УДК 621.382.3.001

МОДЕЛИРОВАНИЕ ИМПУЛЬСНОГО ФОТОУМНОЖИТЕЛЯ НА ОСНОВЕ *PN-I-PN* СТРУКТУРЫ С ЛАВИННЫМИ *P-N* ПЕРЕХОДАМИ

К. А. Лукин¹, Х. А. Сердейра², П. П. Максимов¹

Институт радиофизики и электроники им. А. Я. Усикова НАН Украины, 12, ул. Ак. Проскуры, Харьков, 61085, Украина

Международный центр теоретической физики им. Абдус Салам, 34100 Триест, Италия E-mail: <u>Lndes@kharkov.com</u>

Моделируется усиление импульса в фотоумножителе на основе *pn-i-pn* структуры с внутренним (лавинно-каскадным) усилением. Рассчитаны коэффициент усиления, быстродействие и шум лавинного умножения. Показано, что рассматриваемые фотоумножители имеют высокий коэффициент усиления, низкий порог чувствительности по току и более надежны в работе по сравнению с лавинными фотодиодами. Ил. 4. Библиотр.: 17 назв.

Ключевые слова: фотоумножитель, pn-i-pn структура, ударная ионизация, лавинно-каскадное усиление.

Научный и практический интерес к созданию новых типов фотоумножителей вызван потребностью в компактных приборах повышенной надежности, большим коэффициентом внутреннего усиления и низким уровнем шума. Такие фотоумножители необходимы для регистрации и измерения в различных системах обработки оптической информации, обнаружения слабых излучений, дальнометрии, навигации и т. д. [1-5]. Одним из широко применяемых в настоящее время фотодетекторов с внутренним усилением являются лавинные фотодиоды (ЛФД). Они работают в предпробойном режиме и характеризуются высокой чувствительностью, большим усилением и высоким быстродействием. Однако их использование затруднено применением высоких рабочих напряжений и необходимостью их стабилизации [3]. Сложность дальнейшего улучшения характеристик ЛФД заключается в том, что при повышении коэффициента усиления технологически трудно обеспечить низкий уровень шума лавинного умножения, высокую стабильность и пространственную однородность характеристик [1, 3]. Это обусловлено резкой зависимостью коэффициентов ударной ионизации электронов и дырок от напряженности электрического поля, ростом вероятности образования локальных микроплазм при высоких напряжениях, приводящей к выходу прибора из строя, и наличием положительной обратной связи между лавинными процессами в слое умножения p-n перехода, вызванные электронами и дырками [3, 6]. Вероятность образования локальных микроплазм возможно уменьшить путем применения структурно совершенных кристаллов [6], или за счет конструктивных особенностей прибора, например, введением локальной отрицательной обратной связи между инициирующим лавину током и коэффициентом усиления [4, 5]. Однако наиболее простой способ снижения уровня шума лавинного умножения, вероятности образования микроплазм и ослабления требования к стабильности источника питания - это применение низкого смещения на p-n переходе. Для ЛФД этот способ неприемлем, так как уменьшение смещения на p-n переходе снижает коэффициент усиления. Но он применим для фотоумножителей на основе pn-i-pn структур с обратно смещенными p - n переходами, так как в них коэффициент усиления определяется не только смещением на p-n переходах, но и числом каскадов умножения в них [7]. Отметим, что впервые в работах [8, 9] обратно смещенные pn - i - pnструктуры с положительной обратной связью были рекомендованы для создания на их основе детекторов частиц высоких энергий и генераторов хаотических колебаний.

Целью данной работы является моделирование процессов внутреннего усиления в фотоумножителях на основе pn-i-pn структур с лавинными p-n переходами и расчет основных характеристик прибора - коэффициента усиления, быстродействия и шума.

1. Постановка задачи. На рис. 1 приведено схематическое изображение фотоумножителя с внутренним усилением и окном прозрачности в обедненной области фоточувствительного $p_1 - n_1$ перехода.

Оптическое излучение мощностью $P_{opt} \ \omega = P_{opt} \ 1 + me^{j\omega t}$ (ω - частота модуляции, m - коэффициент модуляции) падает на $p_1 - n_1$ переход, при этом часть излучения $R_{opt}P_{opt}$ может

отражаться (R_{opt} - коэффициент отражения).

