АНОМАЛИИ ЭЛЕКТРОННЫХ СВОЙСТВ ИНТЕРФЕЙСА ВТСП–МЕТАЛЛ В ИНТЕРВАЛЕ ТЕМПЕРАТУР 300...4,2 К

Е.В. Карасева, В.И. Соколенко, В.А. Фролов

Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина E-mail: vsokol@kipt.kharkov.ua

Установлено, что температурная зависимость электросопротивления $r_{\rm C}$ интерфейса между керамикой BiSrPbCaCuO (BTCП⁺) и Pb (Me⁻) имеет в области нормальной проводимости особенности, которые в рамках представлений о локальных парах можно интерпретировать как указания на: 1) открытие псевдощелей присутствующих в образце фаз (T*₂₂₁₂≈193 K и T*₂₂₂₃≈155 K); 2) распад локальных пар (T≈130 K); 3) начало флуктуационного куперовского спаривания (T_C^f≈119 K). Ниже T_C характер зависимости г_C(Т) изменяется с металлического на полупроводниковый, с чем коррелирует изменение характера скорости ползучести dε/dt(T) в условиях осевого ссатия. Факт корреляции объемной и поверхностной характеристик свидетельствует в пользу скейлингового соответствия электронных конфигураций (ЭК) интерфейса BTCП⁺.

введение

Как стало ясно, за прошедшие вот уже 25 лет со времени открытия явления высокотемпературной сверхпроводимости (BTCII), выяснение ee механизмов требует изучения не только сверхпроводящих свойств, но в большей даже мере - температурного поведения свойств в нормальном накоплением состоянии. Параллельно с экспериментального материала появилось множество теорий, объясняющих те или иные экспериментальные проявления ВТСП, однако среди них нет общепризнанной. Ряд теорий ВТСП, достаточно хорошо согласующихся экспериментом, рассматривает в качестве основных механизмов рассеяния заряда в области нормальной проводимости электрон-электронное (3-3) электрон-фононное (Э-Ф) взаимодействия. Одним из центральных положений в них является концепция псевдощели (ПЩ) на поверхности Ферми носителей заряда (см. обзоры [1, 2] и литературу к ним). Согласно этой концепции, при некоторой температуре Т*, которая значительно выше T_C, часть носителей заряда на поверхности Ферми объединяется в локальные (в реальном пространстве) пары с сильной межфермионной связью, которые в силу еще не установленных причин выключаются из механизма рассеяния заряда. Другими словами, Т* - это температура начала бозе-эйнштейновской конденсации (БЭК) носителей заряда с плотностью n_f [3-7]. Концепции ПЩ не противоречит увеличение коэффициента Холла $R_{\rm H} \sim 1/en_{\rm f}$ с понижением температуры, в результате чего n_f вблизи T_C составляет всего ≈ 40 % значения при 200 К (см. соответствующие ссылки в [2]). В резистивных измерениях ПЩ проявляется в виде отклонения удельного электросопротивления от линейного хода в сторону меньших значений при T < T* (см. [1, 2]). На роль фактора спаривания при БЭК предлагались фононы, магноны, d-d-экситоны [1], но окончательный вывод не сделан, однако возможность куперовского спаривания при столь высоких температурах теорией отвергается. Таким

образом, согласно концепции ПЩ состояние ВТСП в интервале $T_C < T < T^*$ уже не нормальное, но еще не сверхпроводящее. В отличие И от сверхпроводящего состояния обычного низкотемпературного сверхпроводника (HTCII), которое при $T = T_C$ отделено от нормального конечной энергетической щелью Δ , состояние ВТСП при $T = T^*$ не имеет щели, о чем свидетельствуют особенности сдвига Найта [8]. Псевдощель с энергией Δ^* здесь только появляется и с понижением Т, плавно увеличиваясь, переходит в щель Δ . Экспериментальные данные не отвергают возможности частичного перекрытия щели со псевдощелью выше T_C, что следует, например, из отличия от нуля магнитосопротивления [9, 10] и существования токов когерентных бозонов с зарядом 2е при температурах вплоть до ≈ 120 К [11], предполагается, как локальные пары гле. распадаются на фермионы, которые затем при некоторой температуре $T_C^{f} > T_C$ флуктуационно спариваются по куперовскому типу [12].

