
nent of a nonlinearity (see [10,11,13]). In [9], M. Bokalo and V. Sikorsky
considered a problem without initial conditions for the parabolic equa-
tion in anisotropic Sobolev spaces. Note that the parabolic equations
or inequalities in [9-13] contained a monotonous elliptic operator (unlike

In his paper [15], Yu. Dubinskii proved that the system of elliptic
equations of type (xx) with ¢(y) = const and homogeneous Dirichlet
boundary conditions has a solution. The mixed problem with homoge-
neous initial condition for equations of the form

n
[ul Pur — alu = B (Jul*Pug, o, + y|ul"Pu = f(a,t),
=1

where «, 3,7 > 0, h = s, was considered in [1|. The variational in-
equalities, which correspond to the above-presented equations, were in-
vestigated in [5]. Using Schauder’s theorem, the existence of the solution
to a Dirichlet boundary-value problem for equations of type (xx) with
r=r(z,t), v; = vj(z,t), 7 = 1, N, but without junior terms was investi-
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gated in [3]. The correspond mixed problem for equation (x) for condi-
tions 7 = 2 and without junior terms was studied in [4]. Some properties
of solutions to the equation of type (%) were proved in [2,7,8,14,23-25].

This paper is organized as follows. In Section 1, we give the state-
ments of our problems. In Section 2, we consider some auxiliary facts,
propositions, lemmas, and theorems. The third section involves the exis-
tence theorem of the solution to a problem of type (xx). In Section 4, we
prove the existence theorem of the solution to problems of type (x). The
uniqueness of solutions to our problems is not studied.

Let us introduce the following notation. Let ||-;B|| be a norm of
some Banach space B, B* a Cartesian product of B, where k € N, B* a

conjugate space of B, (-, )5 a scalar product of B* and B. If u: (0,7T) —
B, then u(t) = u(-,t) (see [17, p. 145]). The notation By O Bz means

that the space By is continuously imbedded in By, B1 By means that

K
space Bj is continuously and densely imbedded in By, and By O B»
means that space By is compactly imbedded in By. In addition, by Cj,
we mark positive constants which depend only on the initial data.

1. Statement of problems

First, we assume that G C RY (N € N) is a domain such that the
following condition is satisfied:

(G): G = Q x [0,€p41] X -+ x [0,€n], where Q C R™ is a bounded
domain with the piecewise smooth boundary 02, n € {0,1,...,N},
€n+1,...,fN > 0.

Note that the case n = 0 means that the domain € is absent, and G =
[0,61] x --- x [0,fn]. If n = N, then G = Q.

If condition (G) is satisfied, then the following assumptions are need-
ed for the sequel. If y = (y1,...,yn) € RY, then yé = (Y1,---,Yj-1,

Yjrt, - yn) ERY L dy = dyy - - dyn, dyy = dyy -+ dy; 1 dyjg - dyn,
Gj = x [O,€n+1] X X [O,gj_l] X [0,€j+1] X X [O,EN] if j >n+1.

Suppose that G satisfies (G), a1,...,an,b1,...,bn,9,f : G — RL,
and the following conditions are satisfied:

(Q1): g € L*(G), 1 < q1 = essinfyeq q(y) < esssupyeq q(y) = g2 < +00;

(Fl)' Y1y IN € [27+OO)
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We seek the function u : G — R! such that

N N
= (@il 2uy, )y, + > b )|l Py, + g(y)|ul ) = f(y),
j=1 j=1
ye G, (1.1)
U 90 [0,6n 1] % x[0,6x] = 0 (1.2)
Duly,—o = 0, -
July,=o j=n+LN. (1.3)

2t |1, =0,

Note that the case n = 0 means that condition (1.2) is absent. If n = NV,
then we have problem (1.1), (1.2). Using some additional conditions, we
will prove the existence of a generalized solution to problem (1.1)-(1.3).
Further, we assume that n € N and N = n + 1. In this case, it
is convenient to use the following notation: ¢,.1 = T, where T > 0,
G=0Qor=2x(0,T), 11 =21, ..., Yo = Tn, Ynt1 = t. Finally, let
Q) C R"™ be a bounded domain, 92 C C1, Q, = {(x,t) : x € Ot = 7},
Qtyt, = Q2 X (t1,t2), 7€ [0,T], and 0 < t; < to <T. Suppose that

(Q2): g € L™(Q), 1 < q1 = essinfq q(z) < esssupg q(z) = g2 < +00;
(T2): 7,71, ., Yn € [2,4+00).

Using some additional conditions and the solution to problem (1.1)-
(1.3), we prove the existence of the solution u : Qo1 — R! to the following
problem:

n n
|ulri2ut - Z(CLZ‘({L', t)‘u”ﬂizuxi):vi + Z bi(x7 t)‘u”YiiZuIi
i=1 i=1
+ gl, ) [ul )2 = f(,1), (1.4)
for (x,t) € Qor,

ulaax(o,r) =0, (1.5)
uli=o = 0. (1.6)

Note that our problems have their solutions in anisotropic Sobolev
spaces and generalized Lebesgue spaces.
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2. Notation and preliminary statements

Let us introduce the following notation. The generalized Lebesgue
and Sobolev spaces were studied, in particular, in [18,22]. Let G ¢ RV
be a bounded domain with condition (Ql) 1/q(y) + 1/¢'(y) = 1 for
a.e. y € G. By definition, we set py(v,G) = [ |v(y )9 dy, where v
be some function. The generalized Lebesgue space is called the set of
all measurable functions v such that py(v,G) < +oo; we denote it by
Lq(y)(G). In [22, p. 616, 619, 621] I. Sharapudinov proved that Lq(y)(G)
is a reflexive space with respect to the norm

Hv;Lq(y)(G)H =inf{A >0 : pq(v/AvG) <1}

In [18, p. 594], O. Kovacik and J. Rakosnik noticed that if ||v; LI¥)(G)|| <
1, then py(v, G) < 1. The reverse proposition follows from the definition
of the norm of the space LI®)(@). Note that L?¥)(G) is a Banach space,
and if 7(y) > q(y), then L"®)(G) © LIW)(G) (see [18, p. 599, 600]). The
dual space to LW (@) is LYW(G) (see [22, p. 619]). If condition (Q2)
is fulfilled, then we similarly define the spaces L4*)(Q) and LY®)(Qq 7).