Преимущество такого расположения окна заключается в том, что генерация электронно-

ISSN 1028-821Х Радиофизика и электроника, том 12, №2, 2007, с. 444-450

© ИРЭ НАН Украины, 2007

дырочных пар и их разделение происходит в одном и том же объеме полупроводника. В этом случае нет потерь на рекомбинацию пар при их дрейфе к p-n переходу, и не требуется времени на этот дрейф, как это имеет место при расположении окна прозрачности вне p - n перехода [3].

Рис. 1. Схематическое изображение фотоумножителя на основе pn-i-pn структуры с обратно смещенными p-n переходами

В фоточувствительном элементе p-n

перехода генерация электронно-дырочных пар происходит при условии превышения энергии света над энергией запрещенной зоны. Эти величины связаны соотношением λ (нм)=1240/*E* (эВ). Для полного поглощения глубина фоточувствительного элемента должна быть не меньше глубины проникновения излучения $1/\alpha$ (α - коэффициент поглощения) [1]. В германии, начиная от коротких длин волн и вплоть до $\lambda = 1,5$ мкм, практически все излучение поглощается на глубине 1÷2 мкм от поверхности [3]. У кремния максимум спектральной чувствительности лежит при λ =0,9 мкм, которому соответствует глубина проникновения излучения 30 мкм [2, 3]. Спектральная область фоточувствительности арсенидгаллия находится в диапазоне 0,3÷0,9 мкм с максимумом спектральной чувствительности при λ =0,9 мкм Этому излучению соответствует глубина проникновения 1÷2 мкм [1].

Рассмотрим процесс внутреннего усиления первичного фототока в pn-i-pn структуре с положительной обратной связью по дрейфовому току между лавинными *p*-*n* переходами [7]. В первом $p_1 - n_1$ переходе при поглощении излучения $P_{opt}(\omega)$ генерируются электронно-дырочные пары, число которых определяется квантовой эффективностью. Эти пары умножаются вследствие ударной ионизации в слое умножения $p_1 - n_1$ перехода. Для реализации ударной ионизации необходимо, чтобы толщина обедненной области *p*-*n* перехода превышала длину свободного пробега неравновесных носителей заряда, а энергия, накапливаемая ими в области перехода, превышала порог ударной ионизации атомов решетки. Образовавшиеся в результате ударной ионизации электронно-дырочные пары под действием электрического поля разделяются. Дырки уходят на контакт p^+ , образуя наведенный ток во внешней цепи. Электроны дрейфуют через і – область к $p_2 - n_2$ переходу, где они инициируют ударную ионизацию с образованием новых электроннодырочных пар. Далее эти пары разделяются. Электроны уходят на контакт n^+ , образуя наведенный ток во внешней цепи. Дырки через і – область возвращаются в $p_1 - n_1$ переход, где они повторно инициируют ударную ионизацию с образованием новых электронно-дырочных пар и т. д. Следовательно, внутреннее усиление импульса обусловлено лавинно-каскадным умножением электроннодырочных пар в $p_1 - n_1$ и $p_2 - n_2$ переходах структуры [7], а наведенный ток во внешней цепи лавинно-каскадного фотоумножителя (ЛКФУ) с течением времени возрастает ступеньками. Число ступенек определяется числом каскадов умножения в *p*-*n* переходах. Из рис. 1 видно, что ударная ионизация в $p_1 - n_1$ переходе инициируется дырками, в $p_2 - n_2$ переходе - электронами.

В качестве математической модели ЛКФУ используем одномерную диффузионнодрейфовою модель (ДДМ), которая адекватно описывает ударную ионизацию в p-n переходах [1,4]. Уравнения ДДМ в безразмерной форме записи имеют следующий вид [6,7]:

$$\begin{cases} \frac{\partial E}{\partial x} = \frac{q}{\varepsilon \varepsilon_0} (p - n + N), \\ \frac{\partial \varphi(x,t)}{\partial x} = -E(x,t) \end{cases}; \tag{1}$$

$$\frac{\partial n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} + \alpha_n J_n + \alpha_p J_p - R(n, p); \qquad (2)$$

