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The results of investigations of magnets with spin s = 1 are presented. The analysis of the possible symmetry
of exchange interactions and its relationship with the magnetic degrees of freedom was done. We formulate the
dynamics of normal non-equilibrium states. The generalization of the Bloch equations is obtained and the effect of

magnetic field on the spectral characteristics is considered. The influence of dissipative processes is investigated and

the relaxation fluxes corresponding to the exchange symmetry of the magnetic Hamiltonian are obtained.
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1. INTRODUCTION

The Landau-Lifshitz equation [1] defines the evolu-
tion of magnets in terms of the spin vector. This
equation is well justified for the spin s=1/2 and
used for studying the static and dynamic properties
of magnetic insulators [2]. Discovery of quadrupole
states and synthesizing of high-spin molecules have
required clarifying the ideology of the macroscopic
description of magnets with a spin s > 1/2 [3]. An
additional stimulus came from the investigating of
Bose-Einstein condensates of neutral atoms with a
nonzero spin [4,5]. For them the realization the mag-
netic states with higher symmetries of ordering, as
compared with SO(3) symmetry, is possible. Using
technology of optical lattices it will be possible, in
principle, to construct magnetic materials with new
physical properties at low temperatures.

Two points must be kept in mind regarding the
development of notions pertaining to a abridge de-
scription of nonequilibrium magnetic states. The first
is the need to extend the degrees of freedom in mag-
netic systems with spin s > 1/2. For pure quan-
tum states these degrees of freedom are associated
with the number of parameters characterizing the
one-particle spin states. The normalization condition
and the freedom to choose the wave-function phase
lead to Npyre (s) = 4s independent parameters for
spin s. In the case of mixed quantum states because
of the hermiticity and the normalization condition
for density matrix, the number of such parameters
is Npiz (s) = 4s(s +1). The other important point
in generalizing the macroscopic description of mag-
nets is related to the notion of normal and degen-
erate equilibrium states for quantum objects. Nor-
mal states correspond to a paramagnetic state. The
other states of magnets are states with spontaneously
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broken symmetry. Depending on the pattern of sym-
metry breaking due to the nature of the order para-
meter, adequately treating the system also requires
extending the set of macroscopic parameters. Sev-
eral options of dynamical behavior with different full
sets of parameters of the abridge description can be
realized in the s = 1 magnets. The set of these pa-
rameters essentially depends on the symmetry of the
Hamiltonian and the symmetry of equilibrium states,
which may not coincide in general.

2. SYMMETRY OF THE EXCHANGE
HAMILTONIAN AND EQUILIBRIUM
STATES

The symmetry of the exchange Hamiltonian and the
equilibrium states allows one to find a set of ther-
modynamic parameters describing the macroscopic
magnetic states. To formulate these symmetry prop-
erties, we use the construction of the Gibbs statisti-
cal operator, which is not part of Hamiltonian me-
chanics. We give the necessary mathematical for-
mulation and physical clarifications regarding the
use of the terms “normal” and “degenerate” equi-
librium states below, using the language of quan-
tum mechanics. In the case SO(3) symmetry the
exchange interaction Hamiltonian and normal equi-
libriums described by the Gibbs statistical operator
w(Y) = exp (Q — Y,5,) satisfy the equalities
[ﬁr, Sa] —0, [wZa (Y)} —0. (1)
The generalized operator of spin moment is intro-
duced here as

. , d
Yo (Y)=8,+8Y, SY= —’L&‘ag.ngm. (2)
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It acts in the Hilbert space and in the space of
thermodynamic forces Y, = (Y, Ys). The thermo-
dynamic forces determine the temperature Y(f1 =T
and the internal magnetic field —Y, /Yy = h, and
conjugate with the motion integrals 7, = H,S,. The
thermodynamic potential is can be determined from
the condition of normalization Spw = 1. Relations
(1) mean that the Hamiltonian and the equilibrium
are invariant under unitary transformations of homo-
geneous spin rotation U = exp i Sq (Y), whose gen-
erator is the operator (2). Degenerate equilibriums
have a symmetry lower than that of the Hamiltonian,

with [ﬁ), Yo (Y)} # 0. In the case of degenerate equi-

librium states their description requires to use the
quasiaverages conception [6,7]. It hence follows that
the equilibrium states depend on the unitary transfor-
mation parameters: w = (Y, 6,). Table 1 shows the
relationship of the symmetry properties of the Hamil-
tonian and the equilibrium states with the number of
magnetic degrees of freedom for magnets with spin
s=1/2.

