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The radial fluxes of particles and energy with relativistic effects taken into account are represented in a form
standard for neoclassical theory. All the formulations are based on the relativistic equations of motion and the
relativistic drift-kinetic equation. As an illustration of the influence of relativistic effects, the radial neoclassical
fluxes of electrons in 1/v collisional regime are calculated and compared with those in the classical approach. The
proposed formulation allows one to implement the relativistic effects in current transport codes.
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1. LINEAR DRIFT KINETIC EQUATION
FOR RELATIVISTIC ELECTRONS

For calculation of the neoclassical fluxes in
relativistic approach, we start from the linear drift
kinetic equation (DKE) for relativistic electrons. Since
we are interested in calculation of the radial fluxes in
toroidal plasmas, we assume that such plasma
parameters as density and temperatures are the functions
of only the flux-surface label, p, i.e. n/(p) and 7.(p).

Consideration of neoclassical fluxes is based on the
assumption of smallness of deviation from the thermal
equilibrium, which for the relativistic electrons is
described by the relativistic Maxwellian [1] frequently
called also the Jiittner distribution function [2]:
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where y = (1+u2/c2)”2, U = pw/me is the thermal
momentum per unit mass with py, = (2me T, e)” % and Y =
meoc*/T,, where mey and T, are the rest-mass and the
temperature of electrons, respectively. The Maxwellian
is normalized by density, [du fem = n., and
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Here and below, K,(x) is the modified Bessel function
of n-th order. Note also an important difference from the
non-relativistic Maxwellian: since p,(y-1) = 2x*/(y+1)
with x = u/uy, the “weight” of the tails with y > 1 is
increasing with growth of 7.

Now, distribution function can be approximated by
fe = fam T fo1, and a linear drift kinetic equation for f;;
can be written as:
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Here p=X-Vp is the radial component of the drift

velocity.
Following the neoclassical ordering [3,4], the Vlasov

operator can be approached as V:X-VS +u(0/ ou),
where Vi is the gradient within the magnetic surface and
L = 0. Here, A = (1-£%)/b is the normalized magnetic
moment, § = u/u is the pitch and b = B/B, with B, as

the reference magnetic field. The linearized Coulomb

operator, Ce(fe) = Ceelfer; fom] + Ceelferm feil + Cailfer,
fim], must be taken in relativistic approach [1]. Here and
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below, the ion distribution function, f; = fi;, is assumed
non-relativistic Maxwellian.

Relativistic drift velocity, X, is derived by formal
gyro-ordering [5,6] and written in a form traditional for
the transport theory [3,4], where the hamiltonian
incompressibility (important for gyrokinetic) s
neglected and, additionally, all the terms proportional to
VxB which do not contribute to the radial transport are
omitted:
meu® (1+ &%)
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Here e is the particle charge. In the same approach, the
equation for # can be written (in assumption that 0®/0t
= 0B/ot = 0):

i=—_X.(Eh+E,), (5)
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where E| = -V is the radial electric field, £, = E-h and
h = B/B. Here, the first term describes the acceleration
of electrons due to the longitudinal electric field (in this
paper, this term is omitted from the consideration, i.e.
E;=0) and the second term corresponds to a work of the
radial electric field due to the VB-drift.
Since only the radial fluxes are under consideration,
u in Eq. [5] can be replaced by the relation with p.
Futhermore, it is convenient to redefine the Maxwellian
as Fem(p,u) = exp(-e®@/T.)fepm. Then the right-hand-side
of Eq. [3] can be represented as the standard set of
thermodynamic forces [4],
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where k = K/T.= p,(y-1) is the relativistic kinetic energy
normalized by T7,, and the thermodynamical forces A4,
and A4, are defined as
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Here n,' = dn./dp, T, = dT/dp, and @' = d®/dp. Note
that 4; contains the additional relativistic correction,
), given by
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Since kinetic equation is extremely complex to solve,
simplifications are required. In particular, the mono-
energetic approach [3,4] can be applied for calculations
of the radial fluxes induced by only the radial gradients.
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In this case, linearized Coulomb operator can be
approached by only pitch-angle scattering taken into
account as dominating process for electrons,

C.(fa) = Vo (WL(f.), )

where L is the Lorentz operator,
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and vp(u) = vp(u) + vpZ(u) is the deflection frequency.
The explicit expressions for vp* and vp" in the
relativistic approach are given in [1].