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} + \alpha_n J_n + \alpha_p J_p - R(n, p); \quad (3)$$

$$J_n = qnv_n; \ J_p = qpv_p; \ J_{cm} = \varepsilon \varepsilon_0 \frac{\partial E}{\partial t};$$
 (4)

$$J = J_n + J_p + J_d, (5)$$

где Е - напряженность электрического поля; φ - электрический потенциал; J- плотность полного тока; J_n - плотность электронного тока; J_p - плотность дырочного тока; J_d плотность тока смещения; *n* - концентрация электронов; *p* - концентрация дырок; *v_n*, *v_p* скорость электронов и дырок соответственно; $N(x) = \begin{cases} -N_{a1}, \ -L_{p1} < x < x_2; \ N_{d1}, \ x_2 < x < L_{n1} \\ -N_{a2}, \ L_{p2} < x < x_5; \ N_{d2}, \ x_5 < x < L_{n2}; \end{cases}$

Ć

ć

- концентрация примесных атомов; N_a – концентрация акцепторов; N_d – концентрация доноров; α_n, α_p – коэффициенты ударной ионизации электронов и дырок, которые аппроксимируются экспоненциальной зависимостью от поля $\alpha(E) = A \exp[-(b/E)^m]$ [10]; значения параметров A, b и m определяются материалом полупроводника; R(n, p) – скорость рекомбинации электронов и дырок по формуле Шокли-Рида-Холла [1]; L_p , L_n - размеры обедненных областей p-n переходов.

Дифференциальные уравнения (1)-(3) дополняются соответствующими граничными условиями, условиями непрерывности и начальными условиями:

$$E(-L_{p1},t) = 0, \ E(L_{n1},t) = E_{i}(L_{n1},t), \\ E(L_{p2},t) = E_{i}(L_{p2},t), \ E(L_{n2},t) = 0 \end{cases}; (6)$$

$$\varphi(-L_{p1},t) = V, \ \varphi(L_{n1},t) = V_{i} + V_{2}, \\ \varphi(L_{p2},t) = V_{2}, \ \varphi(L_{n2},t) = 0 \end{cases}; (7)$$

$$J_{p}(-L_{p1},t) = J(t) - J_{ns}(-L_{p1},t), \\ J_{n}(x_{2},t) = I_{0} / S, \\ J_{n}(L_{n1},t) = J(t) - J_{pi}(L_{n1},t), \\ J_{p}(L_{p2},t) = J(t) - J_{ni}(L_{p2},t), \\ J_{n}(L_{n2},t) = J(t) - J_{ps}(L_{n2},t) \end{cases}; (8)$$

$$E(x_{2,5} - 0,t) = E(x_{2,5} + 0,t), \\ \varphi(x_{2,5} - 0,t) = \varphi(x_{2,5} + 0,t) \\ \vdots (9)$$

$$J_{pi}(L_{n1},0) = J_{ps}; \ J_{ni}(L_{p2},0) = J_{ns}, (10)$$

где J_{pi} и J_{ni} - плотности электронного и дырочного токов, поступающие из *i*-области в p-nпереход; I_0 - ток, обусловленный первичным фототоком, фоновым и темновым токами; S - площадь $p_1 - n_1$ перехода; J_{ns} – плотность электронного темнового тока; J_{ps} – плотность дырочного темнового тока.

2. Коэффициент усиления. Для численного решения исходные уравнения (1)-(10) нормировались по формулам: $\vec{E} = E / E_0$; $\vec{\varphi} = \varphi / \varphi_0$; $\vec{J} = J / J_0$; $\vec{n} = n/n_i$; $\vec{p} = p/n_i$; $\vec{N} = N/n_i$; $\vec{t} = t/t_0$; $\vec{x} = x/L_0$. Нормировочные величины равны $E_0 = \varphi_0 / L_0$, В/м; $L_0 = \sqrt{\varepsilon \varepsilon_0 \varphi_0 / q n_i}$, м; $J_0 = \frac{q n_i D_0}{L_0}$, А/м²; $D_0 = 1$, м²/с; $t_0 = L_0^2 / D_0$, с;

где n_i - равновесная концентрация электронов в собственном полупроводнике; T - абсолютная температура; q - абсолютное значение заряда электрона; $\mathcal{E}\mathcal{E}_0$ - диэлектрическая проницаемость полупроводника; \mathcal{E}_0 - диэлектрическая проницаемость вакуума; k - постоянная Больцмана (черта над безразмерными величинами опущена).