The following propositions are needed for the sequel.

Statement 2.1 (Lemma 4.3 [19, p. 66]). Let P = (Py,...,Py) :
R™ — R™ be a continuous function. If there exists p > 0 such that
(P(2),z)rm > 0V2z e R™ (|z| = p), then there exists 2™ € R™ (|z| < p)
such that P(2™) = 0.

Statement 2.2 (Lemma [15, p. 471]). Suppose that Z : G x R! — R!
satisfies the Caratheodory condition, and X > 0. If the sequence {u"™ },en
satisfies the conditions

1) ™ — u a.e. in G,
m—00

2) for all j € {1,...,N}, we have |[u™*u™ —

Yy e 1+,\(|U|)‘ )y; slowly
in I2(@),

3) if there exist s > 2 and C1 > 0 such that ||Z(y,u™); L°(G)|| < C;
for every m € N, then

1
m\|,, m|A, m A . 1
Z(y, u")u™ [ ! e TN )\Z(y,u)(lu\ u)y, slowly in L (G).
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Statement 2.3 (Aubin’s Theorem [6] (19, Theorem 5.1, p. 70])).
Suppose By, B, B1 are Banach spaces, By, By are reflexive spaces,
po,p1 € (1,4+00), Y1 = {v € LP(0,T;By) | v, € LP(0,T;By)}, and

Bo O B O By; then Y1 & L (0,T; B).

Statement 2.4 (Lemma 2 and Theorems 1, 2 [16]). Suppose that
Ay, A1 are linear normed spaces, My is a seminormed set with respect to

the seminorm [-|pr, Mh (}g Ag O Ay, and p,p1 > 1; then

1) Y ={u:(0,7) — M| [ [u®), dt+ [ [lu(®)F dt < +oo} is
a seminormed set;

2) Y 5 LP(0,T; Ay);
K K
3) if My O Ay, thenY O C([0,T]; A1);
4) if Y O LP0(0,T; Ag), where pg > 1, then Y (IB L%(0,T; Ay), where
q€(Lp).
Define the maps h,w : R — R by the rules

o
h(s) = ﬂ, w(s) =|s|"?%s, scR. (2.1)
W
Remark 2.1. If g > 1, then h/(s) = w(s), where s € R. If y > 2, then
W'(s) = (u— 1)|s|*2, where s € R.

The following lemmas are needed for the sequel.

Lemma 2.1. Assume that p,q,n € (1,400), and the function w is de-
fined in (2.1). If u € LP(G) and if

,U,E (171+p]7 qe [17%}7 (22)

then w(u) € LY(G) and ||w(u); L1(GQ)|| < Col|u; LP(G)||*~1, where Cy > 0

is independent on u.

def _
Proof. Let v € LP(G), J = [, |w(u)|dx = [, u|=Dady. If ¢ = %,
then q(p — 1) = p and J = ||u; LP(G) |71 < 400, If ¢ < -, then
p

=) > 1. Using the Holder inequality, we have
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(r=1)q

P
JS@(/Wmiﬁ — Collu; IP(@) ]|+ < 400,
G

O

Lemma 2.2. Assume that oy > 1 and a9 > 1 —ay. If u € CY(G), then

/|UO¢O+O¢1 dy < C3< /!u\a°|uyj\a1 dy—l—/\u|0‘°+a1 dS),

G G oG
je{l,...,N}, (2.3)

where C5 > 0 is independent of u.

Proof. Using the condition ap + a1 > 1 and Remark 2.1, we get

‘ao—&—al)/

y; = (a0 +a1)y; ju|otor=?

y; (Ju U Uy, -

On the other hand,

/wwwww@@:/meMumwwmsj/w%Mw%
G oG G

where v is the unit vector of a normal which is external to G. Hence,

/ |u| 0T dy = /yj (|u|a0+0‘1);j dy + /yj |[u|*0T* cos(v, y;) dS
G G oG

= —(ap + 1) /yj \u|°‘°+a1*2u Uy, dy + /yj |u|*0 T cos(v, y;) dS
G oG

§C4(/IUIO‘°+O‘1_1 ij|dy+/|u°‘°+°‘1 d5>7 (2.4)
G oG

where Cy > 0 depends only on G and «g,a;. If a; = 1, then inequal-
ity (2.4) is equal to (2.3). In the sequel, only the condition a; > 1 is
considered. By Young’s inequality with the constant a;, we get

@ ey
|u|a0+a171 ’uyj| — |u|0¢_(1) |uyj’ ’u‘a0+a1_1_a_(1)
_1_%0y _«@
< CS(S)‘UWD ‘ij’al + E‘u’(060+041 1-g%) a1i1.

Using (2.4), the equality
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a1
041—1

-1
(ao—i—m—l—@) a <a0(a1 )
aq -1 a7

+ a1 — 1)
aq

= g + aq,

and the last inequality, we obtain

/ jul* T dy < Cy <C5(€) / % Juy,; | dy

G G
+g/|uyao+m dy—i—/|u|a°+°‘1 dS).
G oG

If € > 0 is sufficiently small, then (2.3) holds. O

Lemma 2.3. Assume that a7 > 0, ag > 0, a1 + g > 1 and oy >
1— (a1 +a2). Ifuc CYQ), then

/|u’ao+a1’uyj|a2 dy < C6</|uao|uyj’a1+az dy+/|u’ao+a1+a2 dS),
G G oG

(2.5)
j€{l,...,N}, where Cs > 0 is independent of u.

Proof. For the case a; = 0, there is nothing to prove. For as = 0,
inequality (2.5) is equal to (2.3). In the sequel, only the conditions
ay > 0, ag > 0 are considered. By Young’s inequality with the constant
%20‘2 > 1, we obtain

0y, [0 = [ A5 [ 02 )0

a1tag

o ~
< 07([|u|a10+o%2 |uyj|012:| 22 + |u|o<)’

where

anc al+ag
~ 02 g
o= (ao + oy — )

a1 + ao _a1;r2a2 -1
o2 a] + oo
=(ag+ a1 —
a1+ a9 aq

= ail((ao + a1) (a1 + az) — apaz)

1
= a—l(aoal + a% + ajop) = ag + a1 + az.
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Therefore,

[ 2 de < 07( [ty ey + [ afeoreste: dy>.
G G G

Thus, taking into account (2.3) with a1 + g instead of oy, we get (2.5).
U

The proofs of Lemma 2.2 and Lemma 2.3 were found in [15,
p. 459, 460]. To prove the following statement, we need these proofs
and condition (G).