T < T_C свойства электронных В области подсистем ВТСП и НТСП также различны. В нормальных носителей послелних число уменьшается с понижением Т, в ВТСП же число квазичастиц с энергией $E > \Delta$ практически постоянно [2]. Это говорит о наличии механизма, ответственного за «невымерзание» квазичастиц. Нет также в НТСП аналога предсказанного в [6] возврата от куперовского спаривания к БЭК, чему не противоречит увеличение критического тока иттриевой пленки при T \approx 45 K [13].

В [14, 15] показана принципиальная возможность отслеживать температурные аномалии электронной подсистемы ВТСП⁺ (+ обозначает проводимость дырочного типа) в измерениях температурной зависимости контактного сопротивления r_C интерфейса между ВТСП⁺ и металлом с электронной проводимостью Ме-. Такая возможность обеспечивается инжекцией электронов Me⁻ в приповерхностный слой ВТСП⁺ ИЗ (электронное допирование), проводимость которого

в результате рекомбинации электронов с дырками становится термически активированной. Другими словами, r_C становится более чувствительным к температуре, чем сопротивление массива R_{bulk}, что позволяет выявлять аномалии, малозаметные в измерениях $R_{\text{bulk}} = f(T).$ Этой методикой применением в качестве Ме⁻ одновалентных Аи и Ад были обнаружены две хорошо выраженные аномалии r_C в области нормальной проводимости керамики BiSrPbCaCuO (рис. 1) [16, 17]. Темпеособенностей ратуры этих соответствуют температурам особенностей в электронной подсистеме ВТСП на основе висмута по данным ARPES (Angle Resolved Photoemission Spectroscopy) [18], что является не только подтверждением достоверности полученных с применением методики [16, 17] результатов, но и свидетельствует о возможности исследования данной методикой поликристаллических образцов.

Рис. 1. Температурная зависимость $R = (R_{bulk} + r_C) = f(T)$ контактного сопротивления r_C в сумме с сопротивлением массивного BiSrPbCaCuO для случая контакта BiSrPbCaCuO-Au [17]

Целью настоящей работы являлось развитие [16, 17] исследований эффекта начатых В электронного допирования: 1) выяснение целесообразности использования в качестве Меметаллов большей, чем у Аи и Ад валентности для увеличения возможного «разрешающей способности» методики, т. е. величины амплитуды аномалий r_C; 2) расширение исследований в интервале температур T < T_C, чему способствует отличие r_C от нуля в этой области. Кроме того, представляло интерес получить в интервале T < T_C данные о возможных структурных превращениях в ВТСП. поскольку в области нормальной проводимости в окрестности всех особых в электронном смысле температур – T_C, T* и T_C^f происходят структурные превращения [19-21]. Для этой цели была применена методика измерения скорости ползучести dɛ/dt, что представляло интерес еще в плане сопоставления данных, И характеризующих объем, с результатами, которые использованием получены с поверхностной методики контактного скейлинга.

ОБРАЗЦЫ И МЕТОДИКИ

Ha рис. 2,а приведен типичный график температурной зависимости $R_{bulk} = f(T)$ массивных керамики BiSrPbCaCuO (30,2 %Bi, образцов 15,8 %Sr, 6,4 %Pb, 5,6 %Ca, 19,4 %Cu) с объемным содержанием фаз 2223 и 2212 ≈ 90 %, и 10 % соответственно. Значение T_C ≈111 К (см. рис. 2,а) соответствует Т_с фазы 2223. Из рисунка также следует, что определить с высокой точностью Т*, как температуру, при которой появляется отклонение зависимости $R_{bulk} = f(T)$ от линейного хода (избыточная проводимость), не представляет возможности, что, в частности, связано с керамичностью образца. Как следует из рис. 1, керамичность не играет роли при использовании для этой цели методики контактного скейлинга.