Безразмерные уравнения ДДМ, дополненные граничными условиями (6)-(8), условиями непрерывности (9) и начальными условиями (10), решены с помощью разностных методов [11-16]. Коэффициент усиления ЛКФУ определяется выражением [1,6]

$$M = \prod_{j=1}^{K} m_{1j} m_{2j} ; \qquad (11)$$
$$m_{1j} = \left\{ 1 - \int_{-L_{p1}}^{L_{p1}} \alpha_{p} \exp \left[- \int_{-L_{p1}}^{x} (\alpha_{n} - \alpha_{p}) dx' \right] dx \right\}_{i}^{-1} ; (12)$$

$$m_{2j} = \left\{ 1 - \int_{L_{p_2}}^{L_{p_2}} \alpha_n \exp\left[-\int_{x}^{L_{p_2}} (\alpha_n - \alpha_p) dx' \right] dx \right\}_{j}^{-1}, (13)$$

где m_{1j} , m_{2j} - коэффициенты j- го каскада умножения в $p_1 - n_1$ и $p_2 - n_2$ переходах соответственно; K - число каскадов умножения за время t. В формулах (11)-(13) учтено, что в $p_1 - n_1$ переходе ударная ионизация инициируется дырками, а в $p_2 - n_2$ переходе - электронами (рис. 1). Величина коэффициента усиления согласно выражению (11) зависит от числа каскадов умножения K и коэффициентов усиления p - n переходов. Из формул (11)-(13) следует, что при стремлении знаменателя к единице коэффициент усиления неограниченно растет, а лавиный ток ограничен только сопротивлением внешней цепи [1, 6].

$$\int_{L_p}^{L_n} \alpha_n \exp\left[-\int_{x}^{L_p} (\alpha_n - \alpha_p) dx'\right] dx \to 1$$
(14)

На рис. 2 представлены результаты расчета коэффициента усиления ЛКФУ из различного материала (K = 8). Видно, что коэффициент усиления ЛКФУ в режиме пробоя имеет конечную величину. Это ограничение обусловлено влиянием заряда подвижных носителей на электрическое поле. Динамический диапазон усиления ЛКФУ из Ge, Si, GaAs достигает 80 дБ и лежит в узком интервале напряжений U/U_{av} . Положение этого интервала на оси абсцисс определяется степенью легирования и свойствами материла – различной зависимостью коэффициентов Отформатировано: Шрифт: 10 пт

ударной ионизации Ge, Si и GaAs от электрического поля [10].

Рис. 2. Коэффициент внутреннего усиления Ge, Si и GaAs ЛКФУ как функция напряжения с учетом влияния пространственного заряда на электрическое поле

Для сравнения коэффициент усиления ЛФД, обратное смещение на котором такое же, как и на $p_2 - n_2$ переходе ЛКФУ, равен $m = M^{1/K} = 80^{1/8} \approx 1,7$ дБ. Таким образом, существенное преимущество ЛКФУ перед ЛФД заключается в получении высокого коэффициента усиления при низком смещении. Применение низких напряжений снижает вероятность образования локальных микроплазм в p - n переходах, повышает надежность ЛКФУ и ослабевает требования к стабильности напряжения по сравнению с ЛФД.

3. Быстродействие лавинно-каскадных фотоумножителей. Время быстродействия определяется временем протекания ударной ионизации, временем пролета носителями тока через обедненные области p-n переходов структуры, временем пролета электронами и дырками i – области структуры и числом каскадов умножения K. Для случая, когда скорости носителей в обедненных областях p-n переходов и в i – области структуры постоянны, быстродействие определяется выражением

$$\tau = KT$$
,

(15)

где $T = \tau_{j1n} + \tau_{dn} + \tau_{j2n} + \tau_{j2p} + \tau_{dp} + \tau_{j1p}$ - период структуры; τ_{j1n} - время дрейфа электронов в $p_1 - n_1$ переходе; τ_{dn} - время дрейфа электронов в *i* - области; τ_{j2n} - время дрейфа электронов в $p_2 - n_2$ переходе; τ_{dp} - время дрейфа дырок в $p_2 - n_2$ переходе; τ_{dp} - время дрейфа дырок в *i*области; τ_{j1p} - время дрейфа дырок в $p_1 - n_1$ переходе. Рис. 3 иллюстрирует изменение быстродействия ЛКФУ на основе Si pn - i - pn структуры (15). Из рис. 3 видно, что увеличение электрического поля в *i*-области структуры $E_i = U_i / d_i$ увеличивает быстродействие от 31,8 нс ($U_i = -0,25 V$) до 9 нс ($U_i = -0,75 V$). Быстродействие ЛКФУ в K раз ниже быстродействия ЛФД. Для повышения быстродействия ЛКФУ необходимо уменьшать число каскадов взаимодействия и увеличивать скорость дрейфа носителей тока в *i*-области pn - i - pn структуры.

