ВЛИЯНИЕ РАДИАЦИОННЫХ ПОВРЕЖДЕНИЙ НА ТЕРМОДЕСОРБЦИЮ ГЕЛИЯ ИЗ ФЕРРИТНО-МАРТЕНСИТНОЙ СТАЛИ ЭП-450

В.В. Ружицкий, Г.Д. Толстолуцкая, И.Е. Копанец, Б.С. Сунгуров Институт физики твердого тела, материаловедения и технологий Национального научного центра «Харьковский физико-технический институт», Харьков, Украина E-mail: ruzhytskiy@kipt.kharkov.ua

Приведены результаты исследования термодесорбции гелия из поликристаллических образцов стали ЭП-450, имплантированных ионами гелия с энергией 12 кэВ до доз (5...10)·10¹⁶ см⁻². Рассмотрено влияние предварительно созданных повреждений на спектры выделения гелия. Проведено сравнение температурных интервалов десорбции гелия из ферритно-мартенситной стали ЭП-450, никеля и железа.

1. ВВЕДЕНИЕ

Взаимодействие высокоэнергетических частиц с материалами приводит к смещению атомов из положений равновесия в решетке и образованию чужеродных атомов в результате ядерных реакций трансмутации. Наиболее важными продуктами ядерных реакций трансмутации являются атомы таких газов, как гелий и водород. Образовавшиеся изменяют макроскопические свойства атомы облучаемого материала И способствуют проявлению гелиевого охрупчивания, водородной хрупкости и газового распухания.

на тепловых нейтронах В реакторах нержавеющих сталях (материалах внутрикорпусных устройств (ВКУ)) основным источником гелия является ядерная реакция (n,α) с участием изотопа ¹⁰В, входящего в состав бора (20%) в H₃BO₃. Поступление Не в материал выгородки активной зоны реактора BB3P-1000 составляет 240...300 appm He/год (appm – atomic part per million – количество атомов трансмутанта в расчете на один миллион атомов исходного материала) в слои металла толщиной 3.10-4 см и зависит от концентрации Н₃ВО₃ в теплоносителе при регулировании мощности в процессе выгорания топлива [2]. Вторым источником дополнительного поступления He объемного в сталь внутрикорпусных конструкций является двухступенчатая реакция ${}^{58}Ni(n,\gamma){}^{59}Ni(n,\alpha){}^{56}Fe$ под действием тепловых нейтронов [1]. Максимальная

нейтронная повреждающая доза, выражаемая в смещениях на атом (сна), как показано в нейтроннофизических расчетах, проведенных в ОКБ «Гидропресс», ГНЦ РФ НИИАР и ГНЦ РФ ФЭИ им. А.И. Лейпунского, на отдельных участках выгородки через 30 лет эксплуатации достигнет примерно 50 сна облучаемого материала [3].

Материалы термоядерных реакторов будут подвергаться воздействию водородной плазмы высокой плотности и температуры, и в них будет внедряться большое количество атомов гелия, одного из продуктов термоядерной реакции. Кроме конструкционные материалы того, будут бомбардироваться высокоэнергетическими (14 МэВ) нейтронами _ вторым продуктом термоядерной DT-реакции, вследствие чего появится большое количество радиационных повреждений. Для нейтронов термоядерных реакций типичное среднее значение энергии первично выбитых атомов отдачи в материалах со средним атомным весом оценивается как 400...1000 кэВ [4].

В табл. 1 приведены скорости набора дозы и генерации гелия в реакторах на тепловых и быстрых нейтронах, термоядерном реакторе и электроядерных системах – источниках нейтронов для подкритических сборок, управляемых ускорителем (ADS), а также используемые и предполагаемые к применению конструкционные материалы [5-7].

