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Unitarity of superfluid states in nuclear matter is studied in the case that the quasi-particle energy matrix holds

scalar and vector components in isospin space at the same time, ξ = ξ0 + �ξ�τ . The vector component of ξ can be

generated by the asymmetry of nuclear matter (different concentrations of neutrons and protons). It is shown that

in considered case the superfluid states become non-unitary. The work is done using the Fermi liquid approach [2].

PACS: 21.65.+f, 21.30.Fe, 71.10.Ay

1. INTRODUCTION

This work is done using a semiphenomenological
method – Fermi liquid approach [1,2] which is a gen-
eralization on superfluid states of the Landau-Silin
theory of normal Fermi liquid [3,4]. It is successfully
applied to the study of the superfluidity phenomenon
in different systems.

The aim of this paper is the determination of the
influence of vector component of the quasi-particle
energy matrix on unitarity of the order parameter
of superfluid state in a two-component Fermi liquid
(the definition of unitarity see below). One of exam-
ples of a two-component Fermi liquid is the nuclear
matter. Nuclear matter is a model of an infinite sys-
tem composed from two sorts of nucleons – neutrons
and protons. Nuclear matter is called symmetrical in
the case that the concentrations of neutrons and pro-
tons in the system are equal. If the concentrations
are not equal this difference is described using the
asymmetry parameter defined as

α = (ρn − ρp)/(ρn + ρp). (1)

It is well known that nuclear matter can be in su-
perfluid state. Those studies began from the work by
N.N. Bogoliubov in 1958 [5] and the work by A. Bohr,
B.R. Mottelson, D. Pines [6]. There is a series of
papers beginning from [7] which deal with the su-
perfluidity in nuclear matter using the Fermi liquid
approach.

There is an equivalence in the description of su-
perfluid order parameter which can be factorized in
the Pauli matrices either in spin or in isospin space.
Vector component of the quasi-particle energy ξ can
be obtained, for example, with introduction of mag-
netic field or asymmetry of nuclear matter. However

we will consider the states in isospin space only (the
case of asymmetry). It is caused by the fact that a
presence of vector part of quasi-particle energy in the
spin space is conditioned by magnetic field. For nu-
clear matter the presence of magnetic field requires
taking into account the neutron diamagnetism which
would complicate the problem.

2. UNITARY SUPERFLUID STATES

Let us define the order parameter of the superfluid
state as [1]

Δ 12 ≡ 2
∂E (f, g)
∂g+

21

, (2)

where E (f, g) is the energy functional and
f12 ≡ trρ0a

+
2 a1, g12 ≡ trρ0a2a1 are the normal and

anomalous density matrices respectively. Here ρ0 is a
nonequilibrium statistical operator and a+

1,2, a1,2 are
the creation and annihilation operators respectively.

From the symmetry properties it follows

Δ̃ = −Δ, (3)

where the transposition means the permutation of the
particles which compose the Cooper pair. The order
parameter can be factorized in Pauli matrices, and
because of (3) it has a form

Δ =
(
Δ0 + �Δ�τ

)
τ2, (4)

which is predefined by the antisymmetry of the τ2
matrix.

The problem of definition of order parameters
consists in the construction of the self-consistent
equation which determines the relation between the
order parameters and anomalous density matrices. In
order to create such an equation one should find an
expression for the anomalous density matrix through
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the order parameter. This can be attained by solving
the matrix equation for the value X [2]

XΔ+X − ξX −Xξ̃ − Δ = 0. (5)

If X is known one can explicitly express the normal
and anomalous density matrices [2]:

f = Kn+X (1 − ñ)X+K

g = K (1 − n)X −X ñK̃.
(6)

The spectrum of elementary fermionic excitations
for superfluid state is defined by the combination
E = ξ −XΔ+. This can be represented in the Pauli
matrices space as E = −ζ − �y�τ and the problem of
finding ζ in the common case comes to solving the
bicubic equation [8]

ζ6−ζ 4ε20+ζ
2
(
ε20
�b 2 −�b 2�b 2 + �ε 2

)
−
(
�c�b
)2

= 0, (7)

following which �y is expressed through ζ:

�y + �ξ =
ζ + ξ0

ζ2 −�b2
(
ζ
(
�ξ −�b

)
− i
[
�ξ,�b
])
. (8)

Here we have introduced the designations

Δ+−1
ξT Δ+ ≡ ξ − 2 �b�τ,

ΔΔ+ξ2 − 2 ξb = ε20 + 2 �ε�τ − 2 �ξ�b .
(9)

In the common case the process of solving (7) and
the results of it are quite cumbersome but in some
special cases the equation and its solving substan-
tially simplifies, in particular in the case of unitary
states.