Рис. 3. Время дрейфа (быстродействие) τ ЛКФУ на основе Si pn-i-pn структуры как функции дрейфового расстояния L, пройденного носителями тока

Из рис. З следует, что быстродействие τ определяется периодом T и числом каскадов умножения K. Период T определяется временными отрезками $t_1 = \tau_{j1n}$; $t_2 = \tau_{dn}$; $t_3 = \tau_{j2n}$; $t_4 = \tau_{j2p}$; $t_5 = \tau_{dp}$ и $t_6 = \tau_{j1p}$, из которых отрезки t_2 и t_5 значительно превышают остальные. Это объясняется тем, что в обедненной области обоих p-n переходов носители тока движутся в сильном электрическом поле, при котором их скорость достигает скорости насыщения. В то же время в *i*-области структуры носители тока движутся в слабом электрическом поле, поэтому их скорость меньше скорости насыщения. Кроме того, размеры *i*-области значительно превышают размеры обедненных областей p-n переходов.

Для того, чтобы импульс не перекрывался в процессе усиления, его длительность τ_{imp} должна быть меньше полупериода структуры $\tau_{imp} < T/2$, а период следования импульсов больше времени быстродействия τ . В рассматриваемом кремниевом ЛКФУ усиливаются импульсы длительностью $\tau_{imp} < 1 \div 2,5$ нс и частотой следования $f_{imp} < 31 \div 100$ МГц. Заметим, что при усилении импульса вследствие ударной ионизации наблюдается его расширение и образование постоянного тока [8,9]. Это расширение устраняется введением в *i*-область ловушек, при наличии которых происходит сужение импульса в результате рекомбинации электронно-дырочных пар.

1

4. Отношение сигнал/шум. Среднеквадратичная мощность оптического сигнала, поступающего через окно прозрачности в обедненную область лавинного $p_1 - n_1$ перехода (рис. 1) при 100%-ной модуляции, равна $P_{opt}/\sqrt{2}$. Среднеквадратичное значение фототока после лавинного усиления определяется выражением [1]

$$i_p = q(\eta / h\nu)(P_{opt} / \sqrt{2})M,$$
 (16)

где $hv = 1,237q/\lambda(\mu m)$ - энергия фотона; η - квантовая эффективность, которая представляет собой число фотогенерированных электроннодырочных пар, отнесенное к числу падающих фотонов.

Среднеквадратичное значение шума лавиннокаскадного усиления определяется как сумма среднеквадратичных значений шума каждого каскада лавинного умножения в *p* – *n* переходах

$$\langle i_s^2 \rangle = \sum_{k=1}^{K} \langle i_s^2 \rangle_k$$
, $k = 1, 2, 3, ..., K$ [1]. В случае,

когда коэффициенты усиления всех каскадов умножения равны $m_k = m$ и $\alpha_n / \alpha_p = \alpha_p / \alpha_n = k$, лавинный шум ЛКФУ определяется выражением [Приложение 1]

$$\left\langle i_{s}^{2}\right\rangle =2qI_{0}M^{2}F(M)B, \qquad (17)$$

где $F(M) = \frac{M-1}{m-1} m/M^2 F m$ - шум-фактор ЛКФУ; F(m) - шум-фактор ЛФД. Отсюда следу-

ет, что избыточный шум ЛКФУ ниже ЛФД в $(M-1)/(m-1)(m/M)^2$ раз. При равенстве m=M шум-фактор ЛКФУ и ЛФД совпадают. Тепловой шум, выделяемый на эквивалентном омическом сопротивлении R_{eq} , определяется

выражением [1]

$$\left< i_T^2 \right> = 4kT \ 1/R_{eq} \ B$$
, (18)
где k - постоянная Больцмана, T - абсолютная

температура. Отношение сигнал/шум находим из выражений (16)-(18) [1]

$$S/N = \frac{1/2 \ q\eta P_{opt} / hv}{2qI_0 F(M)B + 4kTB / R_{eq}M^2} .$$
(19)

Минимальная оптическая мощность P_{opt} , необходимая для получения заданного отношения S/N, определяется выражением

$$P_{opt} = \frac{2h\nu}{\eta} \frac{S}{N} F(M) B \left\{ 1 + \left[1 + \frac{I_{eq}}{qBF(M)^2 \frac{S}{N}} \right] \right\}^{\frac{1}{2}}, (20)$$

где $I_{eq} \equiv I_B + I_D F M + 2kT / qR_{eq}M^2$.

