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A consistent theory of equilibrium states of charges and fields above the surface of liquid dielectric film located on a

solid substrate is built. The developed approach is used for the description of phase transitions in these systems to

the states with spatially-periodic ordering.

PACS: 64.60.Ai, 73.20.At

1. INTRODUCTION

As it is well-known [1, 2] in the system of elec-
trons above liquid dielectric surface under a certain
conditions the spatially periodic structures of two-
dimensional crystal type or so-called dimple crystals
appear. Theoretical approaches to the description
of these structures are based so far on using the
model potentials that contain adjustable constants.
In addition the existing theoretical works consider a
many-particle system of charges near the surface of
a liquid dielectric as two-dimensional structure [1],
ignoring their distribution above the surface of he-
lium. The question of constructing a general theory
without these shortcomings arises.

The present paper is devoted to developing the
approach to the description of distributions of the
same sign charges and fields above the liquid dielec-
tric surface in terms of considerably generalized by
us Thomas-Fermi model [3]. As an application of this
approach we consider some phase transitions in such
system associated with the transformation of the lig-
uid dielectric surface and the formation of spatially
periodic structures.

2. THE BASIC CONCEPTS OF THE
VARIATIONAL PRINCIPLE

Let us consider a system of identical particles with
charge @@ = —e (e is the charge of electron), mass m,
spin S, momentum p and energy ep = 2—. The
charges are located in vacuum above the surface of
liquid dielectric film which has thickness d and per-
mittivity €. We assume that the liquid dielectric film
is located on a flat solid substrate with dielectric per-
mittivity €4 > €. The surface profile of the liquid di-
electric film is described by a function £(p) = £(z, y),
where p = {x,y} is the position vector in the plane

z = 0 of a Cartesian coordinate system { z,x,y}. The
interface regions “1” - “3” in the direction of the co-
ordinates p = {z,y} are considered unlimited.

We consider that the charges are attracted by ex-
ternal electric field E directed along the axis z. We
also assume that there is a potential barrier prohibit-
ing the penetration of charges into the liquid dielec-
tric film. All physical quantities relating to the re-
gion z > £(p) are denoted by the subscript “1”, the
physical quantities related to the liquid dielectric film
(&(p) > z > —d) - index “2”, and the physical quanti-
ties related to the solid dielectric substrate (z < —d)
- index “3”. In the region “1” the system is fully de-
scribed by a distribution function of particles fp (r),

the potential of the electric field ¢\” (r) created by a
system of charged particles, the potential of attract-
ing external electrostatic field wge) (r) and the surface
profile of liquid dielectric £(p). In the region “2” the
characteristics of the system are the surface profile
of a liquid dielectric {(p) and the total electric po-
tential. By the “total” we mean the potential of the
external electric field in a liquid dielectric and the
field induced by charged particles located in the re-
gion “1”. The region “3” is characterized by the total
potential of the electric field in a solid substrate.

The basis of the variational principle is the con-
cept of the thermodynamic potential

Q=-S5+ Y,E+Y;P, +YiN, (1)

where S = S (f,€) is the entropy of the system

S ==y [dvdp {rfp (1)1 (1 () +
g

+ (1 =7fo(r) (I =7fp ()}, 7= 2

(2)

P; = [drdpfp (r)p; is the total momentum of the
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particles, N = [drdpfp (r) is the total number of
particles in the system and g = (25¢ + 1).

Thermodynamic parameters Yy, Y;, Y4, in (1) are
associated with temperature T, average velocity v;
and chemical potential p by formulae T'=1/Y,
-Y:/Yo = v;, —Y4/Yy = u. We note that in the case
of stationary system the velocity v; is zero (we shall
consider this case further on v; = 0).