Now we consider the magnets with spin s = 1.
This case, as seen from Table 2, is much more com-

plicated. In addition to the well-known SO(3) sym-
metry, for spin s=1 it is possible to implement the
SU(3) symmetry. Along with a vector order para-
meter a tensor order parameter may exist and also
more diverse ways of symmetry breaking of the equi-
librium state may be realized. A number of mag-
netic degrees of freedom increases. The statistical
operator of normal equilibriums of magnets with the
SU(3) symmetry has a similar form. In addition to
the Hamiltonian, a set of additive integrals of motion

Yo = (f[, éag) contain the matrix operator Gos =
f d3$ga5 (X) > !
tensor density operator gas(x) = ¥ (x) Y5 (x) —
6a51ﬁ¢ (x) zﬁv (x) /3 in terms of the Bose field cre-
ation and annihilation operators 1/} (x) , thq (x). The
SU(3) symmetry of normal equilibriums is formulated

similarly according to relations (1) and (2). For this,
we introduce the operator

Here, following [8], we introduce the

Gap (Y) = Gap + Gg,

7] 7]

GYy=Yor—— — Yag——ou-.
R N 7

Table 1. Normal and degenerate equilibrium states of magnets with spin s = 1/2

The symmetry | The symmetry | The symme- | Magnetic de- | The number of | Order

of Hamiltonian | of the equilib- | try group grees of free- | magnetic de- | parameter
rium state dom grees of freedom

H,5,/ =0 0,24 (Y)| =0 | SO(3) Sa 3 -

H, 5, =0 W, 80 (Y)| #0 | SO(3) broken | so  Ras | 6 vector

Table 2. Normal and degenerate equilibrium states of magnets with spin s = 1

The symmetry | The symmetry of | The symme- | Magnetic de- | The number of | Order
of Hamiltonian | the  equilibrium | try group grees of free- | magnetic de- | parameter
state dom grees of freedom

H S, = 0] |@,5.(Y)|=0 |SO@3) Sa 3 —

H,Qus| #0

H, Syl = 0] 0,5, (Y)]#0 |SO@3)broken | s4  Rag | 6 vector

H,Qus| #0

H,S5,| = 0] |0,3,(Y)] #0 SO(3) broken | sq daB 8 tensor

,Qus] £0 | "

H,Gop| =0 | |1,Gas(Y)| =0 | SU®3) o 8 —
H,Gop| =0 | |,Gap(Y)| #0 | SU(3) broken | gag Rap 11 vector
) ,éag =0 D, Aa,g (Y)| #0 | SU(3) broken | gog Aag 16 tensor
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This operator acts in a Hilbert space and in the
space of thermodynamic parameters. Using this gen-
erator, we can write property of SU(3) symmetry
for Hamiltonian and equilibrium states. Operator

Gap (Y) satisfies the relations [éag (Y), G (Y)} =

Gov (Y) 05, — Gup (Y) e The SU(3) symmetry
conditions for the Hamiltonian and normal equilib-
riums then become [ﬁ[, C;’a,g} =0, [71), C;’ag (Y)} =0.
These formulas mean that the Hamiltonian and the
equilibrium are invariant under homogeneous lin-
ear transformation U = expif,sGpa (Y), whose
generator is the operator in (3). In the case of
spontaneous symmetry breaking (degenerate states),
[w, Gap (Y)} # 0, which results in an additional de-
pendence of the equilibrium on the parameters of
the unitary transformation @ = w (Y, 6,3). Table 2
shows the relationship of the symmetry properties of
the Hamiltonian and the equilibrium states with the
number of magnetic degrees of freedom for magnets
with spin s = 1.

3. NONEQUILIBRIUM PROCESSES

In [9] the Poisson brackets for the Hermitian ma-
trix g (x) were obtained:

i{gaﬁ (X) » Gvp (X/)}

= (=gap (X) 6y + 945 (X) dap) 0 (x—x') . (4)
This matrix is related to the quadrupole matrix
das (x) and spin density s, (x) by relation: gqs (x) =
dap (X) — i€apySy (x) /2. Dynamics of normal non-
equilibrium states with spin 1 is described by the
Hamiltonian, which is a functional of matrix § (x):
H = H (§(x)). Using standard Hamiltonian formal-
ism, we obtain the equations of nonlinear dynamics
for the matrix

(®)

which generalizes the Landau-Lifshitz equation for
the considered magnets. In the case of SU(3) sym-
metry of the Hamiltonian a set of integrals of motion
consists of the exchange Hamiltonian and the matrix
Gap: Yo = (H,Gapg) = [dPx( (x), {H, 7.} = 0.
Here (4 (x) = € (x), gag (x) are densities of the addi-
tive integrals of motion (a = 0,a3). Using the rep-
resentation of the flux densities of additive integrals
of motion [10], we obtain the dynamic equations, re-
flecting the conservation laws in the differential form

£ (x) = —Viar (x),

9 (x) = —Vijr (%), )
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= %/dgx'x;c/d/\{e(x—k Ax),e(x — (1 —\)x")},
0

Jrn(x) =V (x) =

= d?’x'x;c/d)\{g(x +Xx),e(x — (1 = \)x')},
0

where g (x) is the energy flux density and Jj (x) is
the flux density corresponding to the conserved quan-
tity G. Taking into account the equality (4), from (5),
(6) we obtain expressions for the flux densities of the
additive integrals of motion

[ o2 6H
k=1 g,m ,qszp@jk.