Относительным критерием качества фотоумножителей является мощность, эквивалентная шуму (*NEP*). Она определяется как среднеквадратичная мощность падающего излучения, необходимая для получения отношения сигнал/шум равного 1 в полосе частот 1 Гц. Из выражения (20) находим [1]

$$NEP = 2\frac{h\nu}{\eta} F M \left[1 + \left(1 + \frac{I_{eq}}{qF M^2} \right)^{1/2} \right].$$
 (21)

Из выражения (21) следует, что для повышения чувствительности ЛКФУ необходимо R_{eq} увеличивать, а m, I_B и I_D уменьшать. Рис. 4 иллюстрирует зависимость NEP кремниевых ЛКФУ и ЛФД с учетом ограничений тепловым шумом, фоновым и темновым токами (отношение коэффициентов ударной ионизации $k = \alpha_{n,p} / \alpha_{p,n} = 0,1; K=8).$

Из рис. 4 видно, что при равном общем коэффициенте усиления *NEP* ЛКФУ (сплошные кривые 1-5) более чем на порядок ниже, чем ЛФД (пунктирные кривые 1-5). Таким образом, ЛКФУ является малошумящим прибором, с порогом чувствительности по току более чем на порядок ниже, чем ЛФД.

Рис. 4. Зависимость *NEP* Si ЛКФУ (сплошные линии) и Si ЛФД (пунктирные линии) от сопротивления нагрузки (коэффициент усиления *M*=141; темновой ток $I_D = 1,5*10^{-10}$ А; фоновый ток I_B : кривая 1- $I_B = 10^{-8}$; 2 - $I_B = 10^{-9}$; 3- $I_B = 10^{-10}$; 4- $I_B = 10^{-11}$, 5- $I_B = 10^{-12}$, A)

Выводы. Таким образом, динамический диапазон усиления ЛКФУ достигает 80 дБ. В режиме лавинного пробоя коэффициент усиления ограничен зарядом подвижных носителей. Быстродействие ЛКФУ составляет несколько десятков наносекунд и определяется числом каскадов умножения и временем дрейфа носителей в pn-i-pn структуре.

По сравнению с ЛФД быстродействие ЛКФУ в *К*-раз ниже. ЛКФУ является малошумя-

щим прибором - его NEP более чем на порядок меньше NEP ЛФД. ЛКФУ предназначен для усиления импульсов фототока, длительность которых не превышает полупериода структуры, а период их следования больше времени быстродействия.

ЛКФУ является перспективным импульсным фотоумножителем нового типа, принцип действия которого основан на лавиннокаскадном умножении первичного фототока.