Lemma 2.4. Assume that condition (G) is satisfied and u € C*(G).
1) Suppose that j € {n+1,...,N}; then

a) if ag,a1,C3 are defined in Lemma 2.2 and if u satisfies the
condition uly,—o = 0 or uly,=¢, = 0, then

/ [ dy < O / [ a1 dy: (2.6)
G G

b) if ap, a1, e, Cs are defined in Lemma 2.3 and if u satisfies the
condition uly;—o = 0 or uly,=¢, = 0, then

e = dy < G [, e dy 2)

G G
2) Suppose that u satisfies the condition u’agx[ojn_‘_l]x..‘x[o,g]v} = 0y
then, for every j € {1,...,n}, we also obtain estimates (2.6) and

(2.7).

Proof. Assume that condition (G) is satisfied and u € C*(G).
1) For every j € {n+1,..., N} and for every ¢y € [0, ¢;], we have

yi=4;
= [ dy.

=0
Yj G

Jws=t0) Quiertey, dy = [ (y—to) oot

a G




434 PROBLEMS WITH HOMOGENEOUS BOUNDARY CONDITIONS...

Therefore, similarly as in Lemma 2.2, we get

) Y5 =4;

ey = [ - ) lulere

G G vi=0

- /(yj — to) (a0 + a) [u|*0 T Py, dy
G
< (ej — to)/’u’ao—&-m ’y]:éj dy;- + o /’u‘ao-i-m‘yj:o dy;—
Gj Gj
(ot a) [l | dy.
G

For the case u|yj:0 = 0, we put top = £;. For the case u\yj:gj =0, we put
to = 0. Hence,

/ |1 dy < €5(a0 + 1) / oLy, | dy,
G G

Continuing in the same way as in the proof of Lemma 2.2 (see (2.4) and
down), we get (2.6).

If we replace (2.3) by (2.6) in the proof of Lemma 2.3, we obtain
(2.7).

2) Substituting €2 for G in (2.3), (2.4) and integrating these inequal-
ities with respect to yp+1 € (0,4p41), ..., yn € (0,€n), we obtain (2.6),
(2.7) for every j € {1,...,n}, if ulagx(o,6,1]x-x[0,6n] = O- O

Remark 2.2. It is easy to show that estimations (2.3), (2.5)—(2.7) hold
for every functions u such that u is an element of Sobolev spaces such
that the integrals in (2.3) or (2.5)—(2.7) are finite.

If condition (G) is satisfied, then, by definition, we introduce the
notation

Iy = {’U € Ol(é) ’ U‘aﬂX[O,zn+1]X'“X[O7£N] =0,
V=0 = -+ = vlyyeo = O}.
Now we prove the following theorem.

Theorem 2.1. Suppose condition (G) is satisfied, (1,..., N are real
numbers such that
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min 3; > —1, (2.8)
J

1
~max §; < min B + 1, (2.9)
2 j

and 8 > 1 justifies the estimates

1
5 maxfj+2 < f < minf + 3, (2.10)
J J

and Cg > 0. If, for every u € Ily, the estimate

[ 10, Py < 4 (211)
G

holds for all j € {1,..., N}, then

Bj+2

I Jul=2u; W3 (G)|| < Co (2.12)
where Cg > 0 is independent of u.

Proof. Assume that the function u € Ilj satisfies (2.11). Then the as-

sumptions of Lemma 2.4 are fulfilled. First, let us prove that |u|?~2u €
minj /BJ +2

L 51" (G). Using estimate (2.6) with ag = ;, a1 = 2 (note that
agp>1—o < fj >1—2 <= (2.8)) and inequality (2.11), we get

/MW“@S@/WW%f@S@@, j=1,N.
G G

Therefore, u € L™ %i+2(G). Take a point 8 € (1,14 (min; 3; +2)]. By
Lemma 2.1, we get |u|?~2u € L9(G), where q € 1, %]
Assume that j € {1,..., N}. Note that (2.10) yields 8—1 < min; 8;+

2 < 3 +2. Hence, 222 > 1. Since (|u|’~?u)), = (8 — 1)|ul’2u,, and

-1 "
fit2 g B2
(B-2) G =B +2+(B-2) 5= — (5 +2)
—2 42
:Bj+2+(ﬁj+2)<%_1):5j+2_ﬁﬁj—1,

we obtain
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B;+2 Bi+2 Bi+2
g42-t2 o G2
-1 dy:/IUI T uy | P dy.
G

I E/(’U‘BZ%)

G

Using (2.11) and estimate (2.7) with g = 3, a1 =2 — %:2, ay = 212
we obtain

5= [ e 2 dy
G
< Cy / ]y, |12 dy
G
yer / B, 2 dy < CoCs.
G

Finally, we make sure that all conditions of Lemma 2.4 are satisfied:

-1

o B2
. min >1
min %:2 > 1, j -

iz 420
as > 0, < | min G2 >0,

a; +ag > 1, 2>1,

ag+ a1 +ag > 1, Ifljin(ﬂj+2)>17

mln(ﬁ] + 2) > ﬁ -1,
—1>0 J
o min(2(6 - 1) - (5 +2)) > 0.
J

j J
= (20 -2-max(f;+2) 20, = 20> maxf; +4,
min 3; +2 > 1, min 3; > —1.
J J
The last inequalities follow from conditions (2.8)—(2.10). O

Note that we have proved Theorem 2.1 in same way as in [15]|, where
a similar result was obtained for other (1,..., 0N, 3. By definition, we

set
1

N V ) m
o =3 / ol oy, Pdy | .
j:1 G
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Let Mj be a set of functions v such that
[v]ar, < 400,
1017 20] 90 0,60 1] x[0,] = O

’U|ﬁ727)’yj:0 - 07 j =n + 17N7

where (3 satisfies (2.10). Note that M is a seminormed nonlinear set (see
the example of [16, p. 610]).