Рис. 2. Температурная зависимость: а – электросопротивления массивного BiSrPbCaCuO, измеренная по четырехточечной схеме; б – R = (R_{bulk}+r_C)=f(T) для контакта BiSrPbCaCuO-Pb, измеренная по трехточечной схеме (врезка)

Необходимый для исследований интерфейс создавался механическим нанесением на поверхность ВТСП тонкого (~0,1 мм) слоя Ме-, который с усилием F ~ 15 МПа поджимался к образцу медным электродом с токовым И потенциальным подводами. Два других электрических подвода впрессовывались в образец с применением в качестве связующего In, образуя вместе с первыми трехточечную измерительную схему (см. врезку на рис. 2,б). Площадь контакта составляла ~ 3 мм². Через контакт пропускался постоянный ток $I = (0, 1... 1, 0) \cdot 10^{-3} A$. Величина $U = U_C + U_{bulk}$, где U_C и U_{bulk} – разности потенциалов на контакте и некоторой части массива соответственно измерялась потенциометром P 363 с точностью $\approx 10^{-6}$ B. В области нормальной проводимости величина $R = U/I = (U_C + U_{bulk})/I = R_{bulk} + r_C$ составляла от $\sim 0,1$ Ом до нескольких ом, что более чем на порядок превышало R_{bulk} (рис. 3).

При T > T_C исследовался один интерфейс контактирующих BiSrPbCaCuO-Pb. Образцы представляли собой параллелепипеды $25 \times 7 \times 5$ мм, сопротивление R измерялось в процессе охлаждения. Температура образца T задавалась его установкой на фиксированном расстоянии от уровня жидкого азота с выдержкой в тестируемых положениях до установления квазистационарного состояния.

В измерениях температурной зависимости R = f(T) ниже T_C ($R_{bulk} = 0$) исследовались образцы той же партии с размерами 3×3×6,5 мм. Измерялась сумма контактных сопротивлений $R = r_{C1} + r_{C2}$ двух интерфейсов BiSrPbCaCuO-In, располагавшихся на противоположных (вертикальных) гранях образца. Измерения проводились в процессе непрерывного увеличения температуры со скоростью ≈ 0,2 К/мин, начиная с T = 4,2 К. На подобных образцах были, кроме того, проведены измерения температурной зависимости скорости ползучести $d\epsilon/dt = f(T)$ (также в режиме нагрева) в условиях постоянного одноосного нагружения с напряжением $\sigma = 6$ МПа. Такая нагрузка не вызывает образования керамиках BiSrPbCaCuO трещин [22].

Во всех случаях Т измерялась термопарой медьконстантан, один из спаев которой крепился к образцу.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Область температур $T \ge T_C$. На рис. 2,6 представлены графики зависимости $R=(R_{bulk}+r_C)=f(T)$ для пары BiSrPbCaCuO-Pb, отличающиеся различной продолжительностью выдержки с момента изготовления контакта до начала измерений: кривые «t₁» и «t₂» соответствуют выдержке одного и того же образца ≈ 20 и 44 ч соответственно.

Из рис. 2,а видно, что зависимость $R_{bulk} = f(T)$ для объемного ВТСП начинает отклоняться ОТ линейности при $T = T^* \approx 200 \text{ K}.$ Для пары BiSrPbCaCuO-Pb при этой же температуре на наблюдается кривой «t₁» аномалия. соответствующая аномалии для пары BiSrPbCaCuO-Аи (см. рис. 1). Это позволяет считать применение Рь в качестве Ме апробированным и отнести эту аномалию к характеристике исследуемого образца. также существенно Можно отметить увеличившуюся «разрешающую способность» пары BiSrPbCaCuO-Pb по сравнению с парой BiSrPbCaCuO-Au, выразившуюся В большей амплитуде локальных минимумов на кривой «t₁» и в большей величине суммарного изменения R в интервале 300 К... T_C : [R(T_C)–R₃₀₀]/R₃₀₀ \approx 0,1 в случае электронного допирования за счет Аи и [R(T_C)- $-R_{300}$]/ $R_{300} \approx 1.0 - 3a$ счет Pb.

