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Stochastic heating of electrons by plasma oscillations excited in the capacitive discharge plasma is investigated
theoretically. We have obtained criteria, when the stochastic heating take place, and demonstrated numerically that

this heating mechanism can be sufficiently effective.
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INTRODUCTION

It was demonstrated experimentally in [1] and con-
firmed numerically in [2-6] that electron energy distri-
bution function (EEDF) in an argon capacitively cou-
pled discharge (CCD) has a large number of low-energy
electrons. The measuremements [1] done in the dis-
charge driven at f;=13.56 MHz (for more high fre-

quency drive see, for example, [4-6]) in argon at pres-
sure 0.1 Torr. It was found that the EEDF can be repre-
sented as a sum of two Maxwellian distributions with
two electron temperatures: 7, = 03eV and T, =

3.1eV, and plasma densities 7, = 1.3-10'° cm” and
n, = 1.3-10° cm™. The low-energy elecrton group, with

its temperature close to the energy of the Ramsauer
minimum, has an extremely low electron-neutral (e-n)
collision cross section corresponding to a low e-n colli-
sion frequency v,,; = 107 s'. These electrons oscillates

collisionlessly (v2, << Q?) in the weak bulk RF field,

and unable to gain energy either from the RF field due
to Ohmic heating or from the oscillating RF sheath due
to stochastic heating. The high-energy electrons have a

large en collision frequency v,, = 5%10° s

(v2, >>Q?), and effectively interact with argon atoms

in elastic, excitation and ionization collisions and serve
as the source of the low-energy electrons for the most
part due to ionization. These electrons compensate en-
ergy losses mainly through stochastic heating on the
oscillating plasma sheath boundaries. In order to
increase plasma density in CCDs one needs to increase
the high-energy electrons population. This can be done
by heating of low-energy electrons in the plasma bulk
by (i) the collisionless electron bounce resonance
heating [7-10], and by (ii) the stochastic electron
heating due to plasma oscillations. It is necessary to
emphasize, that the stochastic heating in the bulk
plasma is usually more effective than the stochastic
heating due to interaction with oscillating boundaries
[11,12]. Stochastic heating of electrons by plasma
oscillations excited in the CCD plasma is investigated
theoretically and numerically. We have obtained the
criteria, when the stochastic heating of low-energy
electrons by plasma oscillations take place. PIC-MCC
simulation shows that this heating mechanism can be
sufficiently effective to increase plasma density and to
control EEDF in CCDs.
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1. RESULTS AND DISCUSSION

To find out conditions, when stochastic heating take
place, let us consider the motion of charged particle in
the field of a plasma wave under the action of low-
frequency oscillation. In dimensionless variables
T=w,t, {=k,x the equations of particle motion

have the form:
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£, :|e|Eokp/ma); <1, y=v,/o,<<1, E, is

the plasma wave amplitude, E, is the amplitude of

low-frequency drive, k, is the plasma wave number,

, is the plasma frequency, Q = 27f;, v, is collision
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frequency The equations (1) can be presented as
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(a)r) Equation (2) has the “angular
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where 0, (1) =(l-no) - £, I(z)= £ . Taking into
account that the efficient wave-particle interaction takes
place under the resonance conditions

def . 4)
=¢,=1-now

205



by averaging (3), one can obtain the equations for parti-
cle motion in the isolated resonance (4), and find out the
half-width of the nonlinear resonance:

M(gj -2 gpjn(:‘;j .

The distance between resonances with numbers 7
and n+1 can be obtained from (4): J,,, =@, and the
criterion of the dynamical chaos emergence and sto-
chastic heating of electrons can be presented as:

Ay +ATS
My =—————-1>0, (6)

n+l
or, in dimensions variables:
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mQ? "\ mQ? " mQ?
Conditions (6) are satisfied due to small distance be-
tween resonances @ and possibility to excite plasma

oscillations of sufficiently large amplitude. Fig. 1 and 2
show the contour plot of the overlapping criterion (6) as

)

2 -1>0.

