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The distribution function of quasi-equilibrium plasma in linear approximation in differences of temperatures and

velocities of its components has been obtained. It was done on the basis of our generalization of the Chapman-

Enskog method. It is found that the Maxwell distribution with different velocities and temperatures of components

is not a true nonequilibrium distribution function even in the linear approximation. The Landau theory of relaxation
phenomena in plasma gives a leading approximation of the developed theory. It was established that relaxation takes

place in the case of small difference between temperatures and velocities of components regardless of the mass ratio.

PACS: 05.20.Dd, 51.10.+y

1. INTRODUCTION

Landau in his well known work [1] has derived a
kinetic equation for completely ionized plasma and
solved a problem about temperature relaxation of
electron and ion components. According to Landau
equilibrium is established in the electron and ion sub-
systems at first (over periods of time 7, and s re-
spectively), then temperature relaxation of the com-
ponents is observed over a period of time 7. The last
process is the slowest one because of a small electron
and ion masses ratio o = (m/M)Y2. Analogously a
problem about velocity relaxation of the components
over a period of time 7, has been solved (see, for
example, [2]). The Landau theory is based on an as-
sumption that quasi-equilibrium state of the plasma
can be described by the Maxwell distribution:
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(a = e,1). The Landau kinetic equation was in the
basis of the study which in considered here spatially
uniform case in standard notations has the form
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(Uab,n = Uan — Ubn, Uan = Pan/Ma). Temperatures

T,, velocities vy, and densities of the components n,
are defined by the usual relations:
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(ea(p) = p?/2m,) which express them through the
distribution function f,(p). One can immediately ob-
tain time equations for T, v., which can be written
in the form
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(n, does not depend on time). In the Landau theory
these equations formed a closed set of equations af-
ter using of the mentioned assumption f,(p) = w,(p)
where w,(p) is the Maxwell distribution (1). This
set of equations was studied by Landau in a leading
approximation in small parameter o.

In the present paper we consider a problem of ob-
taining of nonequilibrium distribution function which
should be substituted into right side of the time equa-
tions (4). It is only possible when in the consid-
ered time interval the distribution function f,(p,t)
depends on time only through variables Ty, (t), van (t):

Ja(,t) —— falp, Te(t), Ti(t), ve (), vi(t)) — (5)

t>10
(T, ™ <€ 79 < Tr,7Ty). This assumption actu-
ally gives a generalization of the Chapman-Enskog
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method of solving of kinetic equations and is called
the Bogolyubov functional hypothesis (see, for exam-
ple, (3]).

Note that the Landau problem was studied in
many papers (see, for example, [4] and references
within). Important advantage of the generalized
Chapman-Enskog method is possibility do not choose
time scale in the terms of small parameter of the the-
ory. Moreover, this method gives description of non-
equilibrium state of the system till equilibrium.

2. BASIC EQUATIONS

Total energy and momentum of the system are
conserved, therefore equations (4) have motion inte-
grals T and v,, which are defined by formulas
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Parameters T' and v,, are equilibrium temperature
and velocity of the system. Let study relaxation phe-
nomena close to the equilibrium and introduce small
deviation of the electron parameters from the men-
tioned equilibrium values and the corresponding val-
ues for ions:

(6)
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We assumed here that the system is electrically-
neutral and therefore n; = n, ne = zn where z is
charge of an ion.

It is convenient to consider the problem in the ref-
erence system where velocity v, = 0. The functional
hypothesis can be written in the form
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Evolution equation (4) give equations for parameters
7(t), un(t) in the form
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According to equations (8), (9) distribution function
fa(p, 7,u) satisfies equation
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Definitions (3) lead to additional conditions for func-
tion fo(p, T, u):
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We will solve equation (10) with conditions (11)
in a perturbation theory in small values 7, u, and
consider them as values of the same order 7, u,, ~ p,
1 < 1. Calculations in the perturbation theory in p
give
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(A(™) is contribution to A of the order pu™). Ac-

cording to (10), (11) the first order contribution F
satisfies the equation and additional conditions
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Contributions of the first order to the right sides of
equations (9) taking into account considerations of
rotational invariance have the structure
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The constants Ar, A\, define the corresponding tem-
perature and velocity relaxation times in the system
T = )\}1, 7o = A, ! (it is shown below that Az, A,
are positive values). Solution of equations (13) has
the structure

F9 = wl(p){Aa()T + Ba(p)pntin},

where A,(p), B.(p) are scalar function of momentum
module. Function A,(p) according to (13) satisfies
integral equation and additional conditions

(16)
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where the notation
(g(p)) = / d*pwig(p)

is introduced. Kernel of this integral equation is de-
fined by the formula

Map(p, p')wg (p') = —wg (p) Kap(p, p').- (18)
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Like to the previous the function B, (p) is solution of
the integral equation with additional conditions

S [ ' Ko, VB0, = AuBalpr
b
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So, the functions A,(p), B.(p)pn are eigenfunctions
of the linearized collision integral K. This operator
is defined in space of pair functions of the type g.(p),
ha(p) (a = i,e) which we denote as H. According
to kinetic equation (2) and definitions (14), (18) this
operator act on arbitrary function h,(p) € H as it
follows
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On the basis of this operator the bilinear form in the
space H can be introduced:
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which is symmetric and positively definite
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This show that eigenvalues Ap, A\, are positive be-
cause equations (17), (19) lead to
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where scalar product in the space H

(23)
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is introduced. Therefore, following from (9), (15)
time equations for 7 and u,

or
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really describe temperature and velocity of the
plasma component equalization. Note that from (17),

(19) formulas for attenuation coefficients follow:
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where one more bilinear form
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is introduced (u1(p), uz(p) are some functions).