Consider the homogeneous dynamics of the mag-
netic medium in an external constant magnetic field.
Hamiltonian V (h), describing such an interacting
medium, in its simplest form can be written as
V (h) = SpGh = V; (h) + V4 (h), where the term
linear in magnetic field

(7)

Vi(h) = —ihaapyGay = —haSa (8)

is the Zeeman interaction. Term

Vs (h) = Qaﬁhﬁm haﬁ = hah,g — 5a5h2/3 + i5aﬁ7h7

(9)
is squared in the magnetic field. In the absence of
spatial inhomogeneities and of term V5 (h) for matrix
gag, according (4), (5), (8) we obtain the dynamic
equation gag = ho (GapEosp — Eopagps)- Hence, sep-
arating the symmetric and antisymmetric parts, we
obtain the equations

dap = ho (QapEopp — Eopalps) -
(10)
The first of them is the Bloch equation, which de-
scribes the spin dynamics. The second one is the
equation of motion for the quadrupole matrix. Ob-
viously, in equilibrium, the spin is directed along the
magnetic field s, ||hq, quadrupole matrix is uniaxial
and has the form ¢o3 = ¢ (nang — dap/3), where unit
vector ny, = ho/h. The solution of the first equation
in (10) leads to two spin-wave spectra w = 0 and
w = h. The solution of the second equation in (10)
leads to three quadrupole spectra of waves: w = 0,
w = h, w = 2h. Consider now the effect of interaction
V4 (h) on dynamics of the system. The corresponding

éa = €aﬁ78gh7,

equation for the matrix g,3 has the form g = i[g, fz} .
This implies the following dynamical equations for
the density matrix of spin and quadrupole:

Sa = 2€appqvphay

(11)

Qaﬂ = So'hp (hﬂeapa- + haeﬂpa-) .



Stationary solutions of these equations lead to
the condition of collinearity of the vectors sq||he.-
The quadrupole matrix still has the form ¢, =
q(nang — dap/3), where there are two possible solu-
tions for the unit vector n, = hy/h and noLhs. The
solution of (11) leads to the two spectra of collective
excitations: w = 0, w = h2.

Let us consider the relaxation processes in mag-
netic materials with spin s=1. For this we use the ap-
proach of [11], where the dissipative Poisson brackets
were introduced and the relaxation equations for the
dynamics of condensed matter were obtained. The
equations of motion for the densities of additive inte-
grals of motion can be written as

Ca (%) = {Ga (%), H} = To{¢a (%), 2} .

Here ¥ = [d®zs(x) is the entropy and Tj is a con-
stant having the dimensionality of temperature. Re-
active Poisson bracket describes the dynamics of the
system in the adiabatic approximation, while the dis-
sipative bracket — the relaxation processes. Dissipa-
tive brackets are symmetric and satisfy the Leibnitz
identity

{AﬂB}D = {BvA}D’
{A,BC}D = {A,B}DC-I-B{A,C}D.

(12)

For the densities of additive integrals of motion,
using (4) and (6), (7), we obtain the Poisson brackets:

{Ca (X) s b (X/)} = _'4.5(1,04,8517,'yp(S (X - X/) X
X (945 (X) Oap = Gap (X) 043) +

(13)
162065 (%) + 0C'Y () [ V4,8 (x — x)

The right side of the bracket is represented in terms of
densities and the corresponding fluxes of the additive
integrals of motion. The explicit form of the dissi-
pative Poisson brackets can be expressed in terms of
the dissipation function, which under consideration
for magnets has the form

1
= 5 /dngkya (X) Iak,bl (X) Vle (X)

:/fw@y

Here Y, (x) = 6X/0(, (x) are thermodynamic forces
conjugate to the additive integrals of motion, gk
are generalized kinetic coefficients, which satisfy the
Onsager principle of the kinetic coeflicients symmetry
Lok.pi = Ipiak. Since the matrix g is traceless, then we
have the additional relations Inak,o1 = 0, Iak,yy = 0.
Taking into account [11] we obtain expression

{6 (%), 6 (X)) p = ~6R/8Y, (x) 83 (x')
1
To
Accounting for the relaxation processes leads to

the equations of dynamics for the densities of addi-
tive integrals of motion

G () ==V (&) 09+ (30) = LE (0 + L ().,

(14)