Theorem 2.2. If conditions (G), (2.8), and (2.9) are fulfilled, then

My O L5G) and M & L55(G),

where
N . . in; 3;+2
s = m(mmj Bj +2), if N> mfnﬂj—{ " e€(0,9)
any s1 such that s1 > —1, if N < %ﬂ{”’

B satisfies condition (2.10).

Proof. Suppose that all assumptions of our theorem are satisfied. Us-
ing Theorem 2.1 and Sobolev’s imbedding theorems for the case N >

7mirgf3{+2, we have that, for any u € Mj, the inequality

lus L3(G)|| = [} [ul”2u; L7(@)|"/*
minjﬂj+2

< Chol| [ul?2u; WhTH (@) < on (2.13)

holds, where s = (5 — 1)r,

in; B;+2
= Nmmg],ﬂ{—i_ B N(minj 5]' + 2)
N_(%ﬁi”) N(B—1)— (min; 3; +2)

For the case 8 = min; 3; + 3, we see that

N(min; 3; + 2)
N(min; 8; + 2) — (min; §; + 2)

5= (8= 1)r = (ming; +2)

N
=y _minfi+2)=s.
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Hence, M; © L*(G). If N < %ﬁ{w, then estimate (2.13) holds for
every r € [1,400). Therefore, s= (8 —1)r > 3 — 1.

Let us show the compact imbedding. Take a point ¢ € (0,5 — 1).
Therefore,

S—¢&

/ "~ dy < %( / (luf*~) 5% dy>
G G

= Cr2||lu; L*(G)||*° < C13 Vu € Bg,

where Bp = {u € My : [ulp, < R}, R > 0. Hence, there exists a
sequence {u™},,en C Bp such that «™ — wslowly in L*7¢(G). Taking

m—0o0
minj ,Bj +2

the imbedding W'~ 51 (G) 5 L"(G) and Lemma 1.18 [17, p. 39]

into account, we obtain |u™|5"2u™ — |u*2u ae. in G. If f, =
m—0o0

|u™—wu|*~¢, then the sequence { f;, } men is bounded in L5= (G). Without
S
loss of generality, we can assume that f,, — 0 slowly in L5—¢(G) and
m—0oo

a.e. in G. Thus, fG fmdy = fG |u™ — ul*"¢dy — 0, and the theorem
m—00
is proved. O

Corollary 2.1. It is easy to see that M & pming Bit2(G)  (see [16,
p. 619]).

3. The boundary-value problem for nonlinear
degenerate elliptic equations

Let us show that problem (1.1)—(1.3) has a solution. Assume that
N € N. Under conditions (G), (Q1), and (I'1) of Section 1, we define

Ymax = max{’yl, e 7’7N}7 Ymin = min{f}/h v 7/YN}7

e S; = {l,...,N}\ Sz, where Sy is a collection of numbers j €
{1,..., N} such that v; = Ymax-

We also consider the case S1 = &, i.e. 71 = ... = yn. Suppose that
ai, ..., an, bi, ..., by, g, f : G — R! are functions such that

(A1): a; € L>®(G), aj(y) > ap > 0 for a.e. y € G, where j € {1,...,N};

(B1): for every j € {1,..., N}, we have that the function b; € L*(G)
satisfies one of the following conditions:
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a) if j € Sy and if j < n, then
(b)yy € LX), 1))y B forae.yeG;  (3.1)

b) if j € S; and if j > n+1, then condition (3.1) is satisfied, and
bi(y) > by > 0 for ae. y € G,

c) if j € Sy and if j < n, then b;(y) = b; € RY;
d) if j € Sp and if j > n + 1, then b;(y) = const > by > 0;
(D1): g € L*®(G), 0 < go < g(y) < ¢° < +oo for ae. y € G
(F1): f € L1 (G).
By definition, put Tr§ ={w : G—R | 3 {w™}pmen CIo: (Jw™|* w™),,
— (lw|*~tw),, slowly in L*(G) for every j € {1,...,N}}, where a =

m—0o0

(a1y...,an).

Definition 3.1. A function u is called the generalized solution to problem
(1. 1) ( 3) zf the followmg conditions hold: u € LIW(G) N LImax(G);

|u| (\u| ) y; € L*(Q) for every j € {1,...,N};

/ [Z%W |U| )ijyj

+Zb ful # |U\*_1 w)y; v
+gIUIq(y)‘2uv} dy = /fv dy (3.2)
for every v € Ily; u satisfies (1.2), (1.3) 1), i.e. u € Tr§ for some a.

Remark 3.1. It is easy to show (see, e.g., [20, p. 181]) that the boundary
condition (1.3) 2) is involved in (3.2).

By definition, put

/[Z% )w[5 2 Wy; Uy,

N
+ Z b; (y)|w[7j—2wij + g(1)|w|™ 2w | dy,
=1

where w,v : G — R
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Lemma 3.1. If conditions (G), (Q1), (T'1), (A1), (B1), (D1) are
satisfied, then, for every u € Ilg and ¢ € S, we get

L(u,u)

= LWEZhWTQWwP+Um—6NCQmW“aWA2+QMMW)dy
G - g#

N
+ > |uly,—, dyf — C14(e), (3.3)
j=n+1 G’j

where Cy > 0,

o= ,by—‘;, if b satisfies b) or d) of (B1),
0,  for the other case,

forallje{n+1,...,N}.

Proof. Suppose u € Iy, and i € S # &. It is easy to show that
N N
L(u,u) > /ao Z \u]”j_2|uy]. 2 dy + ZIj + 90 / uf® dy,  (3.4)
G 7=t j=1 G

where I; = [ b;(y)|u]"2uyudy, j = 1,N. Using estimate (2.6) with
Q0 = Ymax — 2 and a1 = 2, we get

/|u|7max dy — / |u"7max—2+2 dy g 03 / |u|7max—2|uyi‘2 dy (35)
G G G

Take a point j € {1,...,N}. Then I; = [, 22 22-(|u") dy = I} — I,

where

\ b - — ,
I = / %]u\”ﬂ cos(v,y;) dS, 7 =— (bg)y; [ul™ dy.
Vi Vi
oG G

a) If j € S; and if j < n, then, using condition (1.2), we have

b.
IF = / 7—?[14” cos(v,y;j)dS = 0.