3. ANALYSIS OF OBTAINED RESULTS

For the purpose of further analysis of the equa-
tions (17), (19) it is convenient to represent them in
a dimensionless form. Introducing the notations

Au(q) = Au(g(m, 7)) T 3(2m)3/;
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gives us the following system of integral equations for

the functions A,(q) (a = i, e):
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In (27) dimension of functions A,(p) is taken into
account. The dimension is determined by the addi-
tional conditions (17) which can be written in the
form

/dgqe_qZ/QAa(Q) =0,

/dSqq2e_‘12/2le(q) = Oge — 204i. (30)

Introducing the notations

Ba(q) = Ba(g(m,T)Y*)T/3(2m)3/2,

gives us the following system of integral equations for
the function B,(q) (a =1, e) from (19):
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n (31) dimension of functions B,(p) is taken into
account. The dimension is determined by the addi-
tional conditions (19) which can be written in the
form

/dSqq2e_‘12/23a(q) = Oge — 02 200;. (34)
We find solution of the equations (28)—-(30), (32)—(34)
in a series in small parameter o = (m/M)/?:
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Unfortunately, these equations cannot be solved by
an iteration procedure but simple substitution shows
that in the initial notations the leading contribution
is given by relations
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Comparison of the formulas (36) with the expres-
sions (1) and (16) shows that exactly such func-
tions as AL (p) lie in the basis of the Landau the-
ory [1]. Moreover, the expression (37) coincides with
the temperature relaxation coefficient obtained by
Landau [1]. In the same way the functions BY (p),
Bl@) (p) from (38) lie in the basis of the velocities re-
laxation theory [2] which is analogous to the Landau
theory. At the same time the expression (39) coin-
cides with the velocity relaxation coeflicient [2]. So,
the Landau relaxation theory is given by the leading
approximation of the developed here theory.

4. CONCLUSIONS

The distribution function of quasi-equilibrium
plasma in linear approximation in differences of tem-
peratures and velocities of plasma components has
been obtained. In was done on the basis of our gener-
alization of the Chapman-Enskog method. It is found
that the Maxwell distribution with different veloci-
ties and temperatures of components is not a true
nonequilibrium distribution function even in the lin-
ear approximation. This means that the traditional
idea about a universal role of the Maxwell distribu-
tion in description of quasi-equilibrium states is not
confirmed. It was shown that the Landau theory
of relaxation phenomena in plasma (i.e. the theory
of temperatures and velocities relaxation of compo-
nents) gives a leading approximation of the developed
here theory in small electron and ion masses ratio. It
was shown as well that relaxation takes place in the
case of small difference between temperatures and ve-
locities of components regardless of the mass ratio.
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K TEOPUMU JIAHIAY PEJIAKCAIIMMOHHBIX ABJIEHU B IIJIABME
A.U. Coxonosckxuli, B.H. I'opes, 3.F0. Qeabaesckudi

[Monyvena dyHkIus pacnpeaeeHns KBA3NPABHOBECHO TIJIA3MbI B JIHHEHHOM MPUOIMKEHUN 110 PAZHOCTAM
TEMIIEpaTypP W CKOPOCTEH e€ KOMITOHEHT. IDTO CIAEJaHO HA OCHOBE HAIIEro 0000meHus mMeroma demmena-
Ouckora. Halineno, uro pacnpesesienne MakcBenia ¢ pa3iddHbIME CKOPOCTSIMU U TEMIIEPATYPAME KOMIIO-
HEHT He SABJISIeTCs MCTUHHON HEPABHOBECHOH (DyHKIWEH pacipeaesieHus JarkKe B JTUHEHHOM MPUOJIMKEHHH.
Teopus Jlammay peslakCaIlMOHHBIX SBJIEHUN B IJIA3Me [1aeT TJIABHOE MpUOJINKEHNe PA3BUTON Teopuu. YCTa-
HOBJIEHO, YTO PeJIaKCallud UMeeT MECTO B CjIydae MaJjoil pa3HOCTU MeEXKIy TeMIlepaTypaMu U CKOPOCTAMU
KOMTIOHEHT HE3aBUCHUMO OT OTHOIIIEHUS MacCC YaCTHIIL.

JI0 TEOPIi JIAHJJAY PEJIAKCAIIINMHUX SABUIIL YV IIJIA3MI
0.1. Coxonoscvruti, B.M. I'opes, 3.F0. Yeabaescorudi

Onepkano GYHKIHIO PO3MO/LTYy KBa3ipiBHOBAXKHOI IJIa3MK B JIHIHHOMY HaOJIMXKEHH] 38 PI3HUISIMU TeMIepa-
3naiimeno, mo po3moaiyi Makcsesia 3 pi3HUME MIBHIKOCTSIMHU 1 TEMIEpPATypPaMyu KOMIIOHEHT HE € iCTHHHA
HepiBHOBaXkHA (DYHKINSA PO3MOILIY HABITH y JiHifinomy nHabmmxkenui. Teopis Jlammay penakcamiinux sSBUIIL
y IUIa3Mi /Ia€ TOJIOBHE HAOIMKEHHsT PO3BUHYTOI Teopii. BecTranoBieHo, 1Mo pefakcariisa Ma€ Micie y BAMAIKY
MaJIOl PI3HUIL MiXK TeMIepaTypaMu i MIBUJIKOCTAMUA KOMIIOHEHT HE3aJIE2KHO BiJ| BiJIHOIIEHHS MAC YaCTUHOK.
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