function of &, =le|E,k, / mQ? and
&, =e|E,k, /mQ?* forn=0 (Fig. 1) and n=1 (Fig. 2).
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Fig. 1. The overlapping criterion (6) for n=0.
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Fig. 2. The overlapping criterion (6) for n=1.
Let's take into account backward plasma wave in (1):
ds _
dr (7)
dv -
— S b
e -, cos(r —&)— £, cos(z + &)

— ¢, sin(wr)-m.
Equation (7) can be treated as the set (1). The backward
plasma wave leads to an additional set of resonances in

comparison with (1): Ek =-1-ko, where k is integer.
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The half-width of these resonances is
‘90
2
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overlapped with resonances, which correspond to inter-
action of a particle with a forward plasma wave:

Al +AY )
5

Let's neglect last two terms in the second equation of

system (7). Assuming that the Cherenkov’s resonance

. These resonances can be

up = >1, where 5,?=|2+(k—n)a)|.

condition (v, = £ =+1, where v, 1is the initial particle
velocity) are not satisfied, the solutions can be presented
as &= var+£+ E, where gé is slow, 5 is fast vari-
ables. The Bogolyubov-Miropolskiy averaging method

gives for z,é following equation:
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Q. =v,tl, G, =kQ_ + pQ, . Under the resonance
conditions G »=0, k#0, p=#0 one can find out the

the half-width for resonance {k, p} :

Eyp =2W; , /(k+p). The distance between reso-

. k— k'—p'
nances is 5,’;”’ s = P _ - P -|. The resonances are
Pok+p kK'+p
overlapped if
= = k.p (8)
Epp tExpy > 5k',p"

The Poincare maps of equations (7) are presented in
Figs. 3-4. In Fig. 3, orbits are regular practically in all
phase space, except for separatrix region.

If 'Y =0.002

Fig. 3. Poincare map. 6‘1{ =0.09, 6‘2 =0.09,

£,=00, ®=0.0, y =0.0

It is easy to see (Fig. 4), that the weak low-
frequency signal results in chaotic dynamics of parti-
cles, however Cherenkov's resonances do not collapse.
Weak dissipation essentially does not reduce the max
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imal energy of particles at stochastic heating, how-
ever this case requires additional investigations.
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Fig. 4. Poincare map. 8;: =0.09, 82 =0.09,

&,=001, =0.01, y =00

Particle-in-Cell Monte Carlo simulations of CCD
(for details see, for example, [2-6]) for 40 mTorr and
100V/27MHz drive show that the high-energy popula-
tion of electrons in EEDF and averaged plasma density
are increased in the case of stochastic heating by plasma
oscilations.
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CTOXACTHYECKH HATPEB 2JIEKTPOHOB B EMKOCTHBIX PAJTMOYACTOTHBIX PA3PSJIAX
IVIASMEHHBIMHA KOJIEBAHUSIMHA

O.B. Manyiinenko

N3y4eH cTOXaCTUYECKUI HAarpeB 3JIEKTPOHOB IJIa3MEHHBIMU KOJIeOaHMIMH, BO30Y>K/I€HHBIMHU B IUIa3Me €MKOCT-
Horo paspsia. [loimyueHs! ycnoBusi, IpU KOTOPBIX CTOXaCTHYECKUI HAarpeB HMEET MECTO M IMOKa3aHO YHCIEHHO, YTO
TaKOM MeXaHU3M HarpeBa MOXeET OBITh JOCTATOYHO (P (PEKTHBHBIM.

CTOXACTHUYHE HATPIBAHHS EJIEKTPOHIB Y €EMKICHUX PAJIOYACTOTHHUX PO3PAJAX
IJIABMOBHUMMUA KOJIMBAHHAMMA

O.B. Manyiinenko

JlocHiKeHO CTOXAaCTHYHE HATPiBaHHS €JICKTPOHIB IUIA3MOBHMH KOJHMBAHHAMHU, SKi 30YyIKEHO B IUIa3Mi €MKicC-
HOTO po3psiay. Onep>kaHO YMOBH, IIPH SKUX CTOXACTHYHE HATPiBaHHS Ma€ MICIIe i TOKa3aHO YHCENBHO, 10 3a3Haue-

HUI MeXaHi3M HarpiBy Moxe OyTH JOCHUTh €(DEKTHBHIM.
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