O X[0,€p41]x--x[0,£N]



O. M. BUHRI 441

By estimate (3.5) and Young’s inequality with the constant 7{;‘—;‘" > 1, we
get

bl
Ir < — / lu|? dy < 5/ |u| "™ dy + Cy5(e)
]
G

<<Cy [ 1™y Py + Crs(e). (3:0)

b) If j € Sy and if j > n+1, then, taking condition (1.3) into account,
we have

b ‘ b; , bo j
I = / Zluvdyf| = / =Ll Iy = dy; = / [l lyy=t;
v ;=0 Y5 Yj

j j G;

yj=4;

(3.7)
The integral I7* is estimated with the help of (3.6).
c) If j € Sy and if j < n, we have again I7 = 0 (see (1.2)) and
I = 0.
d) If j € Sy and if j > n + 1, then I7 satisfies (3.7). In addition,
7 = 0.
Thus, using (3.4), we get (3.3). O

Let us prove the following theorem:.

Theorem 3.1. If conditions (G), (Q1), (I'l), and (A1)—(F1) are sat-
isfied and if

7rr2lax < “Ymin (38)

then there exists the solution to the boundary-value problem (1.1)—(1.3),

and the vector a (see Definition 3.1) is equal to (4, ..., 2%).
Proof. Now we use the Galerkin method. Let {w!,. ...} be a
basis for the set IIy. By definition, put u™(y) = Z# 1 Zu w (y), y € G,
where the constants z1",..., 2 € R are the solutions to the system of
equations

L(u™, wh) = /fw“ dy, w=1m. (3.9)

Assume that P = (Py,...,Pp), Pu(z) =
(21,...,2m) € R™, pu=1,m, where h"(y)

LA™ wh) — [, fwtdy, z =
=>" zw(y), y € G. Since
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[see (3.5) for the case u = h™ € Il

/fhmdy < e/!thW dy + Cr(e /rf%r?i“l dy
<5Cg/]hm (2 M 2 dy 4+ Cyy(e), (3.10)

where i € S, we see that Lemma 3.1 yields
LA™ A™) — /fhmdy
> [ oo D p 22 + (oo - enci - e
G J#1

N
Falm 0 [y Y [l - o). (31)
j=n+1 G;

where € > 0. Therefore, if € > 0 is chosen to be sufficiently small, then
(P(2),
= Z (E , wh) /fw“ dy) zy = LK™, K™) /fhm dy

p=1

Jrm

N

G
N
0 i m
> 7/mem ?|hy | dy — Cig(e) — oo.
G

j=1 |z| =00

Hence, using Statement 2.1, we obtain that there exist the constants
27", ..., 2" such that (3.9) holds.

Multiplying both sides of (3.9) by z," and summing these equalities
over p, we get L(u™,u™) = fG fu™dy. Using (3.11) with «™ instead of
h™, we obtain

[ oSz
AT
+ (ag — eNCy — eCs) [u™ " 2| |* + golu™|"™) | dy

N
+ Z Cj/|um|w|yj—éj dy§- < Cig(e). (3.12)
j=n+1 G,
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If ¢ > 0 it sufficiently small, then (3.12) yields estimate (2.11), where
u=u", fj =v; —2, j=1,N. Therefore (see Theorem 2.1),

m|B—2, m, 1, amin
[ ™7~ W a1 (G| < Cho, (3.13)

where C1g > 0 is independent of m. From the inequalities v1,...,yn >
2 > 1, it follows that conditions (2.8) are satisfied. Condition (2.9)
follows from (3.8). The constant 5 > 2 satisfies the condition

T+ 1< B < Yo + L. (3.14)

Inequality (3.8) implies that g‘“i“ > 1. For the case 282 = 7y, we can
choose a constant (3 such that 2=z > 1,

6—1
Since | [u™| 7~ um[2 = [um [ and [u™]F - fuyt = 2 (ju \__1um)yj,
we have
_ 4 i
™52 gt = [Jum |71 ;’;]2:?[(@ 71 u™ )y, )%
J

Then it follows from estimates (3.5) and (3.12) that

) )
St e, Pl dy < € (319
G

Therefore, there exists a subsequence {u™* }ren C {u}nen such that

s — g (T ), — 7 slowly in LA(G),
— 00
(3.16)
where j € {1,...,N}.
Using estimate (3.13), Rellich-Kondrashov theorem, Lemma 1.28,
and Lemma 1.18 [17, p. 47, 39], we obtain that if 3 satisfies (3.14), then
there exists a subsequence (we call it {u"" }ren again) such that

™ (=2 P2 st ly in ¥ (@) and in G
e strongly in (G) and a.e. in G.

) v,
Therefore, for every j € {1,..., N}, we obtain that x}, = |u\7]_1u. Thus,
using the distributional convergence in D*(G), we have that y/ = (X%)yj,
j=1,N.
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Now we make passage to the limit with m = my, in (3.9). Take points
je{l,...,N}, k€ N, up=1,my. First, consider the expression

2 _ oy Mk | V52, My
Jk—/a]|u 7wy, wy dy.

G

If v; = 2, then (see (3.16)) uy'* — wuy, slowly in L?*(G). Hence,

7 k—oo

2 _ TV gy ) 7
Jip = /ajuyj wy, dy o |ty dy.
G G

.
If v; > 2, then |umk|%’_2u’£_k = Z(y,umk)\umk|7]_1u$k, where Z(y,

S
u™) = |u™*|3 1. For this case, we have that the function Z is contin-
uous. Using (3.15), we get

/ 2y, dy = / ™% dy < Ch,
G G

where s = ,ZZJ'Q =24 ﬁ > 2. Therefore (see Statement 2.2),

g
JE = /Z(y,umk)|umk| 3 1u$kajw5j dy

G
g 2 Y9 M
w2 T —(u| 2 T u)yawh dy.
o [ G y agu dy
G
Consider the junior terms. If «; > 2, then, like for the integral J,f,

we get

V4 2 V4

J = /bj]um’“]“’j_Qu;”_’“w“ dy — /bj\u\%_l—(]u\%_lu)y.w” dy.