The energy of the system H that functionally de-
pendends on the above parameters describing the sys-
tem H = H (f, p, &) has the following form:

H=H,+ Hy+ Hs + Hy, (3)

where Hy, Hs, Hs determine the energy of the sys-
tem in regions “1” - “3” and Hy is the energy of the
perturbed liquid dielectric:

H, :/dp / dz/dpfp(r)€p+
&(p)

o0

+2 / dp / dz / dpe (x) fp (r) +

&(p)

o0

+Q/dp/

&(p)

+8i7T / dp / dz (w@ (r))2,

&(p)

" / dpe® (x) f (r) +

£(p)
£
%=§/@/MWW®ﬂ
s
Zd

—d
£
m:f/@/mw%wﬂ
s

(@) (e) (4)

w2 =0 + o8, o3 =0f) + 0l
[0

=5 [as{(V.e o) + ¢ ()}

dS = d*p\/1 + (V€ (p))?

The external forces acting on the liquid dielectric
film with thickness d are the gravitational force, as
well as van der Waals forces from the solid substrate.
Thus (see, e.g., [3]), the constant  in (4) is given by
k% = £ (g+ f), where g is the acceleration of gravity,
« is the surface tension of liquid dielectric, p - its den-
sity and f ~ d~* is Van der Waals constant, which in
the case of a massive liquid dielectric (d — co0) can
be neglected in comparison with g. In the case of
a thin dielectric film the force of gravity acting on
the atoms of liquid dielectric become negligibly small
comparing to the van der Waals forces.

The variational the problem is reduced to find-
ing the minimum of the thermodynamic potential €2
under the condition of the Poisson equation validity,

A (x) + 47Q / dpfp () = 0, (5)

in the region “1” (z > £ (p)). In the regions “2” and
“3” there are no charges hence for these regions the
equation (5) becomes the well-known Laplace equa-

tion ‘ ‘
A () =0, Ap{(r) =0. (6)

We also note that the attractive potential of the ex-
ternal electric field satisfies the same equation in all
three regions

A ) =0, 1=1,2,3. (7)

As a result, we obtain the final form of self-
consistency equations relating the parameters de-
scribing the system under consideration. The equa-
tions for the potentials of the electric field, both ex-
ternal and induced by charges in all three regions
of the system have the form (5) - (7). The self-
consistency equation for £ (p) has the following form:

}/0*17_1 /dp In(1—7fp (r))|z:£(p) -

€

o (Wawr- (v m))

z=¢£(p)
+ar®E (p)\/1+ (VE(p))*—

VE(p) (1+ 56 (p) + 3 (V€ (0)°)
—aV ,

1+ (V¢ (p)

(3)
and the distribution function fp (r) in (5) and (8) is
given by the expression

fo(r) =0(z—¢(p) v "%
x {1+expYp(ep — p+Qp)} .

It is easy to see that the obtained system of self-
consistency equations is closed. However it must be
supplemented by the boundary conditions for the
potentials of electric fields and their tensions at the
boundaries z = £ (p) and z = —d accounting the limi-
tation of fields at infinity. To simplify the calculations
we consider that the surface charges at the interface
regions are absent (for details see [3]).

9)

3. THE MAIN EQUATIONS FOR THE
PARAMETERS DESCRIBING THE
SYSTEM IN ASYMMETRIC PHASE

The scenario of the phase transition leading to the
transformation of the liquid dielectric surface film is
assumed as follows. As already mentioned the exter-
nal electric field attracting the charges to the surface
leads to the subsidence of the surface of flat liquid
dielectric film in the region of the field acting. And
the bottom of the deflection remains flat. Hence the
deformation of the surface of liquid dielectric leaving
the bottom of the deflection flat can be characterized
by a single parameter £ < 0 (the subsidence depth).
With further increasing of the external electric field
the depth £ < 0 increases and the surface of the de-
formation bottom remains flat up to a certain critical
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value of the total electric field E. on the dielectric
surface. We note that at the same time the condition
|§ | < d must be satisfied if the liquid dielectric is a
film with thickness d located on the solid substrate.

With further increasing of attracting electric field
the surface profile of the bottom of the formed de-
flection may deform and acquire a periodic structure.
Hence it follows that the phase transition to a spa-
tially periodic structures in the considered system oc-
curs on a background of the flat structure of a liquid
dielectric.