Сильная сглаженность особенностей кривой «t₂», отличающейся всего в два раза временем выдержки по сравнению с кривой «t₁», может быть связана с изменением характеристик интерфейса в результате предыдущего термоциклирования от комнатной температуры до азотной и обратно, по ходу которого ВТСП испытал четное (6) количество структурных превращений, в результате которых поверхность интерфейса могла разрыхлиться. В случае же выдержки порядка 800 ч кривая $R = (R_{bulk} + r_C) = f(T)$ потеряла практически все детектирующие свойства, что можно связать с более сильной деформацией электронного спектра ВТСП за счет атомов Pb, диффундирующих в глубь ВТСП. При таком химическом допировании атомы допанта (Pb) играют роль примесей, поскольку их случайные кулоновские поля создают дополнительные центры рассеяния заряда [1]. С этим согласуется рост R₃₀₀ с увеличением продолжительности выдержки (см. рис. 3), на котором четко различаются участки, отвечающие различным вилам допирования.

Из рис. 2,6 видно, что значению $T_{C2223} \approx 111 \text{ K}$ соответствуют совпадающие по температурам максимумы на кривых «t₁» и «t₂». Небольшой максимум на кривой «t₂» при $T \approx 86 \text{ K}$, вероятно, определяет T_C фазы 2212.

Рис. 3. Зависимость $R = (R_{bulk} + r_C) = f(T)$ контактного сопротивления r_C в сумме с сопротивлением массивного BiSrPbCaCuO от времени выдержки t с момента изготовления контакта BiSrPbCaCuO-Pb до начала измерений. $T = 300 \ K$

Особо следует отметить наличие на кривой «t₁» особенности перед п-s-переходом, которая отсутствует как на кривой «t₂», так и у пары BiSrPbCaCuO-Au [16]. Из рис. 2,а следует, что уменьшение R_{bulk} при изменении температуры на ≈ 10 К в районе 120 К составляет $\sim 10^{-3}$ Ом. В то же время амплитуда локального минимума R в этой области равна ($\approx 0.25 \times 2 \times 10^{-1}$ Ом) $\approx 0.5 \times 10^{-1}$ Ом. Такая громадная разница указывает на то, что скачок R определяется скачком r_C, а последний свидетельствует о фундаментальных изменениях в ЭК интерфейса.

При рассмотрении кривой « t_1 » обращает на себя внимание резкий рост производной с уменьшением Т при T \approx 130 K, что можно трактовать как усиление процессов рассеяния, предсказанное теорией БЭК, для области несколько выше $T_{\rm C}$ вследствие распада бозонов. Учитывая это, можно допустить, что $T\approx 119~{\rm K}$ соответствует температуре $T_{\rm C}{}^{\rm f}$ начала флуктуационного спаривания по куперовскому типу. В этой связи напомним, что в большинстве ВТСП непосредственно перед сверхпроводящим переходом коэффициент Холла меняет знак [24, 25] («sign reversal» эффект) с положительного на отрицательный (рис. 4) [2], что до сих пор не имеет общепринятого объяснения.

Рис. 4. Температурная зависимость коэффициента Холла R_{xy} в плоскости CuO₂ для различно допированных иттриевых пленок (по данным [2])

На тот же эффект указывает аномальный ход термоэдс [26]. Если действительно R_H~ 1/en_f, то из рис. 4 следует, что в узком интервале температур выше Т_с, кроме того, что изменяется знак носителей заряда, их количество вначале резко увеличивается, становясь максимальным при $R_{\rm H} = 0$, а затем снова уменьшается, становясь в отрицательном минимуме R_H существенно меньшим, чем в положительном максимуме R_H. Мы полагаем, что эта ассиметрия может быть связана с куперовским спариванием части фермионов. Обсуждавшийся выше минимум кривой « t_1 » ниже T ≈ 119 К наблюден, так же как и холловская особенность, чуть выше Т_с. Поэтому можно предполагать, что причина этих явлений одна и та же, а поскольку она должна обеспечивать глубокие изменения ЭК, то ею может быть структурный переход, наблюдающийся в окрестности T_C [19-21].