- Зи С. Физика полупроводниковых приборов. М.: Мир, 1984. - <u>1.2</u> - 456c.
 Hanamatsu Photonics K. K. // Solid State Division. Characteris-
- Hamamatsu Photonics K. K. // Solid State Division. Characteristics and use of Si APD (Avalanche Photodiode), 2000. - P.1-12.
- Анисимова И. Д., Викулин И. М., Заитов, Ф. А., Курмашев Ш. Д. Полупроводниковые фотоумножители. Ультрафиолетовый, видимый и ближний инфракрасный диапазоны спектра. - М.: Радио и связь, 1984. - 216 с.
- Сагыдов З. Я., Сулейманов М. К., Бокова Т. Ю. Сверхчувствительный павинный фотоприемник с поверхностным переносом заряда // Письма в журнал технической физики -2000. - <u>26</u>, № 7. - С.75-79.
- Бурбаев Т. М., Курбатов В. А., Курочкин Н. Е., Холоднов В. А. Высокочастотные свойства лавинного умножения фотоносителей в структурах с отрицательной обратной связью / Физика и техника полупроводников. - 2000. - <u>34</u>, вып.8. - С.1010-1013.
- Тагер А. С., Вальд-Перлов В. М. Лавинно-пролетные диоды и их применение в технике СВЧ-М.: Сов.радио, 1968. - 480 с.
- Lukin K. A., Cerdeira H. A., Colavita A. A., and Maksymov P. P. Internal Amplification of Current Pulses Inside a Reverse-Biased PNIPN-Structure // International Journal of Modeling and Simulation. - 2003. - <u>23</u>, N2. - P.77-84.
- Lukin K. A., Cerdeira H. A., Colavita A. A. Chaotic instability of currents in a reverse biased multilayered structure // Appl. Phys. Lett. - 1997. - 71. (17). - P.2484-2486.
 Lukin K. A., Cerdeira H. A., Colavita A. A. Current Oscilla-
- Lukin K. A., Cerdeira H. A., Colavita A. A. Current Oscillations in Avalanche Particle Detectors with *p-n-i-p-n-Structure //* IEEE Transactions on Electron Devices. - 1996. - <u>43</u>, N3. -P.473-478.
- Керрол Дж. СВЧ-генераторы на горячих электронах- М: Мир, 1972. - 384 с.
- Лукин К. А., Максимов П. П. Модифицированный метод встречных прогонок //Радиофизика и электроника. - Харьков. Ин-т радиофизики и электрон. НАН Украины. - 1999. -4, № 1. - С.83-86.
- Лукин К. А., Максимов П. П. Метод расчета полупроводниковых структур с резкими *p-n* переходами // Радиофизика и электроника. - Харьков: Ин-т радиофизики и электрон. НАН Украины. - 1999. - <u>4</u>, №1. - С.87-92.
- Лукин К. А., Максимов П. П., Колавита А. А., Сердейра Х. А. Моделирование внутреннего усиления импульсов тока в обратно смещенных полупроводниковых *pn-i-pn* структурах // Радиофизика и электроника. - Харьков: Ин-т Радиофизики и электрон. НАН Украины. - 1999. - 4, №3. - С.31-36.
- 14. Лукин К. А., Максимов П. П. Статические электрические поля в обратно смещенных *pn-i-pn* структурах // Радиофизика и электроника. - Харьков: Ин-т радиофизики и электрон. НАН Украины. - 2002. - <u>7</u>, №2. - С.317-322.
- *Лукин К. А., Максимов П. П.* Метод расчета лавинных *p-n* переходов в режиме автогенерации // Радиофизика и электроника. - Харьков: Ин-т радиофизики и электрон. НАН Украины. - 2005. - <u>10</u>, №1. - С.109-115.
- Самарский А. А., Попов Ю. П. Разностные методы решения задач газовой динамики. - М.: Наука, 1980. - 352 с.
- 17. Гартман В. и Бернгард. Фотоэлектронные умножители. Госэнергоиздат, М.-Л.: 1961. - 208 с.

Приложение 1. Шум лавинно-каскадного усиления. В слой умножения лавинного

 $p_1 - n_1$ перехода поступает первичный ток $I_0 \equiv I_p + I_B + I_D$, где $I_P = q\eta / h\nu P_{opt}$ - первичный фототок, обусловленный оптическим сигналом; I_B 0,1 - ток, обусловленный фоновым излучением; I_D - темновой ток, возникающий в результате тепловой генерации электронно-дырочных пар в обедненной области перехода. В $p_1 - n_1$ переходе происходит ударная ионизация, инициируемая током I_0 , в результате которой I_0 умножается и на выходе $p_1 - n_1$ перехода ток равен $I_1 = m_1 I_0$ (m_1 коэффициент умножения $p_1 - n_1$ перехода, значение которого определяется в результате решения уравнений ДДМ). На вход $p_2 - n_2$ перехода поступает ток I₁, на выходе которого ток равен $I_2 = m_2 I_1 = m_1 m_2 I_0$ (m_2 - коэффициент умножения $p_2 - n_2$ перехода, значение которого определяется в результате решения уравнений ДДМ). На вход $p_1 - n_1\,$ перехода поступает ток $\,I_2\,,$ а на выходе ток равен $I_3 = m_3 I_2 = m_1 m_2 m_3 I_0$ (m_3 - коэффициент умножения $p_1 - n_1$ перехода). Лавинный ток K