According to (5) - (9) the above scenario of the
phase transition the surface profile of liquid dielec-
tric in a phase with lower symmetry can be written
as follows:

&) =E+&p), [€>[E@)], 0

where £(p) is a spatially inhomogeneous surface pro-
file resulting from the phase transition on the back-
ground of a flat bottom surface z = £ of the described
above homogeneous deformation. Thus, the surface
profile £(p) is the order parameter of the phase tran-
sition turning into zero at the critical point.

According to (10) we can expect that distribution
of charges and fields in the system will be little differ-
ent from the distributions taking place in the case of a
flat dielectric surface z = €. Then the field potentials
wi(z,p), 1 =1,2,3 can be written as

B> 16z )

(1)
where ¢;(z,p), | =1,2,3 are the total electric field
potentials in all regions of the system described above
(but not on the surface interface!) in the case when
the surface of the liquid dielectric is flat z = £. Poten-
tials @;(z, p) describe small distortions of the field in
all these regions due to inhomogeneous surface pro-
file £(p). We also note that the representation similar
to (11) will be considered valid for the potentials of
the external electric field in all three regions

ei(z,p) = @i1(2) + @iz, p),

01 (z0) = 217 (2) + 1 (2, p),

12
69 )] > [l (2. 00 -
The method of solving equations (5) - (9) accounting
boundary conditions in the case of non-degenerate
gas of charges above a plane dielectric surface is de-
scribed in detail in [3]. Here we present only the
final results. The dependence of the electric field
Ei(z) = —3“55;2) and charge density on zcoordinate
above the liquid dielectric surface z = £ is given by
the expressions

_plrx) o pET AX()
El(z)_El_X(Z)v ()—ﬁ&n_(l_x(z))ga
@)= g pen -G-8/} (13

where 29 = (BeE)~t, 371 =T, Ey — E = 4men, and
ns - the number of volume charges per unit of a plane
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dielectric surface. Equation (8) allows us to identify
the subsidence of the flat surface level £

- (14)

= e+1 9 9
— E§ — E%).
8meak? (Eo )
Let us note that in the absence of charges the value

of € is zero as expected.

4. CRITICAL PARAMETERS OF THE
PHASE TRANSITION TO A SPATIALLY
PERIODIC PROFILE OF THE LIQUID
DIELECTRIC SURFACE

As a result of rather cumbersome calculations the
equation for the Fourier transform & (qo) of the spa-
tially periodic surface profile £ (p) in the linear ap-
proximation of perturbation theory (see (10), (11))
can be reduced to the form:

D (qo)(qo) =0, @ (qo) =

g0 (E§ —E?) C*fHL+ Cha+ f5
4me C2%2g1 + Cga+ g3

—a (K +q),
(15)
where we introduce the following notations
fi=(-1) (—(5— 1)(2m)2—|—2m—|—(6—|—1)y),
fo=2¢ (—(5—1)(2x)2+5(2x+1)+y),
fs=—(2—1) (22)° + 22 (262 + 3 +1) +
+2e(e+2) —y (2 +2—1),
g=E-1(e=12x2z+1)—vy),
2=2(("-1)22(2x+1) —y),
gB3=1+e)(14+e)22(2x+1)+vy),
C=(cqg—¢)(ca+e) texp (—2¢ (d+¢)),
x=qT/eEy, y=(E;—E*)/E;.
. (16)
It follows from (15) that since £ (qo) # 0 (in the op-
posite case there are no spatially periodic solutions),
it must be ® (qo) =0
Q@ (B; —E?) C?fi+Cha+ f5
4dre C2g1 +Cga + g3

o (52 + q%) . (1)

This equation determines the length of vector qq
as a function of physical parameters of the problem:
the temperature 7', the number of electrons ng per
unit of the flat liquid dielectric surface, the density of
the dielectric p, its surface tension « and permittiv-
ity € and the permittivity of the solid substrate £4.
The vector qg characterizes the reciprocal lattice of
two-dimensional periodic structure inside its unit cell
exp (igop) = cos (goux) + isin (goyy)-

The condition for the appearance of a new phase -
the periodic structures in a system of charged fermi-
ons above the surface of the liquid dielectric film is
reciprocal lattice vector equal to zero gy = 0 at the
critical point. If gy =0 at the critical point, (17)
takes the form:

(6 + 1) eEO

T=-"—"C(E}-

2
8maec?k? E ) ’