One calls unitary the superfluid states for which
the combination ΔΔ+ is a c-number. This means
equality to zero of the value �c in the definition:

ΔΔ+ ≡ Δ0Δ∗
0 + �Δ�Δ∗ + 2�c�τ ,

2�c = Δ0
�Δ∗ + Δ∗

0
�Δ + i

[
�Δ, �Δ∗

]
.

(10)

One can see from the last formula that unitary states
satisfy the properties

Δ∗
0 = −λΔ0, �Δ∗= λ�Δ, (11)

where λ is a phase factor, λλ∗ = 1.
Taking into account �c = 0, the bicubic equation

(7) for the unitary states turns into a biquadratic one

ζ4 − ε20ζ
2 + ω4

0 = 0, (12)

where
ω4

0 = ε20b
2 − b2b2 + �ε 2,

ε20 = ξ20 + η2 + ΔΔ+

�ε = ξ0

(
�ξ −�b

)
− i
[
�ξ,�b
]
.

(13)

The quasi-particle energy has a structure ξ =
ξ0 +�ξ�τ where the term �ξ�τ arises because of the asym-
metry α of nuclear matter which is defined (1) as a

function of a difference of densities of neutrons ρn

and protons ρp in the system.
In the case �ξ �= 0 the co-ordinate system can be

chosen in the way that

�ξ = (0, 0, ξ3) . (14)

At the presence of asymmetry the term ξ3 will be in
the form

ξ3 = κα, (15)

where κ is an aspect ratio and α is the asymmetry
parameter (1).

3. DETERMINATION OF THE
ANOMALOUS DENSITY MATRIX

Let us now consider the influence of asymmetry on
the unitarity of superfluid states. We can do this by
finding the dependence of the anomalous density ma-
trix on the order parameter. In order to obtain the
self-consistent equations it is necessary to execute the
procedure of diagonalization with taking into account
the non-zero value of �ξ.

Let us obtain the expression for ΔΔ+. From (12)
and (13) it follows

ΔΔ+ =

(
ζ2 − ξ20

) (
ζ2 − η2

)
ζ2 − b2

. (16)

So, the solution of (12) can be presented in the form

ζ2 =
1
4

(E++ σE−)2 , σ = ±1, (17)

where
E± =

√
ε20 ± 2ω2

0. (18)

For K = K0 + �K�τ we will obtain the following ex-
pressions:⎧⎪⎨⎪⎩
K0 = ζ−ξ0

2ζ

(
1+

ξ0(η2−b2)(ζ+ξ0)

(ζ2−η2)(ζ2−b2)+(ζ2−ξ2
0)(η2−b2)

)
�K�τ= ζ2−ξ2

0
2ζ · (ζ2−η2)b−(ζ2−b2)η

(ζ2−η2)(ζ2−b2)+(ζ2−ξ2
0)(η2−b2)

.
(19)

The matrix X can be obtained by calculating the
combination

X =
XΔ+

ΔΔ+
·Δ. (20)

Using (8) (for XΔ+) and (16) we finally get:

X =
(ζ + η) (ζ − b)

(ζ − ξ0) (ζ2 − η2)
· Δ. (21)

Now let us find the matrix expression for n:

n =
{

1 + exp
[

1
T

(
ξ −XΔ+

)]}−1

. (22)

Using the common formula which is correct for an
arbitrary function f

(
α+ �β�τ

)
[9]:

f
(
α+ �β�τ

)
=
f (α+ β) + f (α− β)

2
+

+
f (α+ β) − f (α− β)

2

�β

β
�τ , (23)
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from the first formula of the system⎧⎨⎩ ζ2 + �y 2 + 2
(
�y�b+ �ξ�b

)
= ε20,

ζ
(
�y +�b

)
+ i
[
�y,�b
]

= �ε
(24)

and from (8) we have

�y 2 = ε20 − ζ2. (25)

Substituting here ζ2 from (17), we will obtain

ε20 − ζ2 = ε20−

− 1
4

(
ε20 + 2ω2

0 + ε20 − 2ω2
0 − σ

√
ε40 − 4ω4

0

)
,

(26)

and then

y2 =
1
4

(E+ − σE−)2 , ζ2 =
1
4

(E+ + σE−)2 . (27)

So,

ζ + y = κE+, ζ − y = κσE− (κ = ±1), (28)

n (−ζ − �y�τ ) =
n (−κE+) + n (−κE−)

2
+

+
n (−κE+) − n (−κE−)

2
�y

y
�τ.