It is generally accepted that for calculation of the
radial fluxes, the drift-kinetic equation Eq. (3) can be
considered in the mono-energetic approach [3,4] with
omitted the acceleration term in the Vlasov operator. In
this case, Eq. (3) can be written as
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where similar to the non-relativistic formulation, the
energy enters only as parameter in values yE,/u and

yvp(u)/u.

2. EVALUATION OF NEOCLASSICAL
TRANSPORT IN 1/v REGIME

Now, let us calculate the radial fluxes of particles
and energy for 1/v collisional regime which dominates
in stellarators. In this section we follow the paper Ref.
[7] introducing the relativistic corrections when
necessary. Since 1/v regime is interesting for us only as
an example of the relativistic consideration, we do not
discuss any applicability of the results to any concrete
experiment.

Assuming that E x B drift of electrons on the
magnetic surface does not produce any significant
contribution in transport and neglecting this term in Eq.
(11), this equation can be solved by integration along
the field-line. Here, only the trapped electrons, By/Biax
< A < By/Bmin, are considered (Bn.x and By, are the
absolute maximum and minimum of B at the given
magnetic surface, respectively).

Enumerating the local minima of B along the
magnetic field-line by & and integrating Eq. (11) over
the bounce trajectory (assumed be closed), one can
obtain
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where 5p* is the radial d1sp1acement of electron due to
the VB-drift after one bounce period. After series of
transformations the order of Eq. (12) can be reduced,
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with H® :Uj dsE(3+E%) | Vp | ks / (bo,) . Here, o, =

eB/(mc) is the cyclotron frequency, kg = n,-(hx(h-V)h)
is the geodesic curvature of the magnetic field line and
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n, = Vp/|Vp| is the unit vector normal to the magnetic
surface.

Let us apply this solution to the radial fluxes of
particles and energy, respectively, defined as

l"p— r,: Vp <jd3upfel> (14)
07 =(Q. Vp)=T.([duxpf,). (15

Producing in both integrals the integration by parts over
A, considering the averaging over the flux-surface as the
limit of integration along the field-line (here, the same
technique as was applied in [7]) and using Eq. (14), the
final expressions for radial fluxes are
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where I, =T* and I, = Q.P/T, with h; = 1 and &, = p(y-1);

Vp(ut) = Vp(u)/Veo With veo = 41nee InA/(meg*ug,’).

The coefficient Gy (the same for both relativistic and
non-relativistic formulations), accumulates all the
parameters for plasmas and magnetic configuration
which are specific for the considered 1/v regime,
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where R is the major radlus, ®ep = €Bo/megc, and eqf is
the effective ripple amplitude (not shown here; for
details see Ref. [7]).
Substituting the derivative of Maxwellian Eq. (6),
the fluxes can be expressed in a standard manner,
I =-n,Y LA,
j=1.2
where the thermodynamic forces A4, and 4, are defined
by Eq. (7). The transport coefficients, L;j, can be easily
obtained from Eq. (17). It can be checked also that this
definition satisfies to the Onsager symmetry and L, = L,.

Note, that since the thermodynamic force A4; contain
the relativistic correction R, a comparison of only the
transport coefficients L; will not be sufficient to
estimate the role of relativistic corrections and it is
meaningful to compare a full fluxes /; in both relativistic
and non-relativistic approaches. In order to simplify a
comparison, let us consider two cases.

First is the case with n,/ = @’ = 0, when the fluxes
can be written as

(17)
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and the second is the case with 7,/ = 0, when
19 =-nL, (ﬂ—ﬂj. (19)
T

In both these cases, the ratio of fluxes " and .®
does not contain the gradients and any factors specific
for the magnetic equilibrium, and can be easily
calculated.