Таблица 1

	Параметры				
Тип реактора	Скорость генерации гелия, аррт/гол	Скорость набора дозы, сна/гол	Применяемые материалы		
Реакторы на тепловых нейтронах ВВЭР-1000 (ВКУ)	1030	2	Аустенитная нержавеющая сталь 08X18H10T		
Реакторы на быстрых нейтронах	2030	2050	Аустенитные нержавеющие стали, ферритно-мартенситные стали		
Термоядерные реакторы	200	20	Ферритно-мартенситные стали, ванадиевые сплавы		
Электроядерные системы	ктроядерные системы 9503500		Аустенитные нержавеющие стали, ферритно-мартенситные стали		

Скорости набора дозы и генерации гелия в энергетических установках

Влияние гелия на свойства конструкционных материалов ядерных и термоядерных реакторов выделило его в особую проблему физики радиационных повреждений и радиационного материаловедения. Это привело к интенсивному изучению поведения гелия в различных металлах и сплавах и соответственно к большому количеству публикаций на эту тему.

В настоящее время развитие ядерной энергетики требует решения проблем разработки новых радиационно стойких материалов для перспективных эксплуатируемых И ядерных реакторов новых поколений с целью обеспечения безопасности и экономичности производимой электроэнергии. Ферритно-мартенситные стали с 9...2 % содержанием хрома являются приоритетными кандидатными материалами для оболочек и чехлов быстрых реакторов, первой стенки термоядерных реакторов. Эти материалы, особенно дисперсно-упрочненные, характеризуются малой наведенной активностью, низким вакансионным распуханием (по сравнению с аустенитными сталями) и пониженной ползучестью, степенью устойчивости высокой к высокотемпературному и гелиевому охрупчиванию. Они должны работать при дозах облучения не менее чем 100...200 сна и температурах 650...750 °С, а также в большинстве случаев будут находиться под влиянием очень высоких концентраций трансмутантных газов, в частности гелия. Для обоснованного выбора материалов необходимо понимание процессов взаимодействия смещающих повреждений и одновременно генерируемых атомов гелия.

Целью настоящей работы было исследование влияния радиационной повреждаемости на процессы термоактивированной десорбции (ТД) гелия, ионно-имплантированного в сталь ЭП-450. Полученные данные этой стали сравниваются с данными никеля, хрома и железа для установления общих закономерностей и различий в процессах термодесорбции гелия.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы из фольг ферритно-мартенситной стали ЭП-450 размерами 27×7×0,1 мм предварительно электрополировали в электролите, содержащем 10 % хлорной кислоты и 90 % этилового спирта. Перед облучением образцы кратковременно отжигались непосредственно в экспериментальной камере для дегазации и очистки поверхности. Состав стали ЭП-450 приведен в табл. 2 (в массовых процентах).

Таблица 2

Состав стали ЭП-450 (мас.%)

С	Si	Mn	Cr	Ni	Мо	V	Nb	В
0,10,15	0,6	0,6	1113,5	0,050,3	1,21,4	0,10,3	0,30,6	0,004

Для создания радиационных повреждений на уровне 50 сна и насыщения материалов газовыми примесями использованы метолы ионной имплантации. Облучение ионами аргона с энергией 1,4 МэВ позволяет в зависимости от дозы облучения производить повреждения на уровне 0...200 сна на глубине до 500 нм от поверхности материала. В настоящей работе образцы стали ЭП-450 облучали на ускорителе ЭСУ-2 при комнатной температуре до дозы 1·10¹⁷ см⁻², что обеспечивало уровень повреждений 50 сна в слое до 150 нм. Затем образцы облучали на ускорителе АНТ при комнатной температуре ионами гелия с энергией 12 кэВ до доз 5·10¹⁶ и 1·10¹⁷ см⁻².

На рис. 1 приведены рассчитанные с помощью программы SRIM 6 [8] концентрационные профили распределения в стали ЭП-450 ионов гелия и аргона для энергий 12 и 1400 кэВ соответственно, а также показан профиль повреждений, которые создаются ионами аргона.