(18)



Equation (18) is the equation of the critical surface
of the phase transition in three dimensional space.
Near the critical value of the external electric field
E. defined by equation (18), (but E > E.), the value
of the vector gp must be small and can be obtained
analytically from (14) assuming qod < 1, € < gg4:

1 1
2(E—-E.)\? 1 3n2 Foo\ 2
QOzfﬁ(i( )> (14—(E+ ) me“ni Fo ) X

Ey. e2ar?T,
X (1 +

e—1 /2T.k\2\
€+1 eEOC

The index “c” in some of the values in the for-
mula (19) means that these values lie on the surface
of the phase transition given by the expression (18).

Far from the surface of the phase transition (17)
can be solved only numerically. We make these nu-
merical calculations basing on the experimental data
published in [4]. In this paper authors establish
the clear observation of the two-dimensional hexag-
onal hole lattice on the surface of liquid *He with
a period a ~ 1.76 mm (a = 27/qp), the order of the
electron number in each hole about 107, thicknesses
of helium film d from 0.2 to 1.9 cm, external field
E = 1820V /cm and temperature T' = 4,2 K. We ob-
tain the satisfactory agreement between the calcu-
lated and experimental values of the system parame-
ters at ns ~ 0.84 - 10° cm 2.

Let us also note that in the case of a system
of charges above a massive liquid dielectric (¢ = g4,
d — o) the described phase transition in the inves-
tigated system is impossible.

1
2

(19)

5. CONCLUSIONS

Thus, we constructed a consequent theory of
charge systems above the surface of a liquid dielec-
tric film. This theory is based on the model of self-
consistent field in Thomas-Fermi approach general-
ized applying to the considered system. The de-
veloped theory allows obtaining the self-consistency
equations for the parameters describing the system:
the distribution function of charges above the liquid
dielectric surface, the electrostatic field potentials in
all regions of the system and the surface profile of
liquid dielectric. An essential fact is that the theory
contains no adjustable constants determined from the
experiment. The obtained self-consistency equations
allow us to describe the phase transition in such sys-
tem to a spatially periodic surface profile of a liquid
dielectric.
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O ®A3O0BbBIX IIEPEXOJAX B CUCTEMAX 3APA>XKEHHBIX
PEPMU-YACTUIIL HA ITIOBEPXHOCTBIO >KNJIKNX JINDJIEKTPKOB

FKJ.B. Carwcapenxo, .M. Jlumeunenxo, A.U. Kupdun

IlocTpoena nociiegoBaTeIbHAS TEOPUST PABHOBECHBIX COCTOSHUM 3apsA 0B U MOJIeH HaJ MOBEPXHOCTHIO TIJIEH-
KH KHIKOTO JUIIEKTPUKA, PACIOI0KEHHON HAJ TBEPAOH MOAI0KKOM. Pa3BuThIil 01X0M HCIIOIB30BAH 115
onucanus $pa30BbIX IIEPEXOIOB B TAKAX CUCTEMAX K COCTOSIHHUSM C MPOCTPAHCTBEHHO-IEPUOIUIECCKUAM YIIOPSI-
JOYEHHEM.

ITPO ®A30BI ITEPETBOPEHHA ¥ CUCTEMAX 3APA/I2KEHNX
PEPMI-HACTUVHOK HA/I IIOBEPXHEIO PIJKNX AJIEJIEKTPUKIB

IO0.B. Carocapenxo, .M. Jlumesurenxo, A.I. Kipdin

IToOymoBaHO MOCTIIOBHY TEOPil0 PIBHOBAXKHUX CTAHIB 3aps/IiB i MOJIB HAJ MOBEPXHEIO TJIIBKY PIIKOTO Jie-
JIEKTPWKA, PO3TAINOBAHOI HAJ TBEPIOIO IiIKIAIK00. Po3BUHYTHI miaxin 3acTOCOBAHO /i Omucy (HpasoBux
TIepeTBOPEHD V¥ TaKWX CHCTEMaX JI0 CTAHIB i3 MPOCTOPOBO-MEPIOAUIHAM yIOPAIKYBAHHSIM.
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