каскадного умножения равен $I_k = I_0 \prod_{k=1}^{n} m_k$. Шум, создаваемый первым каскадом, равен [1,2] $\langle i_s^2 \rangle_1 = 2qI_0 \langle m_1^2 \rangle B$, где B – полоса частот. Шум, создаваемый k -м каскадом равен $\langle i_s^2 \rangle_k = 2qI_{k-1} \langle m_k^2 \rangle B$. Согласно [17], шум фото-электронного умножителя (ФЭУ), имеющего K каскадов умножения, равен $\langle i_s^2 \rangle = \sum_{k=1}^{K} \langle i_s^2 \rangle_k$. В со-

ответствии с этим, шум ЛКФУ равен

$$\langle i_s^2 \rangle = 2qI_0 \langle m_1^2 \rangle B + 2qI_1 \langle m_2^2 \rangle B + \cdots$$

 $\cdots + 2qI_{K-1} \langle m_K^2 \rangle B$

Вынеся за скобки $M = m^{K}$, и считая равными коэффициенты умножения обоих p - n переходов $m_{k} = m_{k+1} = m$, получим

$$\langle i_s^2 \rangle = 2qI_0 \langle m^2 \rangle B\left(\frac{1}{m} + \frac{1}{m^2} + \dots + \frac{1}{m^K}\right)M$$
.

Суммируя ряд в скобках, находим выражение для шума ЛКФУ в виде

$$\left\langle i_{s}^{2}\right\rangle = 2qI_{0}\frac{M-1}{m-1}m^{2}F(m)B$$
,

где $F(m) = \langle m^2 \rangle / m^2 = km + (2 - 1/m)(1 - k)$ - шумфактор первого каскада умножения, равный отно-

К. А. Лукин и др. / Моделирование импульсного фотоумножителя ...

шению среднеквадратичного значения коэффициента умножения *m* к квадрату его среднего значения; *B* - полоса частот. В $p_1 - n_1$ переходе ударная ионизация инициируется дырками, а в $p_2 - n_2$ переходе - электронами (рис. 1). В соответствии с этим $k = \alpha_p / \alpha_n$ для перехода и $k = \alpha_n / \alpha_p$ для $p_2 - n_2$ перехода. Для простоты мы полагаем $\alpha_n / \alpha_p = \alpha_p / \alpha_n = k$. Записывая шум ЛКФУ в форме $\left\langle i_s^2 \right\rangle = 2qI_0M^2F(M)B$, находим выражение для шум-фактора ЛКФУ в виде $F(M) = \frac{M-1}{m-1} m/M^2Fm$.

MODELLING OF IMPULSIVE PHOTOMULTIPLIER ON BASIS OF *PN-I-PN* STRUCTURE WITH AVALANCHES *P-N* JUNCTIONS

K. A. Lukin, H. A. Cerdeira, P. P. Maksymov

An impulsive photomultiplier is designed on the basis of avalanches *pn-i-pn* structures with the internal (avalanche-cascade) amplification. An amplification coefficient, fast-acting and noise of avalanche multiplication are expected. It is shown that photomultipliers on the basis of *pn-i-pn* structures have a high amplification coefficient, low threshold of sensitiveness on a current and more reliable in work as compared to avalanches photodiodes. **Key words:** photomultiplier, *pn-i-pn* structure, avalanche, difference method, avalanche-cascade multiplication.

МОДЕЛЮВАННЯ ІМПУЛЬСНОГО ФОТОПОМНОЖУВАЧА НА ОСНОВІ *РN-I-PN* СТРУКТУРИ З ЛАВИННИМИ *P-N* ПЕРЕХОДАМИ

К. А. Лукин, П. П. Максимов, Х. А. Сердейра

Моделюється імпульсний фотопомножувач на основі лавинної рп-і-рп структури з внутрішнім (лавиннокаскадним) посиленням. Розраховані коефіцієнт посилення, швидкодія і шум лавинного множення. Показано, що фотопомножувачі на основі цих структур мають високий коефіцієнт посилення, низький поріг чугливості по струму і надійніші в роботі в порівнянні з лавинними фотодіодами

Ключові слова: фотопомножувач, *pn-i-pn* структура, ударна іонізація, різницевий метод, лавинно-каскадне посилення

Рукопись поступила 21 червня 2007 г.