Температурные интервалы удержания гелия в ферритно-мартенситной ЭП-450 стали при различных условиях эксперимента изучали с помощью термоактивированного методики газовыделения. Суть методики состоит в измерении парциального давления гелия, выделяющегося из исследуемого образца, в процессе линейного повышения его температуры. В наших экспериментах использовалась методика термодесорбции в динамическом режиме, при котором давление газа в камере пропорционально скорости его десорбции из металла. Исследовался температурный интервал 300...1600 К при скорости нагрева 6 К/с.

Рис. 1. Расчетные профили распределения ионов гелия и аргона, имплантированных в сталь ЭП-450 с энергиями 12 (5·10¹⁶ He/cm²) и 1400 кэВ (1·10¹⁷ Ar/cm²) соответственно, а также профиль повреждений, созданных ионами аргона

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Микроструктура стали ЭП-450 до облучения представляла собой дуплексную структуру отпущенного мартенсита (сорбит) и феррита в соотношении приблизительно 1:1. По границам зерен феррит-феррит и феррит-сорбит наблюдаются большие глобулярные карбиды $M_{23}C_6$, имеющие сильный контраст в светлопольном изображении, и более мелкие карбиды на границах мартенситных зерен [9]. На рис. 2 приведена исходная структура поверхности стали ЭП-450.

Рис. 2. Исходная структура стали ЭП-450 после термической обработки при 1050 ℃/0,5 ч + 720 ℃/1 ч

На рис. 3 показаны наиболее характерные спектры термодесорбции гелия, имплантированного с энергией 12 кэВ в сталь ЭП-450 при комнатной температуре до доз $5 \cdot 10^{16}$ и $1 \cdot 10^{17}$ см⁻². Сравнение спектров, приведенных на рис. 2, показывает, что температурные интервалы удержания гелия в ферритно-мартенситных сталях зависят от дозы облучения.

Рис. 3. Спектры термодесорбции гелия из стали ЭП-450, облученной при Т_{комн} ионами Не⁺ с энергией 12 кэВ до дозы 5·10¹⁶ (а) и 1·10¹⁷см⁻² (б)

Так для дозы облучения $5 \cdot 10^{16}$ см⁻² (расчетная концентрация гелия при этом составляет ~ 6 ат.%) гелий удерживается в образцах исследованной

стали вплоть до температур ~1400 К. В спектре термодесорбции наблюдаются две хорошо выраженные стадии с максимумами при 1220 и 1340 К. Температурный интервал выхода гелия из образца составляет 300 К в области температур от 1100 до 1400 К. Точность определения температуры пика составляла ±15 К.

Увеличение дозы облучения до 1·10¹⁷ см⁻² приводит к появлению дополнительных пиков, температурного уширению интервала газовыделения, смещению начала выхода гелия из образца в область низких температур. В этом случае для стали ЭП-450 в спектре термодесорбции вместо двух наблюдаются уже четыре температурные стадии выхода гелия из объема стали в вакуум. Первая стадия наблюдается в интервале температур 800...1050 К. Она имеет сложную структуру и состоит из одного ярко выраженного пика и двух пиков-сателлитов. Максимум в этой стадии приходится на температуру 960 К. В двух стадиях при температурах максимумов 1220 и 1340 К, наблюдавшихся для дозы облучения 5·10¹⁶ см⁻², происходит перераспределение интенсивностей. Еще одна четко выраженная стадия наблюдается в области температур 1050...1150 К.

Предварительное создание повреждений приводит к усложнению спектров термодесорбции гелия. Спектры ТД гелия из стали ЭП-450, предварительно облученной при комнатной температуре ионами аргона с энергией 1,4 МэВ до дозы 1.10¹⁷ см⁻², приведены на рис. 4.

