УДК 553.061.4+624.131::678.6

А.А. Пащенко, А.В. Пащенко, В.А. Канин

ФИЗИКО-ХИМИЧЕСКОЕ ЗАКРЕПЛЕНИЕ ОПОЛЗНЕЙ

Украинский государственный научно-исследовательский и проектноконструкторский институт горной геологии, геомеханики и маркшейдерского дела НАН Украины, г. Донецк

Установлен механизм воздействия растворов неорганических солей на прочностные характеристики оползнеопасных грунтов, определена оптимальная концентрация растворов и разработан способ физико-химического закрепления неустойчивых глинистых грунтов.

Ключевые слова: оползень, химическое воздействие, ионообмен, коэффициент устойчивости, повышение безопасности

Среди геодинамических процессов, возникающих под воздействием гидрогеологических и геоморфологических факторов, наибольшую опасность представляют оползни, которые в зависимости от характера проявлений могут приводить к чрезвычайным ситуациям.

Оползни – гравитационно-аквиальные явления, при которых масса пород, отделившаяся по трещинам, скользит по склону, а не падает, как при обвале. Первоначальная структура породы при этом не нарушается. В Украине оползать могут целые массивы пород на территории Крыма, Карпат, Одесской и Днепропетровской областей, на Азовском побережье.

Оползни происходят вследствие естественных и искусственных причин. К естественным относятся увеличение крутизны склонов, подмыв их оснований морскими и речными водами, сейсмические толчки. Искусственными, вызванными деятельностью человека, причинами оползней являются разрушение склонов дорожными выемками, чрезмерный вынос грунта, вырубка леса и др. Согласно международной статистике до 80% современных оползней связано с деятельностью человека. За последние 30 лет их количество в Карпатах и на Крымском полуострове утроилось.

Оползни практически не происходят на склонах крутизной до 10–12°. На более крутых склонах они возникают при соответствующих геологических и гидрогеологических условиях. Образованию оползней особенно благоприятствует такое залегание пород, при котором падение кровли водоупорных пород совпадает с направлением уклона поверхности. Водоупорный горизонт при этом служит поверхностью скольжения, по которой более или менее

значительный блок породы соскальзывает вниз по склону. Можно сказать, что оползни есть функция крутизны и высоты склона, а при прочих равных условиях – функция влажности грунта.

Оползневые явления возникают при нарушении гидродинамического равновесия в глинистых породах в случае их обводнения, а характер проявления оползней зависит от существующей гидрогеологической обстановки и от свойств глинистых пород. Пропитывая горные породы, вода нарушает связь между отдельными их блоками или даже отдельными зернами. Поэтому контроль и смещение гидродинамического баланса в сторону снижения восприимчивости системы к воздействию грунтовых и поверхностных вод при изменении физико-химических свойств системы являются одним из главных направлений повышения устойчивости склонов и предотвращения оползней [1].

Цель работы — исследование механизма воздействия растворов неорганических солей на прочностные характеристики оползнеопасных глинистых грунтов и определение оптимальной концентрации растворов для разработки способа их физико-химического закрепления.

Исследованиями УкрНИМИ НАН Украины установлено [2], что многие глинистые грунты проявляют высокую сорбционную активность к ионам различных неорганических солей, что указывает на возможность использования физико-химического способа укрепления оползнеопасных склонов. Определена оптимальная концентрация растворов солей. Так, для наиболее эффективного раствора алюмината натрия, который является экологически безопасным (что подтверждает заключение санитарно-эпидемиологической службы Украины), она составляет 35–40% [3].

Установлено [4], что коэффициенты фильтрации образцов оползнеопасных грунтов зависят от длительности физико-химического воздействия и при обработке образцов раствором алюмината натрия в течение 24 ч увеличиваются от 5 до 100 раз. Ионы алюминия $A1^{+3}$, замещая подвижные атомы натрия Na^+ и калия K^+ (которые слабо связывают кремнекислородные слои), вызывают усиление связей между кремнекислородными слоями, что обусловливает увеличение механической прочности грунтов. Коэффициент пенетрации образцов грунта при влажности W = 62% после обработки раствором алюмината натрия увеличивается более чем в три раза.

Наиболее значимыми факторами для устойчивости оползнеопасного грунта являются структурная связанность и угол внутреннего трения, которые зависят от влажности грунта. Сила сцепления образцов оползнеопасного грунта при W=43% после обработки раствором алюмината натрия увеличивается более чем в 20 раз, усилие сдвига — в 4 раза, а угол внутреннего трения — в 4,5 раза.

Коэффициент устойчивости оползня η при его моделировании определялся по формуле

$$\eta = \frac{f N + C}{T},$$

где f — коэффициент внутреннего трения; N — нормальное усилие, МПа; C — сила сцепления, МПа; T — касательное усилие, МПа.

Коэффициент $\eta = 1$, когда удерживающая сила равна силе сдвига. С учетом запаса прочности оползень считается устойчивым при $\eta = 1,5$.

Установлено, что при W = 40,0% исходный оползнеопасный грунт имеет коэффициент устойчивости $\eta = 0,45$, а грунт, обработанный раствором алюмината натрия, -1,77. Для того чтобы оползень, сложенный таким грунтом, имел значение $\eta = 1,5$, влажность необработанного грунта необходимо уменьшить до W = 27,0%, а влажность грунта, обработанного алюминатом натрия, может составлять W = 43,0% (рис. 1, 2).