(29)

Let us introduce the designations

n± ≡ n (−κE±) . (30)

For calculating ñ(−p) one could take advantage of
the property

τ2ñ (E (−p)) τ2 = Δ+n (E (p) − 2b (p))Δ+−1
. (31)

In order to demonstrate this property let us pull
the Pauli matrices inside n represented in the form
τ2ñ (−p) τ2 = n

(
τ2Ẽ (−p) τ2

)
. Now let us study

just the argument of n. In using the properties
Δ̃ (−p) = −Δ(p) and X̃ (−p)=−X(p), and (9) we
obtain

τ2Ẽ (−p)τ2 = Δ+(E (p) − 2b)Δ+−1
. (32)

The matrices Δ+ and Δ+−1
can be pulled out of

brackets in the summed series from which we get (31).

So, we obtain for n(E ) and n(E − 2b) such formu-
las:

n(E ) =
n+ + n−

2
+
n+ − n−

2
· �m�τ ≡

≡ N+ +N− · �m�τ,
n(E − 2b) =

n++ n−
2

+
n+− n−

2
· �m1�τ ≡

≡ N+ +N− · �m1�τ,

(33)

where
�m = �y/y, �m1 =

(
�y + 2�b

)/
y. (34)

From the formula (8) it follows
(
�y + 2�b

)2
= �y 2

which simplifies the solution of the problem. Then

E = −ζ − y · �m�τ,
E − 2b = −ζ − y · �m1�τ .

(35)

Now we need to calculate

g =K (1 − n (E ))X−
−XΔ+n (E − 2b) Δ+−1· 1

1 +X+X
.

(36)

It is suitable to calculate this expression with using
(20) and (33), from which it follows

g =
ζ2−b2
R

{
ζ2 − b2

2ζ
(1 − 2N+)+

+
1
y

(
ξ20 − b2

) (
η2 − b2

)
ζ2 − b2

N−−

−
(

1
2ζ

(1 − 2N+) +
1
y
N−

)
·

·
(
ξ0

(
�ξ −�b

)
+ i
[
�ξ,�b
])
�τ
}
Δ .

(37)

Taking into account �ξ = (0, 0, ξ3), we obtain

�b =
ξ3
D

⎛⎜⎝Δ1Δ3 − iΔ0Δ2

Δ2Δ3 + iΔ0Δ1

Δ2
3 − Δ2

0

⎞⎟⎠, �b 2= ξ23
Δ2

3 − Δ2
0

�Δ2 − Δ2
0

. (38)

Substituting all the elements in (37) with the ob-
tained expressions we will get the final formulas for
the components of gi:

g0 = 1
W

{
Δ0

(
ζ2 − ξ23

) (
ζ2D − ξ23χ

) 1−2N+
2ζ − Δ0ξ

2
3

(
ζ2 − ξ20

)
ψN−

y

}
g1 = 1

W

{ (
ζ2D − ξ23χ

) (
ζ2Δ1 + iξ3ξ0Δ2

) 1−2N+
2ζ +

+
(
ξ3Δ1

[(
ζ2 − ξ23

)
χ+ ξ20ψ

]− iξ0Δ2

(
ξ23χ− ζ2D

))
ξ3

N−
y

}

g2 = 1
W

{ (
ζ2D − ξ23χ

) (
ζ2Δ2 − iξ3ξ0Δ1

) 1−2N+
2ζ +

+
(
ξ3Δ2

[(
ζ2 − ξ23

)
χ+ ξ20ψ

]
+ iξ0Δ1

(
ξ23χ− ζ2D

))
ξ3

N−
y

}
g3 = 1

W

{(
ζ2D − ξ23χ

) (
ζ2 − ξ23

) 1−2N+
2ζ Δ3 − ξ23

(
ζ2 − ξ20

)
ψN−

y Δ3

}
,

(39)
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where

χ ≡ Δ2
3 − Δ2

0, ψ ≡ Δ2
1 + Δ2

2, D ≡ χ+ ψ,

W ≡ (ζ2 − ξ23
)2
χ− (ξ23ξ20 − ζ4

)
ψ.

(40)

4. RESULTS AND CONCLUSIONS

Let us examine the expressions (39). One can see
that the order parameters obtained from them would
not satisfy the properties of unitary states (11), which
follows from the proportionality of the summands in
these expressions both to real and to imaginary uni-
ties. From this it follows that for a two-component
Fermi liquid the considered superfluid states defined
in the form (4), where all Δi (i = 0... 3) are not
equal to zero, cannot be unitary at �ξ �= 0. Though
the appearance of small asymmetry leads to a small
declination from unitarity of superfluid states.

In the paper we have considered the possibility of
existence of unitary superfluid states in asymmetrical
nuclear matter. It is shown that asymmetry breaks
the unitarity of superfluid states in isospin space.
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