Рис. 4. Спектры термодесорбции гелия из стали ЭП-450, предварительно облученной ионами аргона до дозы 1·10¹⁷ см⁻², а затем ионами Не до дозы 5·10¹⁶ (a) и 1·10¹⁷ см⁻² (б)

Сравнение спектров, приведенных на рис. 3 и 4, показывает, что предварительное созлание количественно повреждений качественно И изменяет спектры термодесорбции гелия. Для доз облучения ионами гелия 5·10¹⁶ см⁻² это выражается перераспределении количества гелия. в выделяемого в интервале температур 1200...1400 К. Дополнительно к двум пикам с температурами максимумов при Т_{макс} ~ 1220 и 1340 К (см. рис. 3,а) появляются два пика с Т_{макс} при 1300 и 1400 К, а низкотемпературный также более пик с максимумом при 1050 К (см. рис. 4,а). При дозах облучения ионами гелия 1.1017 см-2 из четырех пиков с максимумами при ~950, 1100, 1210 и 1350 К (см. рис. 3,б) в результате создания больших повреждений кристаллической решетки стали исчезает пик с максимумом при T ~ 1100 К и происходит перераспределение интенсивностей пиков (см. рис. 4,б).

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Наличие в спектре ТД нескольких разрешенных пиков указывает на существование нескольких дискретных стадий выделения гелия, отличающихся термодинамическими характеристиками и механизмами выхода гелия из металла.

При облучении атомы гелия взаимодействуют с дефектами кристаллической решетки, являющимися ловушками для гелия. При этом происходит захват гелия одиночными вакансиями, дивакансиями, а также скоплениями вакансий; захват гелия дислокациями и границами зерен, межфазными границами; образование гелиевых и гелийвакансионных кластеров [10].

Стадии отжига дефектов в чистом железе, создаваемых при развитии каскадов, изучались с использованием программы PERFECT [11]. Сравнение полученных расчетных данных с экспериментальными по отжигу образцов. облученных электронами, показало, что в области температур облучения или отжига 100...300 К коррелированной происходят процессы рекомбинации междоузлий и вакансий (T = 115 K), миграция собственных межузельных атомов и их кластеров. При температурах 400...700 K происходит кластеризация дефектов. Вакансии и вакансионные кластеры являются сильными ловушками для атомов гелия. В общем случае, низкая растворимость обуславливает склонность гелия преципитировать в кластеры и поры (пузыри). В зависимости от структуры материала и созданных в результате облучения дефектов гелий образует кластеры в виде пластин или пузырьков [12]. Миграция пузырьков происходит по механизмам поверхностной, объемной, смешанной диффузии, а также за счет образования ступенек на поверхности пузырька.

Анализ литературы позволил установить характерные особенности десорбции гелия и эволюции структуры спектров ТД в процессе постимплантационных отжигов. Так в никеле при минимальной дозе облучения, равной 5·10¹⁵ см⁻², газовыделение начинается при T ~ 1430 К. С

ISSN 1562-6016. BAHT. 2012. №2(78)

увеличением дозы до $2 \cdot 10^{17}$ см⁻² число стадий выхода He из Ni возрастает до двух, появляется более низкотемпературный пик с температурой максимума $T_{\text{макс}} = 1350$ K, начало газовыделения сдвигается до T ~ 1250 K [13].

Основные закономерности процессов термодесорбции гелия из железа и хрома аналогичны установленным для никеля. Как и в случае Ni, при дозе $2 \cdot 10^{17}$ см⁻² спектр ТД из Fe и Cr состоит из двух пиков. С ростом дозы структура спектров усложняется в результате появления новых, более низкотемпературных, пиков. Наблюдается эффект «перекачки», заключающийся в том, что при наличии вначале в спектре ТД пика 1 появление пика 2 вовлекает значительную часть гелия, десорбировавшуюся ранее в пике 1, в десорбцию в пике 2 при более низкой температуре [14]. Наличие эффекта «перекачки» свидетельствует, что десорбция из состояния 2 обусловлена конкурирующим по отношению к состоянию 1 процессом, который имеет пороговый характер по концентрации имплантированного газа [15].