J k—o0 ’Y] J
G G

Using (3.12) and the almost everywhere convergence in the domain G, we

q(y)
see that [u/|1(¥)=2¢mx B |u|1®) =24, slowly in La®-1(G). Therefore,
— 00

JO = /g‘umk‘Q(y)Qumkw“ dykjo/gm]q(y)%w“ dy.
G G
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Thus, equality (3.9) tends to (3.2) with the replacement of v by w*. It
is easy to show that (3.2) holds. This completes the proof of Theorem 3.1.
]

Remark 3.2. Taking Sobolev’s imbedding theorems into account (see,
for example [17, p. 47]), we obtain

Ymin
N BT

NYmin

WL‘EmTi?(G) o N (G) = LYNFD=min (G)

if Z;“T“{ < N. Therefore, estimate (3.13) implies that
Nvmin (8—1) NYmin
[ S dy = [ P2 S dy < o
G G

If 3 is chosen so that 3 = ~ymin+1, then the sequence {u"™},,cn is bounded
NYmin
in the space L i (G). Thus, the generalized solution to problems (1.1)—
NYmin
(1.3) belongs to L v (Q).

4. The initial boundary-value problem
for the nonlinear degenerate
parabolic equation

Now we use the previous results and prove the existence of the so-
lution to problem (1.4)—(1.6). Let 2 C R™ be a bounded domain with
piecewise smooth boundary 9, Q¢+, = Q X (t1,t2), 0 <t < tp <T.
Suppose conditions (Q2) and (I'2) are satisfied. We will need the fol-
lowing notation:

Ymax = {’Ylv e ,,),n}7 Ymin = {717 e a’Yn}a
Tmax = max{h 'Ymax}y T'min = min{r, 'Ymin}a
Gmax = maX{CDa 'Ymax}a Qmin = min{‘ha 'Ymin}a

S1 =A{1,...,n}\ S2, where Sy is a set of numbers i € {1,...,n}
such that v; = rpax.

Note that if s > 1, then s’ = 27, that is, %—i— 5 = 1. In the same way, we

define the function ¢’ : © — R and the numbers 7/, v, ..., 75, ¢1s @5 Yoz
! ! > 1. By definition, put

/ / /
Ymin> "max> Tmin’ maxs Imin

1
n Vi
=30 ([ o)
=1 Q
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By W},(€), we denote the set of functions v : @ — R! such that [v]y <
+00 and [v]%~2v|sq = 0, where 3 satisfies (3.14). Suppose V = W}, ()N
L1@)(Q),

U(QQT) = {u . (O,T) -V ’

n

/ {Z““’% 1(\U|% “u), -]%{-l-IUIq(x)] da:dt<+oo},

Qo,T =1
Wo (Q) = {u € Wyl (Q) | e, € L%(Q), i =T}, Z = Wy ()N
L40)(Q), and Z(Qor) = {v: (0, > Z||lv; ( )|l < 400}, where

[v; Z2(Qo,r)|| = Z lve,; L7 (Qor) | + v LY (Qor)l, v € Z(Qor)-

=1

Definition 4.1. The generalized solution to problem (1.4)—(1.6) is called
the function u if the following conditions hold: u € U(Qor) N L*(0,T;
W(}’l( N; ul"~%u € C([0,T); W Vmax (Q)); u satisfies the initial condi-
tion (1.6);

Yi
/[mﬁ 2 (uf5 w+§:%w 2 (ul* )

Qo,T

Z b; ]u| |u| L) g0 + g|u|q(’”)_2uv] dx dt

= /fvdmdt (4.1)
Qo, 7

for all functions v € I, where II; = {v € CY(Qo,r) | vlsaxjpm = 0,
U|t:0 = 0}

We assume that the following assumptions hold:

(A2): a; € L*®(Qo,r), ai(xz,t) > ag > 0 for ae. (x,t) € Qor, where
1 =1,n;

(B2): for every i € {1,...,n}, the function b; € L>°(Qo 1) satisfies one of
the following conditions:

a) if i € Sy, then (b;),, € L*(Qo1);
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b) if i € S5, then b;(z,t) = b; € RL;
(D2): g€ L>®(Qor), 0< g0 < g(x,t) < g% < 4o for a.e. (z,t) € Qo.T;
(F2): f € Lima 1 (Qor)-
Note that Z* = W17 (Q) + LY ®)(Q), where W17 (Q) = [W,7()]*,
Wy (Q) O Z O Wyt (Q), W hmin(Q) O 2* O W Himax(Q).
By Theorem 1 [10, p. 311|, we have
L2(0, T; L4 ()) © L7(Qor) © L™(0,T; L1(92)).
Therefore,
LI (0, T Wy () © Z(Qo,r) © L= (0,T; Wy ™ ()
and
Lwin (0, T3 W21 (Q)) © [2(Qo,r)]* © Limax (0, T; W Himax ().

Remark 4.1. If W = {z | 2,2 € Limax (0, T; W~ 1%max (Q))}, then it is
easy to show that W & C([0,T]; W~ 1max (Q)), Co°([0, T]; W —Ldmax (Q))
=W, and, for every w € W, ¢ € C1([0,T]), we have

T T
/wt(t)w(t) dt = w(T)p(T) — w(0)p(0) — /w(t)w'(t) dt. (4.2)
0 0

Further let us prove the following theorem.

Theorem 4.1. Suppose that conditions (Q2), (I'2), and (A2)-(F2)
are satisfied. If

Tmax “Ymin “Ymin
1 < i 2) —— 1 3 > 4.3
) B = Tmin, ) r—1 > 1, )Qmax_ 'Ymin_(r_l)7 ( )
Tmax o (4.4)
r—17

then the initial boundary-value problem (1.4)—(1.6) has a generalized so-
lution w such that

/ [Z [(|U|%_1U)xi]2+z [|u|%_1u]2+ [u|9®) | dz dt < 400, (4.5)

Qo.r i=1 i=1
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Jmin 1,’1"]%{‘
=1 (0, T Wy ()]
+ || (Ju]"~2w)g; LImax (0, T; W~ bmax (Q))|| < 400.  (4.6)

([T

Proof. Take € > 0. Consider the boundary-value problem

n

— (2o + |t Pug = Y (@l )

=1

) bilut Rl + gl | = f, (4.7)

u®|aaxp1) =0, (4.8)
ug\t:() = 0, U§|t:T =0. (49)