= Vkvg (Iak,bl (X) 5 (X — X/)) . (15)

where we obtain

0%
LD - _T 3./ . / )
200 =T [ ' 5 {6 00, G )
The equations (13), (15), (16) yield the dynamic
equation for the entropy density

§(x) = —Visly) (%) +1 (%), (17)

where j‘gi) =Y.C i}c) is the flux density of entropy and
I= C((I}C)VkYa is the entropy production. Taking into
account formulas (14), (17), we see that the dissipa-
tion function is associated with the densities of the
dissipative flow of the additive integrals of motion
equation LY (x) = —chfjc) (x) = 0R/0Y, (x). In
the exchange approximation the tensor structure of
the generalized transport coefficients is such that the
spatial and spin indices are not mixed and there is no
preferred direction in configuration space. Therefore,
Tak,bt = Okilap. In this case, for the dissipative flux
densities of additive integrals of motion we obtain the
expressions

j(()élﬁ)k = —DagViT — 0apypVihoy

q,(cl) = — (H + h,@aDag) VT —
—T'DagVihga — 0ag~rphsaVihpy.

(18)

Coeflicients of thermal conductivity x, magnetic ther-
modiffusion D,g and magnetic diffusion o.g., are
associated with generalized kinetic coeflicients by the
relations: Ingo = T%Dag + TheypOas,pys laprp =
Toup,pys 10,0 = T%k + 2T%hy Dy + Thgahey pOas,pry-
Account now for the specific structure of the trans-
port coefficients for the paramagnetic state, where in
equilibrium gog = 0 and hog = 0. The expressions
for the tensor of kinetic coefficients become simplified
and take the form

Oapyp =0 (Oapdy — 5047256;)) A+
+0" (ay08p + dapdpy — 50apdyp) /2

Daﬁ =0. (19)

Here 0,0’ are, respectively, the spin diffusion coeffi-
cient and diffusion of the quadrupole matrix. As a
result, we obtain the flux density of the matrix g.g
and energy density

jtgzlﬁ)k = 108y Vih, /2 — o' Vil (20)
q](<:1) = —K}va,

where hf, 5 = —icapyhiy, b5 = (hap + hpa) /2. From
(17) - (20) the expressions for the dissipative flux and
entropy production follow:

GO = BT I = £ (VD) +

+2 (Viha)? + % (vkhfwf > 0.

Positivity of entropy production is ensured by the in-
equalities kK > 0, 0 > 0, o’ > 0.
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CUMMETPUA, PASOBBIE COCTOAHUA 1 ITMHAMUWKA MATHETUKOB CO
CIINHOM s=1

M.IO. Kosanescxuii, O.A. KomeavHuxosa

[IpencrasieHbl pe3yabTaThl UCCIEIOBAHUN MarHeTUKOB cO crnuHOM 1. /laH amaan3 BO3MOXKHON CHMMETDPUN
OOMEHHBIX B3aMMOJIEHCTBUN U ee CBs3b ¢ MArHUTHbIMHU crenensMu cBOGobl. CdopMmymupoBana JuHAME-
Ka HOPMAaJIbHBIX HEPABHOBECHBIX cocTosumil. [loyderno obobienne ypaBHeHus Biioxa n u3ydyeHo B/IUSHUE
MArHUTHOIO T0JIsl HA, CIIEKTPAJIbHBIE XapAKTEPUCTUKH. PaccMOTPEHO BIIMSHUE JUCCUIATHBHBIX IIPOIECCOB U
HaIEHbI PEJIAKCAIIMOHHBIE TIOTOKH, O0YCIOBIEHHBIE OOMEHHONW CHMMETPUENl MArHUTHOIO TaMUIbTOHUAHA.

CHUMETPISI, PASOBUI CTAH TA INMHAMIKA MATHETUKIB 31 CIIIHOM s=1

M.FK). Kosaaescvruti, O.A. Komeavrurosa

IIpeacrasieni pesyabraru J0CaiKeHb MarueTukiB 3i crminom 1. Jlan axamiz moxKauBOI cuMmeTpil oOMiHHIX
B3Aa€EMO/Iill Ta TX 3B’s130K 3 MaraiTHumu crynersmu cBoboau. ChopmynboBana fuHaAMiKa HOPMAJIbHAX HEPIBHO-
BaxXHUX cTaHiB. OTpUMAaHO y3araJbHEHHS PiBHAHHS BJ1oxa i BUBYEHO BILJINB MATrHITHOTO MOJIA HA CIIEKTPAJIbHI
XapaKTepUCTUKU. PO3ragHyTO BUJINB AUCUTIATHBHUX TPOTIECIB 1 3HAMIEH] pesTaKCalliitHi MOTOKW, 3yMOBJIEH]
OOMIHHOI CHMETpPi€I0 MArHiTHOIO raMiJIbTOHIaHA.
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