Исследование морфологии поверхности никеля и микроструктуры имплантированного слоя на разных стадиях процесса ТД с помощью методики «замораживания» состояния образца (резкое прекращение нагрева образца и снижение температуры до комнатной) позволило установить природу высокотемпературных пиков спектра. Показано, что природа пика при 1200 К связана с выделением гелия из системы гелиевых пузырьков и каналов размерами 200...500 нм, разрушение которых приводит к образованию на поверхности «дырчатой» структуры. Причем доля пузырьков, объединившихся в каналы, в Fe больше, чем в Ni. Пик при Т_{макс} ~ 1400 К, наблюдаемый при малых имплантационных дозах и соответственно при низких концентрациях гелия, связан с выходом газа из отдельных пузырьков [16].

По сравнению с чистыми металлами поведение гелия в сталях и, в частности, в сталях ферритномартенситного класса оказывается более сложным, что сказывается как в количестве пиков в спектрах, так и в эволюции спектров в зависимости от дозы облучения и радиационной повреждаемости.

При дозах облучения 5·10¹⁶ см⁻² в стали ЭП-450 наблюдаются два высокотемпературных пика. Такая заселенность спектра для железа и хрома была получена при дозах, почти в четыре раза больших. Спектр термодесорбции гелия из чистого железа при имплантации его до дозы 9·10¹⁷ см⁻² имел менее сложный вид, чем спектр, состоящий из четырех пиков, полученный при облучении стали ЭП-450 ионами гелия до дозы 1·10¹⁷ см⁻² [14].

Исходная структура чистого α -железа после отжига (900 °C, 1 ч) состоит из почти сферических ферритных зерен диаметром 20...30 мкм, плотность дислокаций в которых составляет (3...5)·10⁸ см⁻². Дислокации в стали ЭП-450 (ферритная структура) представлены главным образом дислокационными сегментами, плотность их составляет ~ 5·10⁹ см⁻². Для зерен сорбита характерна высокая плотность неоднородно распределенных дислокаций (~10¹⁰ см⁻²), часто образующих плоские малоугловые границы [1].

Кроме хорошо развитой дислокационной структуры ферритно-мартенситные стали, как уже отмечалось, имеют глобулярные, пластинчатые когерентные выделения и легирующие элементы (Сг, Мо, V) в твердом растворе.

Bce вышеперечисленные дефекты могут являться достаточно сильными ловушками для гелиевых пузырьков. Стадии выхода гелия в спектрах термодесорбции (см. рис. 3,б), кроме миграции и выхода на поверхность пузырьков гелия (T_{макс} = (1340±15) К), могут быть связаны с пузырьков диссоциацией с дислокациями, сегментами дислокаций, границами зерен и границами вторичных фаз с матрицей. Кроме того, облегченная миграция пузырьков в решетке стали ЭП-450 может происходить при а→у-превращении и нагреве до температуры T_{макс} = (1200±15) К в результате «выметания» пузырьков движущейся фазовой границей [17]. Многообразие ловушек обуславливает при увеличении дозы облучения до 1.10¹⁷ He/см² довольно широкий температурный интервал выхода гелия от 500 до 1400 К с несколькими пиками.

Следует отметить сдвиг максимумов высокотемпературных пиков в стали по сравнению с чистым железом и хромом. Сдвижка составляет для первого пика примерно 100 К в сторону больших температур, а для второго пика – столько же в сторону меньших температур (см. рис. 3,а). В работе [17] такой эффект связывали с влиянием на процессы миграции дислокаций и пузырьков сегрегации на них атомов хрома.

В свою очередь, облучение модифицирует структурно-фазовое состояние сталей и сплавов вследствие ускорения диффузионных процессов и реализации таких структурно-фазовых превращений, которые принципиально невозможны в термически равновесных условиях.

В материалах ферритного класса под действием облучения происходит распад твердого раствора и сегрегация в результате взаимодействия радиационно-индуцированных точечных дефектов и атомов твердого раствора. Основными результатами радиационно-индуцированной процессов сегрегации перераспределение являются компонентов сплава вблизи различных стоков и модификация точечных дефектов состава выделений второй фазы [1].