Две другие, более высокотемпературные аномалии с Т≈193 и 155 К в рамках концепции локальных пар можно сопоставить температурам открытия ПЩ на поверхностях Ферми, имеющихся в образце сверхпроводящих фаз 2212 и 2223. Основаниями для этого служит характер аномалий зависимости $\mathbf{R} = (\mathbf{R}_{\text{bulk}} + \mathbf{r}_{\text{C}}) = \mathbf{f}(\mathbf{T}),$ а именно. ослабление диэлектризации, что не противоречит гипотезе о выключении части носителей заряда из рассеяния, т.е. основной причине введения представления о локальных парах. При этом $T \approx 193 \text{ K}$ должна быть поставлена в соответствие Т_{С2}≈86 К, т.е. T*₂₂₁₂≈ 193 K, фазе с $T \approx 155 \text{ K} = T_{2223}^*$ – фазе с $T_{C1} \approx 111 \text{ K}$. Такое

обратное соотношение между Т* и T_C соответствует реальности [23, 27].

Область температур $T < T_{C}$. На рис. 5 температурные зависимости показаны сопротивления $R = r_{C1} + r_{C2}$ двух интерфейсов BiSrPbCaCuO-In и скорости ползучести dɛ/dt, также, как известно, реагирующей на изменения в ЭК. Две особенности R(T) – в районе ≈ 45 К и, в большей степени, диэлектризация спектра ниже ≈ 12 К, могут быть обязаны происходящим здесь структурным превращениям, что требует дальнейших исследований.

Рис. 5. Температурные зависимости контактного сопротивления R = $r_{C1}+r_{C2}$ двух интерфейсов BiSrPbCaCuO-In и скорости ползучести dɛ/dt массивного BiSrPbCaCuO в режиме осевого нагружения

Вид графика $d\varepsilon/dt = f(T)$ (см. рис. 5) указывает на наличие трех температурных областей, в которых BiSrPbCaCuO имеет совершенно разные механические свойства. Это два более прочные состояния (I и III) и менее прочное - промежуточное (II). Судя по величине dɛ/dt, при переходе из III наблюдается состояния во Π сильное разупрочнение, переход II→I имеет характер обоих упрочнения, но в случаях (разнонаправленных) электронная подсистема диэлектризуется. Эта разнонаправленность, повидимому, говорит о различии механизмов, контролирующих изменение r_C. Более определенный вывод следует из корреляции особенностей в поведении $r_{C}(T)$ и dε/dt(T). Он заключается в том, качественном что на уровне изменения модифицированной ЭК приповерхностного слоя соответствуют изменениям ЭК массивного ВТСП.

выводы

Развита методика обнаружения температурных аномалий в электронной подсистеме дырочного ВТСП методом измерения контактного сопротивления r_C интерфейса исследуемого ВТСП с металлом электронного типа. Полученные данные свидетельствуют о том, что ЭК интерфейса является скейлингом электронной конфигурации массива ВТСП, что позволяет на качественном уровне относить изменения В поведении r_C к характеристикам невозмущенной подсистемы носителей заряда. Показано также, что амплитуда регистрируемых аномалий r_C увеличивается с увеличением валентности металла, применяемого в качестве контактной пары.

В области нормальной проводимости керамики BiSrPbCaCuO зарегистрированы температурные аномалии r_C, которые в рамках теории локальных пар могут быть поставлены в соответствие ее характеристическим температурам: началу спаривания фермионов по механизму БЭК (открытие ПЩ), началу распада локальных пар и началу куперовского спаривания. Ниже T_C обнаружены аномалии механических свойств керамики BiSrPbCaCuO, с которыми коррелируют изменения электронных свойств интерфейса.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. В.М. Локтев. Спектри та псевдощілинні явища у високотемпературних надпровідниках // УФЖ, Огляди. 2004, т. 1, с. 10–47.

2. А.Л. Соловьев, В.М. Дмитриев. Флуктуационная проводимость и псевдощель в высокотемпературных сверхпроводниках YBCO // ФНТ. 2009, т. 35, с. 227–263.

3. И.О. Кулик, А.Г. Педан. Электронэкситонное взаимодействие и локальне пары в высокотемпературных сверхпроводниках // ФНТ. 1988, т. 14, с. 700–705.