By (4.3) 1) and Theorem 3.1, we obtain the existence of the solution u®
to problem (4.7)—(4.9). The function u® satisfies all estimates of Theo-
rem 3.1 and

r_12 r r_12 r_
[ [eto e 2005 e+ o 32 )
Qo1

2
+Z iuf| ¥ ! (ju| 2~ s)zlvxﬁzb \u5\7’17 (Juf |2 )0
=1 ¢

—i—g\ua\q(x)_zuav} dxdt = / fv dzdt, (4.10)
Qo,T
where v € II;. Using estimates (3.12) and (3.15), we get

n

/ [Z[(\U\_‘l %) J2+Z|u€|%+|u5|q(x>] drdt < Oy (4.11)

Qo.r =1 =1

Now we note that condition (F2) implies that (see (3.10))

/fufdxdtg(s / (Yo da dt + Coa(6) / I g, (4.12)

Qo,1 Qo,1 Qo,T

where § > 0, ip € {1,...,n}, and Ymax = 7i,- First, we evaluate the term
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with b; (see, for comparison, Lemma 3.1 and Theorem 3.1) with the help
of the integral ¢ |, Qo5 W70 dx dt. Further we use estimate (3.5). Finally,
we can choose a constant § > 0 such that ag—06 > 0, and we get estimate
(4.11), where C2 > 0 is independent of ¢ > 0. Note that we cannot
replace Ymax DY Tmax in estimate (4.12). If 7 = rpax > Ymax, then the
constant 6 > 0 must satisfies the condition € — § > 0. For this case, the
constant Cy2 > 0 depends on € > 0. This condition is the insurmountable
obstacle in our next consideration.
It is easy to prove that

/ ‘ |'LLE|2 |2d1; dt < 024,

where Cso4 > 0 is independent of € > 0. Using this inequality and condi-
tion (4.9), we get

£ / |uf|" dx dt = e / | [uf]2 1l |2 da dt
Qo, T Qo, T

< eCys / | |u€|2 |2dxdt < Cog,

where Cog > 0 is independent of € > 0 if, for instance, ¢ < 1.
Therefore, there exists a sequence {u*™ },eny C {u}es0 such that

(a3 ), —s X ¥ N — xy

T
em—0 em—0

slowly in L? (Qor), i=1,n,

| [4(@) =2 Em — Xg slowly in L™ (Qo7),

Em

\/Em(\usmlgflugm)t — Xr slowly in L2(Q07T).

em—0

Let us prove the additional estimates of the functions {u®}.~¢. By defi-
nition, put

()0, 2). / [fz—zaz\vﬂ? 2 (0¥ 1)z,

i 2
- Zb |v|V -1z | W)z — glo]"® 20z | de, te (0,T),
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(Fu,w)zqy 1) = fo w(t))zdt. If i € {1,...,n}, then

1 1 -2 2

3 +7=%+§:;(% +1>

(vi—2), v i i
:_<Li_2) _yn=t
2\ v Be? '
27;
(vi—2)7} > 1 and

Hence, using Young’s inequality with the constants
2 > 1, we obtain

|2~ (uf 2 ),
—2)5) l, /
7| (Juf] 2 ),

< Cor(Juf [ + |(Juf| 271, )

= Ju| ™
(t) € Z*. Note that if

By these estimate and (4.11), we get that F'(t)

S Z(QQ,T), then
n 1/
< / |25, |7 dx dt)

(Fus, 2) 20 1) < 028{
=1 Qo,T

n 1/%‘
4 ( / rz\%‘dxdt> T |z L <@0T>H}
=1 Qo, 1

where Cag > 0 is independent of €. Hence, ||Fu®; [Z(Qo1)]*|| < C29 and
()| < Cao, (4.13)

|| Fus; LImax(0,T; W

where C3g > 0 is independent of &
, (4.10), we get

Substituting ¢(t)z(x) for v(z,t)
J e o R T L (T ER O W P
r

Qo,T
T
/ Z‘P( )d
0

€ C*([0,T]), ¢(0) = 0, z € Z. By definition, put u

where ¢ ,
w2 2 (]2 )

E/AE 2)z¢'( dt+/
0 0

t- Then,
T
- / (F(8)ue (8), 2) 7 olt) dt,
0
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T T
F
<€/u() dtz / dtz>Z
0 0
T
F(t
/ t)dt z>Z,
0

where z € Z. Therefore, we get the equality in the space Z*:

T T
e [@EWd W dt+ [ et dt = | FOuwE)pt)dt.  (4.14)
[z [roson-]

Taking ¢ = 1, where 1p € C5°((0,T)), we get the equation in the space
zZ*,
—eu; (t) + u(t) = F(t)u(t), te(0,7), (4.15)
where 4§ is a distributional derivative of the function u® € D*(0,T; Z*).
Since 4 € W (see Remark 4.1), we see that @ € C/([0, T); W~ 14max (Q)).
Hence, using (4.2) and (4.14), we obtain
T
/F(t)ug(t)go(t) dt.
0

T T
eu” 6/ dt+/ﬂ€(t)go(t) dt =
0 0

If we combine this with (4.15), we get £u(T)¢(T') = 0. Taking (T) = 1
gives

us(T) = 0. (4.16)
It is easy to show that the function

t
—t—

T—
zé/e ‘ (T =)y, te(0,T), (4.17)
0

is a solution to problem (4.15), (4.16). Since the function o(s) = |s|%max,
s € R, is a convex function if ¢, ,. > 1, we obtain (see [21, p. 59] with

V=H=R)

T

l/e—?g(s) ds

9
0

T

1/_T_g
< - [e =
g

0

/
9max

(s)|Tmax ds, 7€ (0,T), (4.18)

where £ : (0,7) — R.
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By definition, put || - | = ||-; W~14max(Q)||. Using (4.17) and (4.18),
we get

~

—t

T qmax
]. T—t—n
/H |Qmaxd g/(E / e~ ]HF(T n)u (T—n)||dn> dt

0 0

T 1T—t

T—t— /
< fars [ @ - nuE @ - ey
0 0

T

1T77
/MT m<anW(€Je )m

Since
T—n 0 T—n oo
1 —t— 1 1 p 1
—/eTtn —/6_EdT:—/6_EdT§—/esd7’—1
€ € € €
0 T—p 0 0

we get (see the previous inequality)

/u wWﬁ</an>aﬂwmwmjﬂw Yo (8) | o i,

Using (4.13) and the equality

~ r_12 r_ 1 _
B = S () = —— (),

we have

17205 L (0, 75 W o ()| < Cy, (4.19)

where (31 > 0 is independent of €.