Изменение при облучении исходной структуры и композиции твердого раствора, формирование и модификация выделений вторых фаз будут способствовать созданию новых ловушек для гелия. Повреждения, которые создают ионы гелия с энергией 12 кэВ в железе при дозе 1·10¹⁷ Не/см², составляют ~10 сна и совместно с увеличением концентрации вызывают появление дополнительных стадий ТД (см. рис. 3,6). При предварительном облучении стали ЭП-450 ионами аргона с энергией 1,4 МэВ и создании повреждений на уровне 50 сна в зоне внедрения гелия в спектре

появляются новые дополнительные пики или исчезают пики, наблюдавшиеся при облучении только ионами гелия (см. рис. 4).

Определение природы ловушек, ответственных за каждый из выявленных в эксперименте пиков, требует дополнительных исследований.

выводы

Выполнены исследования влияния радиационной повреждаемости на процессы термоактивированной десорбции гелия, ионноимплантированного в сталь ЭП-450.

Исследование температурных интервалов удержания гелия показало:

спектры термодесорбции гелия из ферритномартенситной стали ЭП-450 имеют структуру, зависящую от дозы имплантированного гелия;

при концентрациях гелия ~ 5 ат.% спектры в основном содержат только высокотемпературные пики, которые обусловлены миграцией гелиевых пузырьков.

Предварительное создание повреждений на уровне 50 сна, способствующее формированию большего числа ловушек для гелия. приводит как к появлению новых пиков и сдвигу температуры начала десорбции гелия в сторону меньших температур, так подавлению сталий. и наблюдавшихся условиях меньшей в повреждаемости.

Авторы выражают благодарность Василенко Р.Л. и Кальченко А.С. за помощь при исследовании структуры стали ЭП-450.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. В.Н. Воеводин, И.М. Неклюдов Эволюция структурно-фазового состояния и радиационная стойкость конструкционных материалов. Киев: «Наукова думка», 2006, 374 с.

2. В.Н. Воеводин. Конструкционные материалы ядерной энергетики – вызов 21 века // Вопросы атомной науки и техники. Серия «Физика радиационных повреждений и радиационное материаловедение». 2007, №2, с. 10-22.

3. В.С. Неустроев, В.Н. Голованов, В.К. Шамардин и др. Радиационные явления в стали X18H10T, облученной в различных реакторах при условиях, близких к условиям эксплуатации ВКУ ВВЭР // Сб. докл. VI Российской конф. по реакторному материаловедению. Димитровград: ГНЦ НИИАР, 2001, т. 3, ч. 1, с. 3–23.

4. P. Vladimirov and A. Möslang. Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources // *J. of Nucl. Mater.* 2004, v. 329-333, p. 233–237.

5. Zinkle Steven J. Advanced materials for fusion technology *// Fusion Engineering and Design.* 2005, v. 74, issues 1-4, p. 31–40.

6. F.A. Garner, B.M. Oliver, L.R. Greenwood, D.J. Edwards, and S.M. Bruemer. Generation and Retention of Helium and Hydrogen in Austenitic Steels Irradiated in a Variety of and Test Reactor Spectral Environments $// 9^{th}$ Meeting on Environmental

Degradation of Materials: August 2001. Tahoe. Utah. p. 54–72.

7. F.A. Garner, B.M. Oliver, L.R. Greenwood, M.R. James, P.D. Ferguson, S.A. Maloy, and W.F. Sommer. Determination of Helium and Hydrogen Yield from Measurements on Pure Metals and Alloys Irradiated by Mixed High Energy Proton and Spallation Neutron Spectra in LANSCE // J. of Nucl. Mater. 2001, v. 296, p. 66–82.

8. www.srim.org. Version – SRIM-2006.02.

9. О.В. Бородин, В.В. Брык, В.Н. Воеводин, А.С. Кальченко, Ю.Э. Куприянова, В.В. Мельниченко, И.М. Неклюдов, А.В. Пермяков. Радиационное распухание ферритно-мартенситных ЭП-450 HT-9 при сталей И облучении металлическими ионами до сверхвысоких доз // Вопросы атомной науки и техники. Серия «Физика радиационных повреждений и радиационное материаловедение». 2011. №2. с. 10-15.