4. Н.И. Амелин. О возможном бозе-жидкостном механизме возникновении СП-состояния в ВТСП соединениях // ФНТ. 1996, т. 22, с. 539–542.

5. В.М. Локтев. Особенности сверхпроводимости в 2D-металлах: переход от куперовского спаривания к локальному // ФНТ. 1996, т. 22, с. 490–493.

6. В.П. Гусынин, В.М. Локтев, С.Г. Шарапов. Фазовая диаграмма 2D металлических систем с переменным числом носителей // Письма в ЖЭТФ. 1997, т. 65, с. 170–175.

7. А.М. Бугрий, В.М. Локтев. К теории бозеэйнштейновской конденсации: о возможности конденсации фермионов при высоких температурах // ФНТ. 2007, т. 33, с. 51–68.

8. H. Alloul, T. Ohno, and P. Mendels. ⁸⁹YNMR Evidens for a Fermi–Liquid Behavior in YBa₂Cu₃O_{6+x} // *Phys. Rev. Lett.* 1989, v. 63, p. 1700–1703.

9. Y. Matsuda, T. Hirai, and S. Komiyama. Magnetoresistance of c-axis-oriented epitaxial YBa₂Cu₃O_{7-x} films above T_C // Solid State Commun. 1988, v. 68, p. 103–110.

10. Y. Matsuda, T. Hirai, S. Komiyama, et al. Magnetoresistance in $YBa_2Cu_3O_{7-\delta}$ above T_C : superconducting fluctuations and strong pair–breaking // *Phys. Rev.* 1989, v. B40, p. 5176–5179.

11. B. Bucher, P. Steiner, J. Karpinski, E. Kaldis, and P. Wachter. Influence of the Spin Gap on Normal State Transport in YBa₂Cu₃O₈ // *Phys. Rev. Lett.* 1993, v. 70, p. 2012–2015.

12. S.S. Hikami and A.L. Larkin. Magnetoresistance of high temperature superconductors // *Mod. Phys. Lett.* 1988, v. B2, p. 693–698.

13. J. Albrecht. Temperature–dependent pinning of vortices in low–angle grain boundaries in $YBa_2Cu_3O_{7-\delta}$ // *Phys. Rev.* 2003, v. B 68, p. 054508.

14. О.П. Леденев, В.А. Фролов. Сверхпроводимость пограничного слоя ВТСП с нормальным металлом // ВАНТ. Серия «Ядерно-физические исследования (Теория и эксперимент)». 1989, в. 7(7), с. 15–17.

15. V.A. Frolov, A.A. Chupicov. A resistivity temperature scaling for the boundary layer YBaCuO/In in the temperature range from 300 to 4,2 K // *Cryogenics (ICEM)*. 1993, v. 32, p. 405–407.

16. Е.В. Карасева, П.А. Куценко, О.П. Леденев, В.А. Фролов. Регистрация структурных превращений в ВТСП электрофизическими методами // Материалы 51-й Международной конференции «Актуальные проблемы прочности и пластичности». Харьков: ННЦ ХФТИ, 2011, с. 296.

17. Е.В. Карасева, П.А. Куценко, В.И. Соколенко, В.А. Фролов. Амплитуда температурных аномалий электросопротивления ВТСП с частично рекомбинировавшими дырками // Матеріали X Міжнародної конференції «Фізичні явища в твердих тілах». Харків, 2011, с. 77.

18. T. Kondo, Y. Hamaya, A.D. Palczewski, et al. // *Nature Phys.* 2011, v. 7, p. 21.

19. В.П. Соболев, А.Б. Круглов, А.В. Кузнецов и др. Аномалии термического расширения ВТСП керамик при температурах выше T_C // ФНТ. 1991, т. 17, с. 192–195.

20. А.В. Андреев, А.М. Бурханов, С.В. Верховский и др. Структурные превращения в $La_{2-x}Sr_xCuO_4$ // Письма в ЖЭТФ. 1987, т. 46, Приложение, с. 192–195.

21. Б.Я. Сухаревский, Е.О. Цибильский, В.Г. Ксенофонтов и др. Структурный янтеллеровский фазовый переход, предшествующий сверхпроводящему переходу в керамических образцах La_{2-x}Sr_xCuO_{4-y} // Письма в ЖЭТФ. 1987, т. 46, Приложение, с. 188–191.