По результатам фундаментальных исследований УкрНИМИ НАН Украины разработан способ физико-химического закрепления неустойчивых глинистых грунтов [5]. Способ основан на замене обменных одновалентных катионов глинистых минералов на ионы химического реагента, что приводит к повышению прочности глины, уменьшению степени размокания ее в воде, увеличению силы сцепления грунта и повышению устойчивости всего массива в целом. Физико-химическое закрепление долговечно и имеет ряд преимуществ по сравнению с другими способами: простота производства работ; портативность используемого оборудования; малые сроки выполнения работ; возможность упрочения грунта на любой глубине без проведения специальных земляных мероприятий; малозатратность.

Рис. 1. Зависимость величины коэффициента устойчивости образцов необработанного грунта от влажности: — угол наклона поверхности скольжения 15° , нагрузка P = 0,474 кг; — угол 25° , P = 4,066 кг

Рис. 2. Зависимость величины коэффициента устойчивости η образцов оползнеопасного грунта, обработанных реагентами, от влажности при угле наклона поверхности скольжения 10° , P=2,132 кг и площади поверхности скольжения 6 см²:

— необработанный образец; — образец, обработанный 40%-ным раствором алюмината натрия

В 2010 г. данный способ был использован ООО «ИЭ «Фундаментпроект» в МДЦ «Артек» для защиты прилегающей территории спального комплекса «Алмазный» лагеря «Горный» от опасных последствий оползневых процессов [6].

Выводы

- 1. Установлено, что ионы алюминия $A1^{+3}$, замещая подвижные атомы натрия Na^+ и калия K^+ , которые слабо связывают кремнекислородные слои, вызывают усиление связей между кремнекислородными слоями, что обусловливает увеличение механической прочности грунтов.
- 2. Определена оптимальная концентрация растворов солей. Для наиболее эффективного раствора алюмината натрия, который является экологически безопасным, что подтверждает заключение санитарно-эпидемиологической службы Украины, она составляет 35–40%.
- 3. Установлено, что сила сцепления образцов оползнеопасного грунта при W = 43% после обработки раствором алюмината натрия увеличивается более чем в 20 раз. Усилие сдвига в тех же условиях увеличивается в 4 раза, а угол внутреннего трения в 4,5 раза.
- 4. Установлено, что при влажности W = 40,0% исходный оползнеопасный грунт имеет коэффициент устойчивости $\eta = 0,45$, а грунт, обработанный раствором алюмината натрия, -1,77. Для того чтобы оползень, сложенный таким грунтом, имел значения $\eta = 1,5$, влажность необработанного грунта необходимо уменьшить до W = 27,0%, а влажность грунта, обработанного алюминатом натрия, может составлять W = 43,0%.
- Пат. № 16361 Україна, МКІ 6 G 01 N 5/02, 27/26, G 01 N 27/02. Спосіб вимірювання вологості і гідродинамічних процесів зсувонебезпечних грунтів / А.В. Анциферов, В.О. Канін, О.О. Пащенко [та ін.], заявник та патентовласник УкрНДМІ НАНУ. № и 2005 12193; заявл. 19.12.05; опубл. 15.08.06; Бюл. № 8. 4 с.
- 2. *Канин В.А.* Физико-химические аспекты повышения устойчивости оползнеопасных склонов / В.А. Канин, А.А. Пащенко, А.В. Пащенко // Деформирование и разрушение материалов с дефектами и динамические явления в горных породах и выработках : материалы XVII Междунар. науч. школы Таврич. нац. ун-та. Симферополь, 2007. С. 241—244.
- 3. *Марченко В.И.* Изучение взаимодействия оползнеопасной глины Азовского побережья с растворами некоторых неорганических солей / В.И. Марченко, В.А. Канин, А.А. Пащенко, А.В. Пащенко // Вісник Донецького ун-ту. Серія А. Природничі науки. 2007. № 1. С. 203–209.
- 4. *Пащенко А.А.* Влияние растворов солей и сильных кислот на изменение физикомеханических показателей оползнеопасных грунтов / А.А. Пащенко // Наукові праці УкрНДМІ НАН України : зб. наук. пр. Донецьк, 2010. № 7. С. 178–189.
- 5. Пат. № 13982 Україна, МКІ Е 02 D 29/02, 17/20. Спосіб закріплення зсувонебезпечних схилів, що містять глинисті мінерали / А.В. Анциферов, В.О. Канін,

Физико-технические проблемы горного производства 2013, вып. 16

- О.О. Пащенко [та ін.], заявник та патентовласник УкрНДМІ НАНУ. № и 2005 11311; заявл. 29.11.05; опубл. 17.04.06; Бюл. № 4. 4 с.
- 6. Пащенко А. А. Использование технологии упрочнения оползневого массива методом физико-химического воздействия на оползнеопасный грунт участка спального комплекса «Алмазный» МДЦ «Артек» / А.А. Пащенко // Вісн. Національного ун-ту водного господарства та природокористування : зб. наук. пр. Рівне, 2011. № 4 (56). С. 177—181.

О.О. Пащенко, О.В. Пащенко, В.О. Канін

ФІЗИКО-ХІМІЧНЕ ЗАКРІПЛЕННЯ ЗСУВІВ

Встановлено механізм дії розчинів неорганічних солей на міцністні характеристики зсувонебезпечних ґрунтів, визначено оптимальну концентрацію розчинів і розроблено спосіб фізико-хімічного закріплення нестійких глинистих ґрунтів.

Ключові слова: зсув, хімічний вплив, іонообмін, коефіцієнт стійкості, підвищення безпеки

O.O. Pashchenko, O.V. Pashchenko, V.O. Kanin

PHYSICAL AND CHEMICAL FIXING OF LANDSLIDES

The mechanism of action of solutions of inorganic salts on the strength characteristics of the landslide-prone soils was established, the optimal concentration of solutions and a method of physical and chemical fixing unstable clay soils were determined

Keywords: landslide, chemical influence, ion exchange, coefficient of stability, increase of safety