In Fig. 1, the ratios of ['.”/T'"™ and O.”/Q."™ are
shown for both cases. Additionally, the ratio for
conductive heat flux, g./g”™, is also represented.
Here, the radial conductive heat flux of relativistic
electrons is defined as ¢.” = (q.-Vp) = Q." - (5/2+R)T.L.".
This definition has the same meaning as a classical one
but includes the relativistic effects.
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Fig. 1. The relativistic radial fluxes normalized by the
non-relativistic values for the case 1 (Eq. 18)

Here we observe two effects. First is related to the
integral "weight" of the relativistic Maxwellian bulk,
which leads to reduction of fluxes with growth of
temperature (see expression for Cy(u,), Eq. (2)), and the
second is related to increasing contribution from the
tails which appears at higher temperatures. The latter is
more pronounced for the fluxes for which the integrand
in Eq.(16) has a higher degree of k. The most
surprising is that the obtained results are
counterintuitive, i.e. the relativistic effects are found to
be more significant for the regimes where the
contribution from thermal electrons dominates.

Note that in this example, devoted to only the
preliminary check of the relativistic effects in 1/v
regime, we do not analyze a validity of this collisional
regime and assume only that it is the same for all
temperatures.

The authors would like to acknowledge Sergey
Kasilov for support and fruitful discussions, especially
for the idea to apply the developed formalism to the 1/v
regime.
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Fig. 2. The relativistic radial fluxes normalized by the
non-relativistic values for the case (Eq. 19)
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PEJSATUBUCTCKHUE PAUAJBHBIE IIOTOKHW B T'OPSIYEN IIJIA3ME
H.H. Mapywenko, H.A. A3apenxoe, H.b. Mapywienxo

PanyianbHBle TIOTOKM YacTWII M SHEPrHH, BKIIIOYAIOIINE PESTHBHCTCKHE S(QEKTHl, INpeicTaBleHsl B (opwme,
CTaHAAPTHOM U1 HeOKJIacCH4Yeckol Teopru. Bee GpopMymmpoBKHM OCHOBaHBI HA PENSITUBUCTCKUX YPaBHEHUSIX JIBHDKEHHUS
W PENSTUBUCTCKOM Jpei(OBO-KMHETHYECKOM YpaBHEHHWH. B KadecTBe WILTIOCTPAlMK BIMSHUS PEISTHBUCTCKUX
3¢ dexToB Ha porecch NepeHoca B MIa3Me MPEIaraeTcsi CpaBHUTEIIbHAS OLIEHKA PENISTUBUCTCKUX U HEPEATUBUCTCKUX
paauaIbHBIX HEOKJIACCHYECKUX ITOTOKOB 3JIEKTPOHOB, MOCYUTAHHBIX JUTS CTEIIapaTopHoro pexkuma 1/v. IlpemoxkeHnas
(hopMyITPOBKa MO3BOJISIET BKJIFOUUTH PETATHBUCTCKHE 3(P(EKTHI B CYIIECTBYIOIINE TPAHCTIOPTHBIE KOIBL.

PEJSATUBICTCBKI PAJIIAJIBHI IIOTOKH Y TOPSYIN ILJIA3ZMI
I.M. Mapywenko, M.O A3zapenkos, M.b. Mapywienko

PaniaibHI MOTOKM YAaCTHHOK Ta €HEPrii, 0 YPaXOBYIOTh PEJATHUBICTCHKI €()eKTH, 3alpONOHOBAHO Y (opMi, sika €
CTAHAAPTHOIO JUIsi HEOKJNacuyHoi Teopil. Yci (opMymoBaHHs 0a3ylOThCS Ha PENSATUBICTCHKUX PIBHSHHSAX pyXy Ta
PENSATUBICTCHKOMY JIpeli(hOBO-KIHETUUHOMY pIBHSIHHI. B sikocTi imrocTpauii BIUIMBY PpeJISTHBICTCBKHX e(eKTiB Ha
MpOLIECH TEPEHOCY B IUIa3Mi 3alpOINOHOBAHO TIOPIBHSHHS PENSTHBICTCHKHX Ta HEPEITHUBICTCHKUAX —palialbHIX
HEOKJIACHYHHX TOTOKIB EJICKTPOHIB, Pa3paxOBaHMX JUIs CTEIAPaTOPHOro pekumy 1/v. 3ampornoHoBaHe (HOpMYITFOBAHHS
JIO3BOJISIE YPAXOBYBATH PEIITUBICTCHKI €()eKTH B iCHYFOUHX TPAHCIIOPTHUX KOJIAX.
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