22. V.A. Frolov, E.V. Karaseva, and Ya.D. Starodubov. The anisotropy of kinetic properties of HTSC ceramics under mechanical stresses // *Phisica C*. 1994, v. 235-240, p. 1307–1308.

23. И.Я. Фуголь, В.Н. Свищев, М.Ю. Либин. Температурные особенности в спектрах отражения сверхпроводящих пленок YBaCuO в инфракрасной области частот // ФНТ. 1998, т. 24, с. 195–203.

24. S.J. Hagen, A.W. Smith, M. Rajeswar, et al. Anomalous flux-flow Hall effect: Nd_{1,85}Ce_{0,15}CuO_{4-y} and evidence for vortex dynamics // *Phys. Rev.* 1993, v. B 47, p. 1064–1068.

25. A.J. Rojo, G. Kotliar, and G.S. Canright. Sign of equilibrium Hall conductivity in strong correlated systems // *Phys. Rev.* 1993, v. B 47, p. 9140–9143.

26. В.А. Фролов, М.М. Олексиенко. Температурная зависимость термоэдс YBa₂Cu₃O_{7-x} // Проблемы высокотемпературной сверхпроводимости. Киев: ИМФ, 1988, с. 34–35.

27. Y. Yamada, K. Anagawa, T. Shibauchi, et al. Interlayer tunneling spectroscopy and doping-dependent energy-gap structure of the trilayer superconductor $Bi_2Sr_2Ca_2Cu_3O_{10+\delta}$ // *Phys. Rev.* 2003, v. B 68, p. 054533.

Статья поступила в редакцию 13.02.2012 г.

АНОМАЛІЇ ЕЛЕКТРОННИХ ВЛАСТИВОСТЕЙ ІНТЕРФЕЙСУ ВТНП-МЕТАЛ В ІНТЕРВАЛІ ТЕМПЕРАТУР 300...4,2 К

Є.В. Карасьова, В.І. Соколенко, В.О. Фролов

Встановлено, що температурна залежність електроопору r_C інтерфейсу між керамікою BiSrPbCaCuO і Pb має в області нормальної провідності особливості, які в рамках подань про локальні пари можна інтерпретувати, як вказівки на: 1) відкриття псевдощілин присутніх у зразку фаз ($T^*_{2212} \approx 193$ K і $T^*_{2223} \approx 155$ K); 2) розпад локальних пар ($T \approx 130$ K); 3) початок флуктуаційного куперівського парування ($T_c^{f} \approx 119$ K). Нижче T_c характер залежності $r_c(T)$ змінюється з металевого на напівпровідниковий, із чим корелює зміна характеру швидкості повзучості dɛ/dt(T) в умовах осьового тиску. Факт кореляції об'ємної й поверхневої характеристик свідчить на користь скейлінгової відповідності електронних конфігурацій інтерфейсу ВТСП⁺–Ме⁻ і масиву ВТНП⁺.

ANOMALIES OF ELECTRONICS RELATIONSHIPS OF HTSC-METAL IN TEMPERATURE INTERVAL 300...4,2 K

E.V. Karaseva, V.I. Sokolenko, V.A. Frolov

It is established that temperature dependence of electroresistance r_C of the interface between ceramics BiSrPbCaCuO and Pb has in normal state the features which in framework about of local pairs representations it is possible to interpret as indications on: 1) pseudogap regime opening of the phases sample $(T^*_{2212} \approx 193 \text{ K} \text{ and } T^*_{2223} \approx 155 \text{ K})$; 2) local pairs disintegration $(T \approx 130 \text{ K})$ and 3) fluctuation Cooper's pairing beginning $(T_C^{f} \approx 119 \text{ K})$. The dependence $r_C(T)$ character changes from metallic to semiconducting below T_C what correlates to change of creep speed $d\epsilon/dt(T)$ character in conditions of axial compression. The fact of volumetric and superficial characteristics correlations testifies for benefit of scaling conformity of electronic configurations of interface HTSC⁺–Me⁻ and of massif HTSC⁺.