Now we obtain the estimate of the set {|uf|" 2uf}.~o. Take i €
{1,...,n}. By (4.3), we obtain -z > 1 (see condition (4.3) 2)). There-
fore, using (3.7) with G = Qo r and the equalities

Vi
r—1 r—1 T %

Vi Vi
r—1’ r—1’

ap=(r—2)

011:2*
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we get
1 i
/]—1(\1;&\’”—%5)% T e dt — / |2, |7 d dt
r —
Qo, T
Vi Vi . i
frnd / |u€|(r72)r71 2+r71+2 r—1 ’u;i‘rfl dx dt
Qo, T
_ / 20+ 4 192 g dt < C / 20 [uS, |21+ i
Qo, T Qo,1
G / i[5 o, |? de .
Qo,1
Note that

ay > 0, 2- 725 >0,

ag > 0, s =1 20,

Oé]_"‘O[Qz]., 2_1;11.1_{—7:11'1217

o +a1+ag > 1, 'Yi_2+2_71i1+rzi1>1;
Vi
r—1 < 2’

s r—1 =

2> 1,
vi > 1,

and estimate (2.7) holds. Therefore,
e|r—2,€e i
[ 10wl 7 dwar < Con
Qo,T

where Csg > 0 is independent of €. Thus,

'len

-1(0, Ty W07 )| < Css, (4.20)

mm

H ’u5|r72u5; L

where C33 > 0 is independent of e.

If s1 < s9, then the following imbedding is well known: I/V1 Q) O
W, "' (). Therefore, W~1%1(Q) © W=1%2(Q) (here, é < 5, that is,
1——<1—— 1< ,,52<51) Note that

]
s1 S

1. Jmin

2 € L0, T W, T (Q)) O L

(Qo,1)-
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By (4.3), we get

/
“Ymin Gmax “Ymin
Jmax > ; = ;
e Ymin — (T - 1) (ﬂnax -1 Ymin — (T - 1)
RS Ymin 9
Qmax Z P (’I“ — 1) (Qmax )7

/ “Ymin “Ymin
o () n
e “Ymin — (T - ]—) Ymin — (7' - 1)
q/max(’)/min - (’Ymin - (T’ - 1)) S “Ymin

Inl]’l

i.e. ghax < Imin. Therefore, L1 (Q) O Limax(Q) O W~ 1dmax(Q).
Finally, we note that

1 71!1111

W, (@) O L Ymin (Q) o W_lvq;nax(Q)’ (4.21)

and estimates (4.20) and (4.19) hold. By Proposition 2.3 and Lemma 1.18
[17, p. 39], we obtain

jufm|""2ufm — |u|""2u strongly in L%(QO,T) and a.e. in Qo 7.
o0
(4.22)
Hence, x, = |u|?®) 24y, Xu = = |uzu, x71 = (julz ! U)g,, 1 = 1,n.

Thus, taking € = &, in (4. 10) and letting m — oo give (4.1).

1. Jmin

Imbedding (4.21) implies that W()’ Q) &wl dinax (). Indeed, if

Ymin

1,
{z"™}men is a bounded sequence in the space W, "' (), then we can
choose a subsequence (we call 1‘5 {zm}meN again) strongly converging to

some function z in the space L (©2). Hence,

2 — 2 W bthas Q)| < Cslz — 2 LFH Q)] — 0.

m—00

1. Jmin
Consequently, using item 3) of Statement 2.4 for M; = WO’ "1 (Q) (note
that any normed space is a seminormed set) and A; = W~ bimax(Q),
we get Y (5 C([0,T]; A1). Thus, |ul"2u € C([0, T); W~ 1hax (), and
the function u satisfies the initial condition (1.6), i.e., this function is a
limit of the sequence of functions which satisfy (1.6). The theorem is
proved. ]

Note that we can get rid of condition (4.4).
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Theorem 4.2. Suppose conditions (Q2), (I'2), (A2)—(F2), and (4.3)
are satisfied; then the initial boundary-value problem (1.4)—(1.6) has the
generalized solution u such that (4.5) and (4.6) hold.

Proof. Let u be a solution to problem (4.7)—4.9. We repeat the proof of
Theorem 4.1 from the beginning to formula (4.19). However, we replace
(4.20) by another estimate. Let M; be a seminormed set of numbers

from Theorem 2.2 for N = n, G = Q, and §; = % Using the

Holder inequality with the constant mlﬁnlgi2 > 1, we obtain
T
. 2 min 3;+2
[ -2 ez,
0
mzjt\ﬁi+2
fn T
SC%/Z(/IIUEI’” ] e |2 E>xz|2dx) at
0 =1

0 / Z |0 |" 20 P (|uf )2 ) g, |2 dae dt + Cy
Qo, T i=1

= Cs4 / Z ’uE’(rfl)ﬁi+(r72)2‘u;i |2 dz dt + Csy

n
— Oy / S 52 ug, 2 dadt + Car < Cs.
Qo,T =1

Consequently, {|u®|"~2uf}.~¢ is a bounded set in Y (see Statement 2.4)
with Al = .[/‘Vil’q;nax(SZ)7 p1 = ql/naxa P = I’Ilzlnﬂz + 2 = 4’}/Initl__2gT_1) +

r

2 = Imin Take Ay = L (©). Corollary 2.1 implies that M; &

Lm}nﬁi”(g) = L7H(Q) = Ap. In addition, Ay 5 A;. Therefore, sim-

ilarly to Theorem 4.1 (we replace Statement 2.3 by Statement 2.4), we
get (4.22). Finally, we completes the proof of our theorem in the same

way as that of Theorem 4.1. O
Example. Take 74 = -+ =7, = 2 and r > 2. Condition (4.3) implies
that
% 2, r <4,
g “=r <3
=1 >1, 2>r—1,

Consequently, if r € [2,3) and if g2 > , then Theorem 4.1 implies the
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existence of a generalized solution to the following problem:

lul" 2wy — A+ [u| @20 = f(z,t), (4.23)
ulpoxpr) =0,  uli=o = 0. (4.24)

Note that, for this simple case, condition (4.4) is satisfied automatically.

1]

2]
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