10. И.М. Неклюдов, Г.Д. Толстолуцкая. Гелий и водород в конструкционных материалах // Вопросы атомной науки и техники. Серия «Физика радиационных повреждений и радиационное материаловедение». 2003, №3(83), с. 3-14.

11. C.S. Becquart, A. Barbu, J.L. Bocquet, M.J. Caturla, C. Domain, C.-C. Fu, S.I. Golubov, M. Hou, L. Malerba, C.J. Ortiz, A. Souidi, R.E. Stoller. Modeling the long-term evolution of the primary damage in ferritic alloys using coarse-grained methods // Journal of Nuclear Materials. 2010, v. 406, p. 39–54. 12. H. Iwakiri, K. Yasunaga, K. Morishita, N. Yoshida. Microstructure evolution in tungsten during low-energy helium ion irradiation // J. of Nucl. Mater. 2000, v.283-287, p. 1134-1138.

13. V.F. Zelenskij, I.M. Nekludov, V.F. Rybalko, V.V. Ruzhytskiy, V.I. Bendikov, S.M. Khazan. Thermal desorption of helium from polycrystalline Ni irradiated to fluences ranging from 1.10^{17} to 1.10^{18} He⁺·cm⁻²// *J. Nucl. Mater.* 1987, v. 151, No. p. 22-33.

14. В.Ф. Рыбалко, В.В. Ружицкий, С.М. Хазан, Г.П. Ковтун. Термодесорбция ионно-имплантированного гелия из Fe и Cr // Вопросы атомной науки и техники. Серия «Физика радиационных повреждений и радиационное материаловедение». 1990, в. 1(52), с. 54-58.

15. В.И. Бендиков, В.Ф. Рыбалко, В.В. Ружицкий, С.М. Хазан. Природа пиков газовыделения ионно-имплантированного гелия из Fe // Вопросы атомной науки и техники. Серия «Физика радиационных повреждений и радиационное материаловедение». 1990, в. 1(52), с. 59-64.

16. В.И. Бендиков, А.В. Никитин, В.В. Ружицкий, В.Ф. Рыбалко, С.М. Хазан. Кинетика роста гелиевых пор при отжиге никелевых пленок, имплантированных ионами гелия // Поверхность. 1996, №10, с. 67-74.

17. K. Ono, K. Arakawa, H. Shibasaki, et al. Release of helium from irradiation damage in Fe-9Cr ferritic alloy // *J. of Nucl. Mater.* 2004, v. 329-333, p. 933-937.

Статья поступила в редакцию 01.03.2012 г.

ВПЛИВ РАДІАЦІЙНИХ ПОШКОДЖЕНЬ НА ТЕРМОДЕСОРБЦІЮ ГЕЛІЮ З ФЕРИТНО-МАРТЕНСИТНОЇ СТАЛІ ЕП-450

В.В. Ружицький, Г.Д. Толстолуцька, І.Є. Копанець, Б.С. Сунгуров

Наведено результати дослідження термодесорбції гелію з полікристалічних зразків сталі ЕП-450, імплантованих іонами гелію з енергією 12 кеВ до доз (5...10)·10¹⁶ см⁻². Розглянуто вплив попередньо створених пошкоджень на спектри виділення гелію. Проведено порівняння температурних інтервалів десорбції гелію з феритно-мартенситної сталі ЕП-450, нікелю і заліза.

EFFECT OF RADIATION DAMAGE IN THERMAL DESORPTION OF HELIUM FROM THE FERRITIC-MARTENSITIC STEEL EP-450

V.V. Ruzhytskiy, G.D. Tolstolutskaya, I.E. Kopanets, B.S. Sungurov

The results of the study of helium thermal desorption from polycrystalline samples of steel EP-450 implanted helium ions with energy of 12 keV to doses $(5...10) \cdot 10^{16}$ cm⁻² are given. The effect of pre-created damage to the spectra of helium is considered. A comparison of temperature intervals of helium desorption from the ferritic-martensitic steel EP-450, nickel and iron are conducted.